文档库 最新最全的文档下载
当前位置:文档库 › 八年级初二数学勾股定理知识点及练习题附解析

八年级初二数学勾股定理知识点及练习题附解析

八年级初二数学勾股定理知识点及练习题附解析
八年级初二数学勾股定理知识点及练习题附解析

一、选择题

1.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中

116S =,245S =,511S =,614S =,则43S S +=( ).

A .86

B .61

C .54

D .48

2.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )

A .20cm

B .18cm

C .25cm

D .40cm

3.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是

( ) A .等腰三角形

B .直角三角形

C .钝角三角形

D .等腰直角三角形

4.如图,在Rt ABC 中,90BAC ?∠=,以Rt ABC 的三边为边分别向外作等边三角形

'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )

A .4

B .6

C .8

D .9

5.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )

A .1

B .2

C .

32

D .3

6.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )

A .①④⑤

B .③④⑤

C .①③④

D .①②③

7.在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=1,则

AB 的长是( ) A .2

B . 23

C . 43

D .4

8.下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360°

B .对角线互相平分

C .对角线相等

D .对角线互相垂直

9.下列命题中,是假命题的是( )

A .在△ABC 中,若∠A:∠B:∠C=1:2:3,则△ABC 是直角三角形

B .在△AB

C 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形 C .在△ABC 中,若∠B=∠C=∠A,则△ABC 是直角三角形

D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形

10.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定

ABC 的形状是( )

A .直角三角形

B .等边三角形

C .等腰三角形

D .以上都不对

二、填空题

11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.

12.如图,在Rt ABC 中,90ACB ∠=?,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.

13.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________. 14.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.

15.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______

16.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则

AB

BD

的值为____________.

17.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.

18.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为

_________________.

19.如图,△ABC中,AB=AC=13,BC=10,AD是BAC

∠的角平分线,E是AD上的动点,F 是AB边上的动点,则BE+EF的最小值为_____.

20.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为1S,2S,3S,若

12315

S S S

++=,则

2

S的值是__________.

三、解答题

21.如图,在两个等腰直角ABC和CDE

△中,∠ACB = ∠DCE=90°.

(1)观察猜想:如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是;

(2)探究证明:把CDE

△绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;

(3)拓展延伸:把CDE

△绕点C在平面内自由旋转,若AC = BC=10,DE=12,当A、E、D三点在直线上时,请直接写出 AD的长.

22.如图,已知ABC ?中,90B ∠=?,8AB cm =,6BC cm =,P 、Q 是ABC ?边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.

(1)当2t =秒时,求PQ 的长;

(2)求出发时间为几秒时,PQB ?是等腰三角形?

(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ?成为等腰三角形的运动时间.

23.如图,在ABC 中,90BAC ∠=?,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ?; (2)若AF 平分DAE ∠交BC 于F ,

①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,

24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°

(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;

②当BE =3,CE =7时,求DE 的长;

(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.

25.如图,△ABC 中,90BAC ∠=?,AB=AC ,P 是线段BC 上一点,且045BAP ?<∠

(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).

(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.

26.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…

(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;

(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.

27.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,

①则线段BC ,DC ,EC 之间满足的等量关系式为 ; ②求证:BD 2+CD 2=2AD 2;

(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.

28.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.

(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.

29.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.

(1)求证:∠ABE=∠CAD;

(2)如图2,以AD为边向左作等边△ADG,连接BG.

ⅰ)试判断四边形AGBE的形状,并说明理由;

ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).

30.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知

AB=10,BC=6,AC=8.

(1)求证:△ADG≌△BDF;

(2)请你连结EG,并求证:EF=EG;

(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;

(4)求线段EF长度的最小值.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.C 解析:C 【分析】

设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性

质,得2

3L ,从而计算得到3S ;设4S ,5S ,6

S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得2

4L ,从而计算得到4S ,即可得到答案. 【详解】

分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S 则1S ,2S ,3S 对应的边长设为1L ,2L ,3L

根据题意得:2

11111162S L L =

==

2

22454

S L =

= ∴2

1L =

,2

2L =∵2

2

2

132L L L += ∴2

2

2

32129L L L =-=

∴2

332929S =

== 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6 S 则4S ,5S ,6

S 对应的边长设为4L ,5L ,6L 根据题意得:2

255511228

L S L ππ??=?=?= ???

2

266614228

L S L ππ

??=?=?= ???

∴2

58

11L π

=?

,2

68

14L π

=?

∵2

2

2

564L L L += ∴()2

2

2

4568

8

111425L L L π

π

=+=?+=

?

∴2448

S 25258

8L π

π

π

=

=

??=

∴43292554S S +=+= 故选:C . 【点睛】

本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.

2.D

解析:D 【分析】

将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题. 【详解】

解:如图,将圆柱展开,EG 为上底面圆周长的一半,

作A 关于E 的对称点A ',连接A B '交EG 于F , 则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长, 即 25cm AF BF A B '+==, 延长BG ,过A '作A D BG '⊥于D ,

3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=, Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=,

∴该圆柱底面周长为:20240cm ?=,

故选D . 【点睛】

本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.

3.B

解析:B 【解析】 【分析】

根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状. 【详解】

∵a+b=10,ab=18,

∴22a b +=(a+b )2-2ab=100-36=64, ∵,c=8, ∴2c =64, ∴22a b +=2c ,

∴该三角形是直角三角形, 故选:B. 【点睛】

此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出

22a b +是解题的关键.

4.B

解析:B 【分析】

设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积. 【详解】

设AB=c ,AC=b ,BC=a ,

由题意得'A BC 的面积=11022

a a ??=,

'AB C △的面积=1422

b b ??=

∴2

a =

2b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2,

∴c 2=a 2-b 2=

∴'ABC △的面积=21224c c c ??==64

= 故此题选B 【点睛】

此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积

5.B

解析:B 【解析】 【分析】

如图,连接BB′.根据折叠的性质知△BB′E 是等腰直角三角形,则.又B′E 是BD 的中垂线,则DB′=BB′. 【详解】

∵四边形ABCD是平行四边形,BD=2,

∴BE=1

2

BD=1.

如图2,连接BB′.

根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.

∴∠BEB′=90°,

∴△BB′E是等腰直角三角形,则BB′=2BE=2,

又∵BE=DE,B′E⊥BD,

∴DB′=BB′=2.

故选B.

【点睛】

考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

6.A

解析:A

【分析】

作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,

DF=EF.所以△DEF是等腰直角三角形;由割补法可知四边形CDFE的面积保持不变;△DEF 是等腰直角三角形DE=2DF,当DF与BC垂直,即DF最小时,DE取最小值42,

△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积.

【详解】

连接CF;

∵△ABC是等腰直角三角形,

∴∠FCB=∠A=45°,CF=AF=FB;

∵AD=CE,

∴△ADF≌△CEF;

∴EF=DF,∠CFE=∠AFD;

∵∠AFD+∠CFD=90°,

∴∠CFE+∠CFD=∠EFD=90°,

∴△EDF是等腰直角三角形.

当D. E分别为AC、BC中点时,四边形CDFE是正方形.

∵△ADF≌△CEF,

∴S△CEF=S△ADF,

∴S四边形CEFD=S△AFC.

由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;

即当DF⊥AC时,DE最小,此时DF=1

2

BC=4.

当△CEF面积最大时,此时△DEF的面积最小.

此时S△CEF=S四边形CEFD?S△DEF=S△AFC?S△DEF=16?8=8,

则结论正确的是①④⑤.

故选A.

【点睛】

本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.

7.B

解析:B

【分析】

根据30°直角三角形的性质,求出∠ABC的度数,然后根据角平分线的性质求出

∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.

【详解】

如图

∵∠C=90°,∠A=30°,

∴∠ABC=90°-30°=60°,

∵BD平分∠ABC,

∴∠ABD=1

2∠ABC=1

2

×60°=30°,

∵CD=1,∠CDB=30°∴BD=2

根据勾股定理可得

∵∠A=30°

故选B.

【点睛】

此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.

8.C

解析:C

【分析】

矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.

【详解】

A、菱形、矩形的内角和都为360°,故本选项错误;

B、对角互相平分,菱形、矩形都具有,故本选项错误;

C、对角线相等菱形不具有,而矩形具有,故本选项正确

D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,

故选C.

【点睛】

本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键. 9.C

解析:C

【分析】

一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.

【详解】

A. △ABC中,若∠B=∠C-∠A,则∠C =∠A+∠B,则△ABC是直角三角形,本选项正确;

B. △ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2= a2+c2,则△ABC是直角三角形,本选项正确;

C. △ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;

D. △ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;

故选C.

【点睛】

本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.

10.C

解析:C 【分析】

利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断. 【详解】

解:由已知可得CD=BD=5,

22251213+=

即222BD AD AB +=,

ABD ∴是直角三角形,90ADB ∠=?,

90ADC ∴∠=?

222AD CD AC ∴+=

2251213AC ∴=+=

13AB AC ∴==

故ABC 是等腰三角形. 故选C 【点睛】

本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.

二、填空题

11.8 【解析】

如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于

的最小值

作交于

,则

为所求; 设

,,

h+5=8,即BM+MN 的最小值是8.

点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M 点与N 点的位置是解题的关键. 12.210或213或32 【分析】

在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算

,,DF DE CE '',可得CD .

【详解】

∵90ACB ?∠=,4,2AC BC ==, ∴25AB =,

情况一:当25AD AB ==时,作AE CE ⊥于E ∴

1122BC AC AB AE ?=?,即45AE =,145DE = ∴2285

5

CE AC AE =

-=

∴22213CD CE DE =+=

情况二:当25BD AB ==时,作BE CE ⊥于E , ∴

1122BC AC AB BE ?=?,即45BE =145DE =

∴2225

5

CE BC BE =

-=

∴22210CD CE DE =+=

情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴

11

22

BC AC AB BE ?=?, ∴455

BE =

35

CE ∴=

∵ABD △为等腰直角三角形 ∴1

52

BF DF AB ==

= ∴95

5

DE DF E F DF BE ''=+=+=

2535

555

CE EE CE BF CE ''=-=-=-

=

∴2232CD CE E D ''=+=

故答案为:1021332【点睛】

本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 13.1425+或825+ 【分析】

分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长. 【详解】

解:分两种情况考虑:

如图1所示,此时△ABC 为锐角三角形,

在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,

∴BC=253+,

∴△ABC 的周长为:652531425+++=+; 如图2所示,此时△ABC 为钝角三角形,

在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,

∴BC=253-,

∴△ABC 的周长为:65253825++=+ 综合上述,△ABC 的周长为:145+85+ 故答案为:145+825+ 【点睛】

此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键.

1415【分析】

根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求

出CE 即可得到答案 【详解】

∵8,AB AC AD BC ==⊥ ∴点B 与点C 关于AD 对称

过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小 ∵8,4,AB AC BC AD BC ===⊥ ∴BD=2

在Rt △A BC 中, 222282215AD AB BD =-=-=

∵S △ABC=

11

22

BC AD AB CE ??=?? ∴42158CE ?= 得15CE = 故此题填15

【点睛】

此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 15.322或11或5或109

5

【分析】

分别就E ,F 在AC,BC 上和延长线上,分别画出图形,过D 作DG⊥AC,DH⊥BC,垂足为G ,H ,通过构造全等三角形和运用勾股定理作答即可. 【详解】

解:①过D 作DG⊥AC,DH⊥BC,垂足为G ,H ∴DG∥BC,∠CDG=∠CDH=45° 又∵D 是AB 的中点,

∴DG=1

2 BC

同理:DH=1

2 AC

又∵BC=AC

∴DG=DH

在Rt△DGE和Rt△DHF中

DG=DH,DE=DF

∴Rt△DGE≌Rt△DHF(HL)

∴GE=HF

又∵DG=DH,DC=DC

∴△GDC≌△FHC

∴CG=HC

∴CE=GC-GE=CH-HF=CF=AB-BF=3

∴EF=22

3332

+=

②过D作DG⊥AC,DH⊥BC,垂足为G,H

∴DG∥BC,∠CDG=∠CDH=45°

又∵D是AB的中点,

∴DG=1

2 BC

同理:DH=1

2 AC

又∵BC=AC

∴DG=DH

在Rt△DGE和Rt△DHF中

DG=DH,DE=DF

∴Rt△DGE≌Rt△DHF(HL)∴GE=HF

又∵DG=DH,DC=DC

∴△GDC≌△FHC

∴CG=HC

∴CE=CF=AC+AE=AB+BF=7+4=11

22

1111112

+=

③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作D H⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形, ∴∠1+∠2=45°

∴∠EDF=2(∠1+∠2)=90° ∴△EDF 为等腰直角三角形 可证AED CFD △△≌ ∴AE=CF=3,CE=BF=4

222

2435EF CE CF =+=+=

④有第③知,EF=5,且△EDF 为等腰直角三角形, ∴ED=DF=

52

2

,可证△E CF E DE ''?∽,

2223y x +=

52522

2

x =

+综上可得:422

x =∴2222E F DE DF DE '''''=

+=

109

5

E F ''=

相关文档