文档库 最新最全的文档下载
当前位置:文档库 › 化工原理化工设备水冷却煤油设计说明书

化工原理化工设备水冷却煤油设计说明书

化工原理化工设备水冷却煤油设计说明书
化工原理化工设备水冷却煤油设计说明书

化工原理化工设备

课程设计任务书

设计题目:年处理4.8万吨煤油固定管板式换热器设计书学生姓名:康国梅

专业班级:资源环境与城乡规划管理2010级4班

学号:100704034

指导教师:徐慎颖张燕

宜宾学院

化学与化工学院

2012年12月30 日

列管式换热器设计任务书

一、设计目的

培养学生综合运用本门课程及有关选修课程基础理论和基本知识去完成换热单元操作设备设计任务的实践能力

二、设计目标

设计的设备必须在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的

三、设计题目

列管式换热器设计

四、设计任务及操作条件

1. 设计任务

设备型式:列管式

处理任务:如下表所示:

2. 操作条件

(1)热流体:入口温度140℃; 出口温度40℃ (2)冷却介质:岷江水 (3)允许压降:不大于0.1MPa (4)物性数据

煤油定性温度下的物性数据

()

()

C m W C kg kJ c s

Pa m kg o o o

po o o ?=?=??==-/14.0/22.21015.7/82543

λμρ导热系数定压比热容粘度密度

原油定性温度下的物性数据

()()C m W C kg kJ c s

Pa m kg o o o po o o ?=?=??==-/128.0/2.2100.3/81533

λμρ导热系数定压比热容粘度密度

柴油定性温度下的物性数据:

()

()

C m W C kg kJ c s

Pa m kg o o o

po o o ?=?=??==-/133.0/48.2104.6/71543

λμρ导热系数定压比热容粘度密度

五、设计内容

1. 设计方案的选择

2. 设计计算

(1) 计算总传热系数 (2) 计算传热面积 3. 主要设备工艺尺寸设计

(1)管径尺寸和管内流速的确定

(2)传热面积、管程数、管数和壳程数的确定 4. 换热器核算 5. 设计结果汇总 6. 绘制换热器简图

7. 换热器壳体封头材料,厚度以及壳体和封头的连接形式;

8换热列管的设计选型; 9管板厚度;

10换热管的排列及管孔尺寸;

11换热管与管板的连接,管板与壳体的连接; 12管箱设计; 13所有接管设计选型; 14折流板的设计;

15支座设计选型;

16所涉及到的所有法兰设计选型

目录

第一章概述 (1)

1.1换热器的简单介绍 (2)

1.2本设计的目的和意义 (3)

第二章设计计算 (4)

2.1确定设计方案 (4)

2.2确定物性数据 (4)

2.3计算总传热系数 (5)

2.4计算传热面积 (6)

2.5工艺结构尺寸 (6)

2.6换热器核算 (8)

第三章工艺设计 (11)

3.1壳体与封头的确定 (11)

3.1.1 壳体和封头的材料选择 (11)

3.1.2 圆筒壳体的厚度计算 (12)

3.1.3 封头厚度计算 (12)

3.1.4 水压试验 (13)

3.1.5换热列管的设计选型 (13)

3.2 管板设计 (13)

3.3 管板与壳体、换热管的连接形式 (13)

3.4 管箱设计 (14)

3.5壳体开孔补强 (14)

3.6 所有接管的设计选型 (14)

3.6.1 壳程接管最小位置 (15)

3.6.2 管箱接管最小位置 (15)

3.6.3 接管伸出长度 (15)

3.7 防冲板 (15)

3.8 折流板 (15)

3.8.1 折流板的型式和尺寸 (15)

3.8.2 折流板的布置 (15)

3.9 支座设计选型 (16)

3.10所涉及到的所有法兰设计选型 (17)

第四章设计结果汇总 (18)

设计图纸 (21)

心得体会.................................................................................................`22参考文献 (24)

评语及成绩 (25)

第一章概述

1.1换热器的简单介绍

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。

在化工生产中,经常要求在各种不同的条件下进行热交换,因此对各种换热器的要求必然是多种多样的。而每种类型的换热器都有其优缺点,选择时考虑的因素很多,例如材料、压强、温度、温度差、压强降、流动状态、传热效果、结垢腐蚀情况、检修和操作等。

1.1.1 固定管板式换热器

这类换热器操作简单、便宜。最大的缺点是管外侧清洗困难,因而多用于壳侧流体清洁,不易结垢或污垢容易化学处理的场合。当壳壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器,因此,一般管壁与壳壁温度相差50℃以上时,换热器应有温差补偿装置,图为具有温差补偿圈(或称膨胀节)的固定管板式换热器。

1.1.2 浮头式换热器

用法兰把管束一侧的管板固定到壳体的一端,另一侧的管板不与外壳连接,以便管子受热或冷却时可以自由伸缩。这种形式的优点是当前两侧传热介质温差较大时,不会因膨胀产生温差压力,且管束可以自由拉出,便于清洗。缺点是结构复杂,造价高。

1.1.3 U型管式换热器

此类换热器只有一个管板,管程至少为两程。由于管束可以取出,管外侧清洗方便,另外,管子可以自由膨胀。缺点是U型管的更换及管内清洗困难。

1.1.4 填料函式换热器

填料函式换热器的结构如图1-4所示。其特点是管板只有一端与壳体固定连接,另一端采用填料函密封。管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。其缺点是填料函乃严不高,壳程介质可能通过填料函外楼,对于易燃、易爆、有度和贵重的介质不适用。

1.2本设计的目的和意义

通过本次课程设计,培养学生多方位、综合地分析考察工程问题并独立解决工程实际问题的能力。主要体现在以下几个方面:

(1)资料、文献、数据的查阅、收集、整理和分析能力。要科学、合理、有创新地完成一项工程设计,往往需要各种数据和相关资料。因此,资料、文献和数据的查找、收集是工程设计必不可少的基础工作。

(2)工程的设计计算能力和综合评价的能力。为了使设计合理要进行大量的工艺计算和设备设计计算。本设计包括热工计算和冷却器设备的结构计算。

(3)工程设计表达能力。工程设计完成后,往往要交付他人实施或与他人交流,因此,在工程设计和完成过程中,都必须将设计理念、理想、设计过程和结果用文字、图纸和表格的形式表达出来。只有完整、流畅、正确地表达出来的工程设计的内容,才可能被他人理解、接受,顺利付诸实施。

通过本设计不仅可以进一步巩固学生所学的相关啊知识,提高学生学以致用的综合能力,尤其对传热学、流体力学等课程更加熟悉,同时还可以培养学生尊重科学、注重实践和学习严禁、作风踏实的品格。

第二章 设计计算

2.1确定设计方案

2.1.1换热器类型的选型

本设计任务是利用冷流体(岷江水)给煤油降温。利用热传递过程中对流传热原则,制成换热器,以供生产需要。

用冷水冷却煤油。煤油作为热流体,其入口温度为140°C ,出口温度为40°C ;岷江水作为冷流体,入口温度为20°C,出口温度为34°C 。该换热器采用循环冷却水冷却,因为由于岷江水容易结垢,为便于水垢清洗,,定为固定管板式换热器,它操作简单、便宜。管内不易积累污垢,也便于清洗。

2.1.2 换热器内冷热流体通道的选择

由于循环冷却水容易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程

2.1.3 换热管的选择

选用ф25×2.5的碳钢管,管内流速取u i =0.5m/s

2.2确定物性数据

壳程油的定性温度为T=

240

140+=90(°C) 岷江水的定性温度为T= 20+34

2 =27(°C) 煤油定性温度下的物性数据

()

()

C m W C kg kJ c s

Pa m kg o o o

po o o ?=?=??==-/14.0/22.21015.7/82543

λμρ导热系数定压比热容粘度密度

水的定性温度下的物性数据 密度ρi =997kg/m 3 粘度 μi =90.285×105-Pa ?s

定压比热容 c pi =4.179kJ/(kg ?℃) 导热系数 ()℃?=m W i 6083.0λ

2.3计算总传热系数

q m =

7

4.81036524

??=5479.5h kg

1热流量Q o =o po mo t c q =()5479.5 2.22140401216449kJ h ??-==337.90kW

2平均传热温差()()1212

14034402050.414034

ln ln 4020m t t t t t ---?-?'?===?--?℃

.3因数R=140-40

34-20 =7.14 P=14

120 =0.12

单壳程 查图得0.95?= 平均传热温差

0.9550.447.88C m t ?=?=

4冷却水用量i w =i

pi o

t c Q ?=

()12164494.1773420=?-20801.82h kg 5总传热系数K

管程传热系数 Re=

i

i

i i u d μρ=

4

0.020.5996.5

8.62310

-???=11556.3>10000 i α=4

.08

.0023.0???

? ?????? ??i i pi i i i i i i u c u d d λμρλ =0.4

0.8

540.6120.020.5996.586.2310 4.1770.0230.029.623100.612--??

??????

? ??????

=2542.14(

)

℃?2

m W

壳程传热系数

假设壳程传热系数为()

℃?=2300m W o α; 污垢热阻

2

2

0.000709030.00017197si so R m W

R m W

=?=?℃℃

管壁的导热系数)℃?=m W 45λ

1

1

1

0.0250.0250.00250.025

1

0.000709030.000172

2542.140.0200.020450.0224

300

o o o s i s o

i i i m o

K d d b d R R d d d αλα

=

++++=

?++++??

()202.21W m =?℃

2.4计算传热面积

3

2337.91034.9202.247.88

m Q S m K t ?'===??

考虑15%的面积裕度,21.15 1.1534.940.14S S m '=?=?=

2.5工艺结构尺寸 1.管径和管内流速

选用5.225?φ传热管(碳钢),取管内流速s m u 5.0=。

2.管程数和传热管数

依据传热管内径和流速确定单程传热管数

()

()2

220801.82996.5360036.9370.7850.020.5

4

i V

n d u

π

?=

=

=≈??根 按单管程计算,所需的传热管长度为

40.14

13.83.140.02537

o S L m d n π=

==?? 按单管程设计,传热管过长,宜采用多管程结构。现去传热管长 4.5L m =,则该

换热器管程为 ()13.8

44.5L N l θ==≈管程

传热管总根数()374148N =?=根

3. 传热管排列和分程方法

采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。取管心距o d 25.1=τ,则

()mm 3225.312525.1≈=?=τ

横过管束中心线的管数

()

15c n ==≈根

4. 壳体内径

采用多管程结构,去管板利用率0.7η=,则壳体内径为

()1.0 1.0580.7

488.

56D m m ==?= 圆整可取500D mm =

5. 折流板(目的:为了加大壳程流体的湍流速度,使湍流程度加剧。提高壳程

流体的对流传热系数。)

采用弓形折流板,去弓形折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为()0.25500125h mm =?=,故可取125h mm = 取折流板间距D B 3.0=,则

()0.3500150B m m =?=,则B 为150mm

折流板数 ()4500

1129150

B N =

-=-=传热管长块折流板间距

折流板圆缺面上下装配。

6. 接管

壳程流体进出口接管:取接管内煤油流速为s m u 0.1=,则接管内径为

48

d mm

===

取标准管径为50mm。

管程流体进出口接管:取接管内河水的流速 1.5

u m s

=,则接管内径为

996.5

70

d mm

===

取标准管径为80mm。

2.6换热热量核算

2.6.1壳程对流传热系数

对于圆缺形折流板,可采用克恩公式

14

.0

3/1

55

.0

36

.0??

?

?

?

?

??

?

?

?

?

??

?

?

?

?

=

w

o

o

o

po

o

o

o

e

e

o

o

c

u

d

μ

λ

μ

μ

ρ

λ

α

当量直径由正三角形排列得

()m

020

.0

025

.0

14

.3

025

.0

4

032

.0

2

3

4

4

2

3

42

2

2

2

=

?

?

?

?

?

?

?

?

-

?

=

?

?

?

?

?

?

-

=

π

π

π

o

o

e d

d

t

d

壳程流通截面积

()2

0.025

10.150.4510.01476m

0.032

o

o

d

S BD

t

????

=-=??-=

?

?

??

??

壳程流体流速、雷诺数、普兰德数及壳程对流传热系数分别为

36

5479.5/(3600825)

0.125m/s

0.01476

0.0200.125825

Re2884.6

0.000715

2.221071510

Pr11.34

0.140

o

o

P

o

u

λ

-

?

==

??

==

???

===

0.551/30.551/3

2

0.140

h0.360.362884.611.34

0.02

453W/m C

o e r

e

R p

d

λ

=???=???

=??

2.6.2 管程对流给热系数

4

.08

.0023.0???

? ?????

?

??=i

i i p i i

i i i i i c u d d λμμρλα 管程流通截面积

222d 0.7850.020148/40.01162m 4

i S n π

=

=??=

管程流体流速、雷诺数、普兰德数及管程对流传热系数分别为

20801.82

3600996.50.5m/s

0.01162

0.0200.5996.5Re 11556.30.00086234.1770.0008623Pr 5.89

0.612

i i i u ?==??==?==

()()1

0.55

3

1

0.55

320.36

0.6120.3611556.3 5.890.020

3414W/m C

pi i i i i i i i i i c d u d μλραμλ????= ? ???

??

=?=??

21

1

1

273W/m C

0.0250.0250.00250.0251

0.000709030.0001719734140.0200.020450.02241453

o o o si so i i i m o

K d d bd R R d d d αλα=

++++=

=???+?+++

??

2.6.4 传热面积

(一)32337.91029m 27347.88m Q S K t ?===??

该换热器的实际换热面积

()()()23.140.025 4.50.061481546.4m p o c S d L N n π=-=??-?-= 面积裕度为

46.429

100%100%60%29

p S S H S

--=

?=

?= 换热面积裕度合适,能够满足设计要求。 (二)换热器内流体的流动阻力

1.管程流动阻力

()s p t i

N N F p Δp

Δp Δ21

+=∑(F t 结垢校正系数,p N 管程数,N s 壳程数)

取换热管的管壁粗糙度为0.01mm ,则0050.d /ε=,而Re 11556.3i =,查图得0.038i λ=

22

12

2

2 4.5996.50.50.0381065Pa

20.022996.50.5

33373.7Pa 2

2

i i i i

u L p d u

p ρλρ??==??=??=?

=?

=

对mm 5225.φ?的管子有 1.541t p s F N N ===,且管程,壳程

()()51

2

1065373.7 1.5418632.2Pa 10Pa i

t

p

s p p p F N

N ?=?+?=+???=<∑

管程阻力在允许的范围之内。

2.壳程流动阻力

()s

s

o

N F p Δp Δp Δ∑'+'=2

1

(F s 为结垢校正系数,对液体F s =1.15,N s 为壳程

数)

流体流经管束的阻力()2

121o

B c o u ρN n Ff p Δ+='

F 为管子排列方式对压强降的校正系数,正三角形排列F =0.5,正方形直列30.F =,正方形错列时,40.F =。

o f 为壳程流体的数,当

()

0.228

0.228

Re 500 5.0Re 5.02884.60.8130o o o f -->==?=时,

c n 为横过管束中心线的管数,15c n =。

折流板间距0.15m B =,折流板数29B N =

()2

18250.1250.50.813152911179Pa 2

p ?'?=???+?=

流体流经折流板缺口的阻力

()2

222523.5220.158250.12529 3.5542Pa 0.521179542 1.1511179.15Pa 10Pa

o B o u B p N D p p ρ??'?=- ??

?????'?=-?= ??

??=+??=<∑ 该换热器的管程与壳程压降均满足要求,故所设计的换热器合适

第三章 结构设计

3.1 壳的直径、长度、厚度设计。

壳体和封头材料均选择Q235-B

由上面的计算可得壳体直径为

500mm

D =

壳体长度为

4.5m

l =

操作压力

1.5Mpa c P =

根据以上假设和查表数据可得

[] 1.5500

3.53mm 21130.9-1.5

2c i t

c

P D P δσ??=

=

=??-

腐蚀余量22mm C =,钢板厚度负偏差10.25mm C = 设计厚度

2 3.532 5.53mm d C δδ=+=+=

n δ=d δ+ 1C +△=5.53+0.25+△=6mm

因而可取名义厚度6mm n δ=

3.1.2封头尺寸

考虑综合因素,使用标准椭圆封头,材料使用碳素钢Q235-B ,封头连接形式为甲型平焊法兰。

焊接接头形式采用单面焊对接接头,无损检测比例100%,故0.9?=。在

C 150?。下,厚度假设为mm 163-=δ时,碳钢Q235-B 的许用应力为

[]113(MPa)t

σ=

按 1.5Mpa c P =计算。 根据以上假设和查表数据可得

[] 1.5500

3.70mm 21130.9-0.5 1.5

20.5c i

t

c

P D P δσ??=

=

=???-

腐蚀余量22mm C =,钢板厚度负偏差10.25mm C = 设计厚度

2 3.702 5.70mm d C δδ=+=+= 名义厚度

n δ=d δ+ 1C +△=5.70+0.25+△=6mm

6mm n δ=,[]t σ没有变化,故取名义厚度6mm 合适。

因为?

??

????????? ??+=2

2261

i i h D K =1 由此可得椭圆头短半径

500125mm 44

i i D h =

== 3.1.3液压实验

Pt =1.25P

[]

[]

t σσ=1.25P=1.875Mpa

σt=

()()

e 1.875500 3.75126Mpa 22 3.75

Pt Di e δδ+?+==? 查表,Q235-B 的σs=235Mpa 0.9×0.9×235=190.35Mpa >σt 所有满足水压试验要求

查得:

封头短筒边高度为125h mm =,直边高度h=25mm ,封头内表面积20.309s m =,封头容积30.213V m =,封头质量15.1m kg =

3.14换热列管的设计选型:

ф25×2.5的碳钢管

3.2 管板厚度

管板工程上常采用材料0Cr18Ni9

查得管板尺寸为:厚度44mm σ=,管板质量M=48kg ,螺栓材料为Q235-A ,规格M16,数量为24个。

换热管的排列及管孔尺寸

换热管采用正三角形排列 管间距为32mm 管长为4.5m 管孔直径()mm d 8.0~4.025+=

所以管孔直径取为25.8㎜

3.3 换热管与管板的连接,管板与壳体的连接

换热管与管板连接形式为:采用胀焊结合

管板与壳体连接:采用管板兼做法兰 使用板式平焊法兰形式进行连结

3.4 管箱设计(由短节与封头组成)

管箱为椭圆形管箱,因为椭圆形封头的应力分析比较均匀,而且其深度较半球封头小得多,易于冲压成型。因此选用标准钢制椭圆形封头,故短节部分的厚度同封头厚度一样为6mm 。短节的长度为25mm 。 管箱最小长度L ≥

2124i c

p d n h h s E

π+++?≥

3.1440037

256125179.2362004500mm ??+++=≈?

3.5 壳体开孔补强

根据GB150-1998表8-1,不另行补强的最大接管外径为?89mm ,因此不需要考虑补强。按《HG20592-20639-2009 钢制管法兰,紧固件,垫片》可选接管的规格为?50mm 和?80mm

3.6 所有接管设计选型

采用带劲平焊法兰,接管材料选用Q235-B

3.6.1 壳程接管位置

接管不带补强圈

壳程接管位置最小尺寸1L ≥

057

(4)4090158.522

d b c +-+≥++≥mm 一般C ≥3倍壳体壁厚且不小于50~100mm b :管板厚度 0d :接管外径,mm

C :接管外边缘至壳体连接焊缝之间的距离mm

3.6.2 管箱接管位置,不带补强圈

课程设计换热器-煤油汇总

《化工过程设备设计Ⅰ(一)》 说明书 设计题目:换热器的设计 专业: 班级: 学号: 姓名: 指导教师: 设计日期: 设计单位:青海大学化工学院化学工程系

目录 前言 (4) 任务书 (5) 目的与要求 (6) 一、工艺设计方案 (8) 二、确定物性数据 (9) 三、估算传热面积 (9) 四、工艺结构尺寸 (10) 五、换热器核算 (12) 六、设计结果概要一览表 (17) 七、参考文献 (19)

前言 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。 化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。设计时数为3周,其基本内容为: (1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。 (2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。 (3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。 (4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。 (5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。 (6)设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参

换热器设计说明书模板

换热器课程设计说明书 专业名称:核工程与核技术姓名:*** 班级:*** 学号:*** 指导教师:*** 哈尔滨工程大学 核科学与技术学院 2017 年 1 月 13 日

目录 1 设计题目…………………………………………………………………………… 1.1 设计题目………………………………………………………………………1.2 团队成员……………………………………………………………………… 1.3 设计题目的确定过程………………………………………………………… 2 设计过程…………………………………………………………………………… 3 热力计算…………………………………………………………………………… 4 水力计算…………………………………………………………………………… 5 分析与总结………………………………………………………………………… 5.1 可行性评价和方案优选………………………………………………………5.2 技术分析………………………………………………………………………5.3 总结与体会……………………………………………………………………参考文献………………………………………………………………………………附录计算程序………………………………………………………………………

1.1、设计题目 设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t 1 ’冷却至 t 1 ”,冷却水入口温 度 t 2 ’,出口温度 t 2 ”,设热水和冷却水的运行压力均为低压。 初始参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 80℃; 热水出口温度 t 1 ”: 50℃; 冷却水入口温度 t 2 ’: 20℃; 冷却水出口温度 t 2 ”: 45℃; 1.3设计题目的确定过程 首先,我们小组集中讨论了本次课程设计内容,即换热器设计的内容和具体细节上的要求,然后在组内达成了共识——求同存异。在题目初始参数相同的情况下对后续的计算以及编程过程发挥各自的特长,并将自己存在的疑问于组内其他成员讨论,充分发挥组内成员的自主和协作能力,努力做到一个合格并且优秀的核专业学生应有的素质。 对于管壳式换热器的设计计算,我们查阅了相关的资料(在本说明书最后一并提到),第一次尝试选择参数,如下: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 46℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 并尝试进行初步计算,不过在后面进行有效平均温差的计算时,针对我们手头有限的资料(见附录3),为了保证R可查,将参数修正为以下值。 二次选择参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 42℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 继续往下计算,我们通过之前的知识,发现在换热器的设计中,除非处于必须降 ψ>,至少不小于0.8。 低壁温的目的,一般按照要求使0.9

推荐-煤油冷却器的课程设计课程设计 精品

x x x x x大学 化工原理课程设计题目煤油冷却器的设计 教学院 专业班级 学生姓名 学生学号 指导教师 20XX年6月8日 目录

第一章绪论 (1) 第二章方案设计说明 (1) 2.1换热器的选型 (1) 2.1.1 换热器的分类 (1) 2.1.2 间壁式换热器 (1) 2.1.3 管壳式换热器 (1) 2.1.4 换热器的选型 (2) 2.2材质的选择 (2) 2.3换热器其他结构设计 (2) 2.3.1 管程机构 (2) 2.3.2 壳程结构 (2) 第三章管壳式换热器的设计计算 (3) 3.1确定设计方案 (3) 3.1.1 选择换热器类型 (3) 3.3.2 流动空间及流苏确定 (3) 3.2 确定物性参数 (3) 3.3 计算总传热系数 (4) 3.3.1 热流量 (4) 3.3.2 平均传热温差 (4) 3.3.3 冷却水用量 (4) 3.3.4 总传热系数 (4) 3.4 计算传热面积 (5) 3.5 工艺结构尺寸 (5) 3.5.1 管径和管内流速 (5) 3.5.2 管程数和传热管数 (5) 3.5.3 平均传热温差校正及壳程 (6) 3.5.4 传热管排列和分程方法 (6) 3.5.5 壳体内径 (6) 3.5.6 折流板 (7) 3.5.7 接管 (7) 3.6 换热器核算 (7)

3.6.1 热量核算 (7) 3.6.2 换热器内流体的流动阻力 (9) 第四章计算结果一览表 (11) 课程设计心得与体会 (12) 参文文献 (14) 附录(1)油冷却器的设计任务书 (15) 附录(2)符号说明 (16)

第一章绪论 工程设计是工程建设的灵魂,又是科研成果转化为现实生产力的桥梁和纽带,它决定了工业现代化水平。设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业、多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。而化工原理课程设计,是将所学的化工原理理论知识联系实际生产的重要环节。一方面,它要求综合运用物理,化学,化工原理,工程制图的理论知识,确定生产工艺流程和计算设备的尺寸;另一方面,又要求根据设计对象的具体特征,凭借设计者的经验(或借鉴前人的经验),灵活运用设计的诀窍,对所选设备,工艺过程以及各种参数进行合理的筛选,校正和优化,达到经济合理的生产要求。 第二章设计方案说明 2.1换热器的选型 2.1.1换热器的分类 换热器是化工,炼油工业中普遍应用的工艺设备,用来实现热量的传递,使热量由高温流体传给低温流体。根据传热方式可分为混合式换热器,蓄热式换热器,和间壁式换热器,其中间壁式换热器是工业中应用最为广泛的一类。其主要特点为:冷热流体被一固体间壁隔开,通过壁面进行转热。考虑到间壁式换热器设计技术比较成熟,而且国家在该类换热器的设计,制造,检验和验收等方面已有较为完善的设设计资料和系列化标准,因此选择间壁式换热器。 2.1.2间壁式换热器 按照传热面的形状和结构特点,间壁式换热器又可细分为管式换热器,如套管式,螺旋管式,管壳式,热管式;板面式换热器,如板式,螺旋式,板壳式等;扩展面式换热器,如板翅式,管翅式,强化的传热管等。在管式换热器中,管壳式换热器是应用最广泛的一种,该类换热器结构相对简单,造价不高,壳选用多种结构材料,管内清洗方便,处理量大,在高温条件下也能应用。考虑其诸上优点,以及生产任务均符合管式换热器的要求,选择管壳式换热器。 2.1.3 管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它因结构简单、耐用、造价低廉、用材广泛、清洗方便、适应性强等优点而在换热设备中占据主导地位。管壳式换热器根据其结构特点分为:固定管板式换热器,浮头式换热器,U形管式换热器。以下主要介绍固定管板式换热器。 固定管板式换热器,管端以焊接或胀接的方法固定在两块管板上,而管板则以焊接的方法与壳体连接,与其他形式的管壳式换热器相比,结构简单,当壳体

化工原理课程设计说明书(换热器的设计)

中南大学 化工原理课程设计 2010年01月22日 <

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列环式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①@ 14 ②物性数据的确定……………………………………………… ③总传热系数的计算 (14) ④传热面积的计算 (16) ⑤工艺结构尺寸的计算 (16) ⑥换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、? 33十、课程设计的收获及感想………………………………………… 十一、附表及设计过程中主要符号说明 (37) 十二、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 # 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 【 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述

化工原理课程设计-煤油冷却器地设计

中南大学 化工原理课程设计 说明书 设计题目列管式换热器的设计 指导老师:孔江榕 学院:化学化工学院 专业班级:化工1202 :亮 学号:1505120711 设计日期:2014-9-17

目录 一、概述 (2) 二、设计题目及原始数据 (13) 三、换热器的类型和特点 (14) 四、论述本换热流程结构的选择和材料选择 (15) 五、有关换热器计算 (15) 六、设计结果一览表 (21) 七、后记 (23) 八、参考资料 (24) 九、主要符号说明 (25)

一、概述 在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。35%~40%。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。 随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。 换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。 换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。表2-1 传热器的结构分类

完善的换热器在设计或选型时应满足以下各项基本要求。 (1)合理地实现所规定的工艺条件 传热量、流体的热力学参数(温度、压力、流量、相态等)与物理化学性质(密度、粘度、腐蚀性等)是工艺过程所规定的条件。设计者应根据这些条件进行热力学和流体力学的计算,经过反复比较,使所设计的换热器具有尽可能小的传热面积,在单位时间传递尽可能多的热量。其具体做法如下。 ①增大传热系数? 在综合考虑流体阻力及不发生流体诱发振动的前提下,尽量选择高的流速。 ②提高平均温差? 对于无相变的流体,尽量采用接近逆流的传热方式。因为这样不仅可提高平均温差,还有助于减少结构中的温差应力。在允许的条件时,可提高热流体的进口温度或降低冷流体的进口温度。 ③妥善布置传热面? 例如在管壳式换热器中,采用合适的管间距或排列方式,不仅可以加大单位空间的传热面积,还可以改善流体的流动特性。错列管束的传热方式比并列管束的好。如果换热器中的一侧有相变,另一侧流体为气相,可在气相一侧的传热面上加翅片以增大传热面积,更有利于热量的传递。 (2)安全可靠 换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算

化工设备设计课程设计指导书

南京工业大学化工设备设计基础 课程设计指导书 南京工业大学 2012年12月

“化工设备设计基础”课程设计指导书 一、课程设计的目的 “化工设备设计基础”课程设计是《化工设备设计基础》课程中的一个重要的教学环节,通过这个教学环节要求达到下列几个目的。 1、通过课程设计,把在《化工设备设计基础》、《化工原理》及其它有关课程(机械制图、公差与配合等)中所获得的理论知识在实际的实际工作中综合地加以运用,使这些知识得到巩固和发展,并使理论知识和生产实践密切结合起来。因此,课程设计是《化工设备设计基础》和与之有关的一系列课程的总结性的作业。 2、“化工设备设计基础”课程设计是高等工科院校非设备专业的学生第一次进行 的比较完整的设备设计。通过这次设计,初步培养学生对工程设计的独立工作能力,树立正确的设计思想,掌握设备设计的基本方法和步骤。 3、通过课程设计,使学生能够熟练地应用有关参考资料、计算图表、手册、图集、规范;熟悉有关国家标准和部颁布标准(如GB、JB、HG等),以完成一个工程技术人员在化工设备设计方面所必须具备的基本技能训练。 二、课程设计的内容 “化工设备设计基础”课程设计,是在完成“化工设备设计基础”课程的教学考查等环节后进行的。课程设计时间拟定2周。课程设计的题目是:板式塔(填料塔)设计设计。要求完成设备的结构与强度设计与设备总装图绘制。具体安排如下: 内容时间 1、讲课半天 板式塔(填料塔)课题 1)板式塔(填料塔)专题介绍 2)化工制图专题介绍 2、计算一天 3、绘草图一天 4、CAD绘图五天

4、整理计算说明书、准备质疑一天半 5、质疑、交设计文件一天 三、设计步骤 (一)、准备阶段 1、设计前应预先准备好资料、手册、CAD绘图软件。 2、对设计指导书、任务书进行详细的研究和分析,明确设计要求,分析由《化工原理》课程设计计算得到的数据和工艺参数,复习课程有关内容,熟悉有关设备的设计方法和步骤。 3.、参考不同结构板式塔(填料塔)的图纸,比较其优缺点,从而选择一种最适当的类型和结构。 (二)、设备的总体设计 (1)根据《化工原理》课程设计,确定塔设备的型式; (2)根据化工工艺计算,确定塔板数目(或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 (三)、设备的机械强度设计计算 (1)确定塔体、封头的强度计算; (2)各种开孔接管结构的设计,开孔补强的验算; (3)设备法兰的型式及尺寸选用;管法兰的选型; (4)裙式支座的设计验算; (5)水压试验应力校核。 (四)、完成塔设备装配图 4.1 塔设备结构草图(A3坐标纸) 4.2完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等; (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 (五)、整理并编写设计计算说明书。 设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。

换热器设计说明书

甲醇■甲醇换热器II的设计 第一部分设计任务书 一,设计题目 甲醇-甲醇换热器II的设计 二,设计任务 1,热交换量:8029.39kw 2,设备形式:长绕管式换热器 三,操作条件 ①甲醇:入口温度7.83°C,出口温度-31.68°C ②甲醇:入口温度-37.68°C,出口温度1.00°C ③允许压强降:管侧不大于1.5*105pa壳侧不大于2.9*10’pa. 四,设计内容 ①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 ②换热器的工艺计算:确定换热器的传热面积和传热系数。 ③换热器的主要结构尺寸设计。 ④主要辅助设备选型。 ⑤绘制换热器总装配图。 第二部分换热器设计理论计算 1,计算并初选换热器的规格

(1) 两流体均不发生相变的传热过程,管程,壳程的介质均为 甲醇。 (2) 确定流体的定性温度,物性数据。 管程介质为甲醇,入口温度为7.83°C,出口温度-31.68°Co 壳程介质也为甲醇,入口温度?37.68°C,出口温度1.00°Co 管侧甲醇的定性温度:打=7兀:型=-H.925 °C 。 2 壳侧的甲醇定性温度:仏=二门卑V —1&34°C 。 2 两流体在定性温度下的物性数据: ⑶传热温差 △ _ 7厂力)一72一" _ (7.83-1)-[-31.8 — (-37.68)] _ 6.83-6 —钳% °C 」厂T- 7?83-(一31?68)_39?51 r-f " 1-(-37.68) ~ 38.68 ") p=hzk= 1—(—37S)=坯=085 「-匕 7.83-(-37.68) 45.51 … 由R 和P 查图得到校正系数为:处ul,所以校正后的温度为 = ^=6.406°C (查传热课本 P288) ,6.83 In ----- 6 [-31.8-(-37.68)]

煤油冷却器的设计----原版.doc

课程设计任务书

一、摘要 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。由于使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。 二、关键字 煤油,换热器,列管式换热器,固定管板式

目录 一、概述 (1) 二、工艺流程草图及设计标准 (1) 2.1工艺流程草图 (1) 2.2设计标准 (2) 三、换热器设计计算 (2) 3.1确定设计方案 (2) 3.1.1选择换热器的类型 (2) 3.1.2流体溜径流速的选择 (2) 3.2确定物性的参数 (3) 3.3估算传热面积 (3) 3.3.1热流量 (3) 3.3.2平均传热温差 (3) 3.3.3传热面积 (3) 3.3.4冷却水用量 (4) 3.4工艺结构尺寸 (4) 3.4.1管径和管内流速 (4) 3.4.2管程数和传热管数 (4) 3.4.3平均传热温差校正及壳程数 (4) 3.4.4传热管排列和分程方法 (5) 3.4.5壳体内径 (5) 3.4.6折流板 (5)

化工原理课程设计说明书-板式精馏塔设计

前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。 板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。 【精馏塔设计任务书】 一设计题目 精馏塔及其主要附属设备设计 二工艺条件

化工原理课程设计--用水冷却煤油产品的列管式换热器的工艺设计

化工原理课程设计 题目:用水冷却煤油产品的列管式换热器的工艺 设计 系别: 班级: 学号: 姓名: 指导教师: 日期:2015年6月26日

任务书 一、设计题目:用水冷却煤油产品的列管式换热器的工艺设计 二、设计任务: 1、处理能力:45t/年煤油 2、设备型号:列管式换热器 3、操作条件: 煤油:入口温度140℃,出口温度40℃ 冷却介质:循环水,入口温度20℃,出口温度30℃ 允许压降:不大于105Pa 每年按330天计 建厂地址:新乡 三、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(设备技术要求、主要参数、接管表、部件明细表、标题栏。)

目录 一、设计方案 (4) 1.1换热器的选择 (4) 1.2流动空间及流速的确定 (4) 二、物性数据 (5) 三、计算总传热系数: (5) 3.3、估算传热面积 (5) 3.3.1热流量 (5) 3.3.2平均传热温差 (5) 3.3.3传热面积 (5) 3.3.4冷却水用量 (5) 3.4、工艺结构尺寸 (6) 3.4.1管径和管内流速 (6) 3.4.2管程数和传热管数 (6) 3.4.3平均传热温差校正及壳程数 (6) 3.4.4传热管排列和分程方法 (7) 3.4.5壳体内径 (7) 3.4.6折流板 (7) 3.4.7接管 (7) 3.5换热器核算 (8) 3.5.1热流量核算 (8) 3.5.2换热器内流体的流动阻力 (10) 四、设计结果设计一览表 (12) 五、设计自我评价 (12) 六、参考文献 (13) 七、主要符号说明 (13) 八、主体设备条件图及生产工艺流程图(附图) (13)

换热器的设计说明书.

西安科技大学—乘风破浪团队 1 换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质; ③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求; ⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温

西安科技大学—乘风破浪团队 2 差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U 形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 分类 管 壳 式 名称 特性 管式 固定管板式 刚性结构用于管壳温差较小的情况(一般≤50°C),管间不 能清洗 带膨胀节:有一定的温度补偿能力,壳程只能承受较低的压 力 浮头式 管内外均能承受高压,壳层易清洗,管壳两物料温差>120℃; 内垫片易渗漏 U 型管式 制造、安装方便,造价较低,管程耐压高;但结构不紧凑、 管子不易更换和不易机械清洗 填料 函式 内填料函:密封性能差,只能用于压差较小场合 外填料函:管间容易泄露,不易处理易挥发、易爆易燃及压 力较高场合 釜式 壳体上都有个蒸发空间,用于蒸汽与液相分离 套管 双套管式 结构比较复杂,主要用于高温高压场合或固定床反应器中

煤油冷却器的设计说明

煤油冷却器的设计 一前言 1列管式换热器的种类 固定管板式换热器 管板式换热器浮头式换热器 填料涵式换热器 U型管换热器 2换热器的特点 列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。管壳式换热器根据结构特点分为以下几种: 固定管板式换热器:固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。 浮头式换热器:浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。 填料涵式换热器:填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。 U型管换热器:U型管换热器的管子两端固定在同一管板上,管子两端可以自由伸缩,与其他管子机壳体无关。这种换热器结构比较简单,重量轻,适用于高温高压场合,但管清洗比较困难且管板利用率较差。 几种换热器的结构

3换热器的发展趋势 70年代的世界能源危机,有力地促进了传热强化技术的发展。为了节能降耗,

提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高。所以,这些年来,换热器的开发与研究成为人们关注的课题。最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系。近年来,随着制造技术的进步,强化传热元件的开发,使得新型高效换热器的研究有了较大的发展,根据不同的工艺条件与换热工况设计制造了不同结构形式的新型换热器,并已在化工、炼油、石油化工、制冷、空分及制药各行业得到应用与推广,取得了较大的经济效益。 二设计任务及操作条件 1设计任务 生产能力(进料量) 80000 吨/年 2操作条件 1、煤油:入口温度:140℃ 出口温度:40℃ 2、冷却介质:自来水 入口温度:30℃出口温度:40℃,水压力为0.3MPa 3、允许压降:不大于105Pa 4、每年按330天计算,每天24小时运行 三设计方案 1换热器的类型 浮头式换热器如右图所示,两端管板之一不与外壳固定连接,该端称为浮头。当管子受热(或受冷)时,管子连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器不但可以补偿热膨胀,而且固定端的管板是以法兰与壳体相连接的,因此管束可以从壳体抽出,便于清洗和检修,故浮头式换热器应用比较普

化工原理课程设计说明书

目录 目录 (1) 第一章绪论 (3) 1.1 精馏操作 (3) 1.2 精馏塔操作原理 (3) 1.3 精馏设备 (3) 第二章设计方案的确定 (5) 2.1精馏塔塔形介绍 (5) 2.1.1 筛板塔 (5) 2.1.2 浮阀塔 (5) 2.1.3 填料塔 (5) 2.2 精馏塔的选择 (5) 2.3 操作压力的确定 (6) 2.4 进料热状况的确定 (6) 2.5 精馏塔加热和冷却介质的确定 (6) 2.6 自动控制方案的确定 (7) 2.7 工艺流程说明 (8) 2.8 设计任务 (8) 第三章精馏塔工艺设计 (9) 3.1 全塔物料衡算 (9) 3.1.1 料液及塔顶、底产品中环己烷的摩尔分率 (9) 3.1.2 平均摩尔质量 (9) 3.1.2 料液及塔顶底产品的摩尔流率 (9) 3.2 绘制t-x-y图 (9) 3.3 理论塔板数和实际塔板数的确定 (10) 3.3.1理论塔板数的确定 (10) 3.3.2 实际塔板数的确定 (11) 3.4 浮阀塔物性数据计算 (12) 3.4.1 操作压力 (12) 3.4.2 操作温度 (12) 3.4.3 平均摩尔质量 (13)

3.4.4 平均密度 (13) 3.4.5 平均粘度 (14) 3.4.6 平均表面张力 (14) 3.5 浮阀塔的汽液负荷计算 (15) 3.5.1 精馏段的汽液负荷计算 (15) 3.5.2提馏段的汽液负荷计算 (15) 第四章塔的设计计算 (16) 4.1 塔和塔板主要工艺结构尺寸的计算 (16) 4.1.1塔径的设计计算 (16) 4.1.2塔板工艺结构尺寸的设计与计算 (16)

(完整word版)化工机械与设备课程设计

化学工程学院 化工机械与设备课程设计 设计说明书 专业化学工程与工艺 班级化工11-4 姓名沈杰 学号11402010417 指导老师杨泽慧 日期2014年6月10日 成绩

化学工程学院2013-2014(2) 化工机械与设备课程设计任务书 一、课程设计题目:管壳式换热器的机械设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定 6. 编写设计说明书一份 7. Auto CAD绘3号设备装配图一张 三、设计条件 1气体工作压力 管程:半水煤气(0.80+学号最后两位第一个数字×0.02,单位:MPa) 壳程:变换气(0.75+学号最后一位数字×0.01,单位:MPa) 2壳、管壁温差50℃,t t>t s 壳程介质温度为320-450℃,管程介质温度为280-420℃。 3由工艺计算求得换热面积为(130+学号最后一位数字×5),单位:m2。

4壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据查表选用。 5壳体与支座对接焊接,塔体焊接接头系数Φ=0.9 6图纸:尺寸需根据自己的设计的尺寸标注。 四、进度安排 6月9-6月20日 五、基本要求 1.学生要按照任务书要求,独立完成设备的机械设计; 2.设计说明书一律采用电子版,指导老师指导修改后打印,3号图纸终稿打印; 3.图纸打印后,将图纸按照统一要求折叠,同设计说明书统一在6月20日上午9点半前,由各组组长负责统一提交。 5.根据设计说明书、图纸、平时表现综合评分。 六、说明书的内容 任务书 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质; (3)确定焊接材料。 4.绘制结构草图 (1)换热器装配图; (2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示; (3)标注形位尺寸;

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

煤油冷却器的设计

南京工业大学《材料工程原理B》课程设计 设计题目: 煤油冷却器的设计 专业:高分子材料科学与工程 班级:高材0801 学号: 1102080104 姓名: 夏亚云 指导教师: 周勇敏 日期: 2010/12/30 设计成绩:

目录 一.任务书 (3) 1.1.设计题目 1.2.设计任务及操作条件 1.3.设计要求 二.设计方案简介 (3) 2.1.换热器概述 2.2列管式换热器 2.3.设计方案的拟定 2.4.工艺流程简图 三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 四.工艺结构设计…………………………………………………………………………………………..-8- 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.传热管排列和分程方法 4.5.壳程内径及换热管选型汇总 4.6.折流板 4.7.接管 五.换热器核算………………………………………………………………………………………….-13- 5.1.热量核算 5.2.压力降核算 六.辅助设备的计算和选择……………………………………………………………………………17 6.1.水泵的选择 6.2.油泵的选择 七.设计结果表汇 (20) 八.参考文献. (20) 九.心得体会………………………………………………………………………………….…………… 21附图:(主体设备设计图,工艺流程简图)

§一.化工原理课程设计任务书 1.1设计题目 煤油冷却换热器设计 1.2设计任务及操作条件 1、处理能力 15.8×104t/y 2、设备型式列管式换热器 3、操作条件 (1)煤油: 入口温度140℃,出口温度40℃ (2)冷却介质:工业硬水,入口温度20℃,出口温度40℃ (3)油侧与水侧允许压强降:不大于105 Pa (4)每年按330天计,每天24小时连续运行 (5)煤油定性温度下的物性参数: 1.3设计要求 选择合适的列管式换热器并进行核算 1.4绘制换热器装配图 (见A4纸另附) §二.设计方案简介 2.1换热器概述 换热器是化工,炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门,如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的意义。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

相关文档
相关文档 最新文档