文档库 最新最全的文档下载
当前位置:文档库 › 储能电池市场分析

储能电池市场分析

储能电池市场分析
储能电池市场分析

储能电池市场分析

风能和太阳能非并网发电系统都需要储能电池。这是由于这两种发电方式受到大自然条件变化的影响,而具有间歇性和不可控性。小型风能和太阳能非并网发电系统普遍采用铅蓄电池组作为储能装置。目前风力发电机组已由千瓦级发展到兆瓦级,这就要求储能系统必需大型化。同时由于发电系统地理位置的限制,储能系统必需安全可靠,使用方便,价格便宜,充电效率高,使用寿命长并且有充分的抗恶劣天气和使用条件的能力。文章综合了风能和太阳能发电系统对储能系统的要求和不同类型蓄电池的特点,阐明了胶体密封铅蓄电池是风能和太阳能发电系统的最合适的储能装置。

1 蓄电池是市场认可的蓄能装置表1列出了4种常用的蓄电池的特性,以下简要介绍它们的特点和试用情况。

(1)铅蓄电池

铅蓄电池至今仍然广泛应用于军事和国民经济的许多领域。究其原因, 首先是这种电池有其固有的优越性; 再者, 电池本身为适应社会发展的需要也经历了“脱胎换骨”的变化,

已经今非昔比了。当前使用最广泛的是阀控式密封铅蓄电池(VRLA) 和胶体密封铅蓄电池。这些电池内部结构多种多样, 容量范围可从数十毫安时到上万安时, 它们已逐步取代传统的铅蓄电池, 其主要优缺点概述如下:

电池的能量密度虽然不太高( 30~50 Wh/kg) , 但其功率密度较高, 目前已达200~300 W/kg, 新设计的产品可以达到500 W/kg。这样的能量密度和功率密度搭配起来, 可以满足各种用电设备的需要。电池的生产工艺成熟可靠, 电池的均匀性较好。这是供电电源系统可靠性和安全性的根本保证。电池无记忆效应, 既可以随时充电, 也可以随时放电, 使用维护工作比较简单, 耐滥用性比较好, 使用寿命比较长。它的自放电速度可以说是各种蓄电池中最低者, 高温下月自放电小于电池容量的5%。价格便宜, 这是任何一种蓄电池都无法比拟的。尤其是作为大型储能电源, 其价格和运行费用往往是能否普及推广应用的非常关键的因素。世界各国的风能和太阳能发电系统广泛使用铅蓄电池作为贮能电池。

(2) 镉镍电池

镉镍电池的最大优点是充电简单, 既可快速充电又可慢速充电, 既可脉冲充电又可直流充电。在各种常用的蓄电池中, 镉镍电池快速充电时间最短, 通常充电1 h 即可使用。即使电池经过长时间贮存之后, 仍然可以很好地进行充电。

镉镍电池充放电循环次数很高, 很耐用; 如果使用维护得比较好, 它可以达到1 000 次充放电。但镉镍电池必须周期性地进行全放电, 否则在极板上将会产生大的活性物质结晶, 失去活性, 电池的容量就会很快下降, 出现通常所说的记忆效应。镉镍电池可以在低温条件下进行充放电, 它的工作温度范围为- 40℃~60℃; 它在- 40℃条件下的放电容量仍然可以达到常温放电容量的20%, 其他一些蓄电池甚至无法在- 40℃工作。

该电池的贮存寿命很长, 一般达到5 年以上, 但这种电池的自放电速度较大, 刚充完电的电池在24h 内自放电速度达到10%; 然后逐渐下降。温度升高,自放电速度加大, 因而在电池贮存之后必须重新充电。镉镍电池的质量比能量是铅蓄电池的1.5~2 倍,其价格约为铅蓄电池的2~2.5 倍。但由于它的循环寿命长, 因而其单位充放电循环所需的费用就比其他蓄电池要低了。这种电池的最大缺点, 除了上述的记忆效应之外, 就是所使用的原材料镉是毒性很大的物质, 因而许多国家已明文限制使用这种电池。

(3) 镍金属氢化物电池(MH- Ni 电池)

跟镉镍电池相比, 它的能量密度比后者高40%左右, 并且不会污染环境。它不像镉镍电池那样有很强的记忆性, 因而不需要频繁的周期维护充放电。跟其他电池相比, 其贮存和运输也比较简单。MH- Ni 电池的循环寿命不如镉镍电池。这是由于该电池充电后期发热量很大, 会导致贮氢合金材料粉末化, 贮氢量明显下降, 因而最好采用间歇式充电方法, 其充电时间比镉镍电池长。MH- Ni 电池的自放电速度也明显大于镉镍电池(约50%) , 所以需要定期地对它进行全充电。NH- Ni 电池只有在小电流放电时才具有80~90Wh/kg 的高比能量输出; 在大电流放电高功率输出时, 其能量密度会降至40 Wh/kg 或更低。

(4) 锂离子电池

锂离子电池的能量密度很高, 是镉镍电池的2- 3倍; 其负荷特性也非常好, 类似于镉镍电池; 它的充电接受能力很好。该电池的单电压高达3.6 V, 是镉镍电池的3 倍, 此外, 由于它没有记忆效应, 就不需要进行周期性维护充放电, 方便了用户。尽管锂离子电池有以上得天独厚的优点, 但它也存在着一些尚待解决的问题。

首先, 为保证电池使用过程中的安全性, 就必须避免出现金属锂, 因而必须采取一些防护措施: (1)每个单体电池都必须配有充放电保护电路, 使充电电压不得高于4.2 V, 放电电压不得低于2.5 V; (2)电池最大充电电流不得大于1 C, 放电电流不得大于2 C; (3) 必须监控电池温度不得超过规定值。再者, 该电池的容量衰减速度是不容忽视的, 不论电池使用与否, 它都是不可避免的, 并且在2- 3 年之后, 电池就会失效。因而电池的贮存温度不要高于15 ℃, 并且在贮存过程中要补充充电。由于安全性等因素, 锂离子电池多用于小型移动电器设备之中, 目前尚不宜用于大规模储能系统。

二、正在开发的蓄能体系

2.1 钠硫热电池

图1 示出了钠硫电池的工作原理。该电池是在300℃高温条件下工作的。它的正极活性物质是液态硫(S) ; 负极活性物质是液态金属钠(Na) ;中间是多孔性陶瓷隔板。钠硫电池的主要特点有: 能量密度是铅蓄电池的3 倍; 充电效率高达70%~80%; 循环寿命比铅蓄电池长; 原材料钠和硫易得; 工作在300 ℃高温; 安全性和可靠性不如铅蓄电池; 适用于大型储能体系。日本已初步应用于负荷平衡和应急电源系统。

2.2 氧化还原电池

该电池的工作原理如图2 所示。它采用不同价数的钒(V) 作为正极( +5 / +4 ) 和负极( +2 / +3 ) 活性物质体系, 中间有离子交换膜; 使用石墨板栅为集流体。正极和负极电解液在不停地流动, 当它们流过电极表面时, 就产生电化学反应, 实现充电或放电。这种电池具有下列特性: 电池与储液罐可分开放, 易于模块组合; 不会有活性物质脱落, 寿命长; 没有自放电; 可以用3 倍的额定功率输出; 应答性好;能量效率高; 均匀性好; 适用于输出频繁变动的风力发电系统。日本在液晶工厂试用, 美国和南非都有试用。

2.3 超级电容器

超级电容器是20 世纪60 年代发展起来的一种新型贮能单元, 20 世纪80 年代国外已进入商业应用规模, 近年来得到了飞快的发展。超级电容器是将电化学双层电容与法拉弟准电容结合起来做成的电容器。它采用比表面积很大的多孔性炭和具有准电容特性的

RuO2?xH2O 按一定的比例做成电极材料, 使用38%硫酸或胶体高分子聚合物作为电解质, 使用多孔性的聚乙烯/聚丙烯膜作为隔膜, 其厚度为0.02mm。在两电极之间夹上隔膜, 以此组成电极基片, 再由此基片组装成超级电容器。超级电容器的结构形式大致分为两种: 其一是柱状电容器, 即把基片卷绕起来装进圆形金属外壳内, 这种电容器适用于低电压大电流充放电的情况;另一种是叠层式的, 即将电极基片叠起来, 组装在塑料或金属壳内, 这种电

容器用在高电压小电流充放电的情况下比较合适。当前研制成功的超级电容器具有如下特点: 功率密度高, 1 000 W/kg; 循环寿命长, 50 000 次; 充电时间短, 全充电10~30 min; 充电效率高, 可达95%;储存寿命极长; 可靠性高。超级电容器适用于大功率脉冲输出, 在一些特定的场合, 它也可以用作储能系统。

三、胶体电池受到青睐

3.1 两类阀控密封铅蓄电池(VRLA 电池)

当今阀控密封铅蓄电池有两类, 即使用玻璃纤维隔膜(AGM)的紧装配贫液式密封铅蓄电池, 简称AGM电池; 另一种使用胶体电解液的富液式密封铅蓄电池, 简称胶体电池或Gel 电池。两类电池的对比如下:

(a) 电池的工作原理

它们都是利用阴极吸收原理使电池得以密封的。电池充电时, 正极会析出氧气, 负极会析出氢气。正极析出的氧到达负极, 跟负极起反应, 达到阴极吸收的目的。

AGM电池隔膜中虽然保持了电池的大部分电解液, 但必须保证10%的隔膜孔隙中不进入电解液。正极生成的氧就是通过这部分孔隙到达负极而被负极吸收的。胶体电池内的硅凝胶是

以SiO2 质点作为骨架构成的三维多孔网状结构, 它将电解液包藏在里边。电池灌注的硅溶胶变成凝胶后, 骨架要进一步收缩,使凝胶出现裂缝贯穿于正负极板之间, 给正极析出的氧提供了到达负极的通道。由此看出, 两种电池的密封工作原理是相同的,其区别就在于电解液的“固定”方式和提供氧气到达负极的通道的方式有所不同。

(b) 电池结构和工艺上的主要差异

AGM电池使用纯的硫酸溶液作电解液, 其密度为1.29~1.31g/cm3。除了极板内部吸有一部分电解液外, 其大部存在于玻璃纤维隔膜之中。为了给正极析出的氧提供向负极的通道, 必须使隔膜保持有10%的孔隙不被电解液占有, 即贫液式设计。为了使极板充分接触电解液, 极群采用紧装配的方式。为了保证电池有足够的寿命, 极板应设计得较厚, 正板栅合金采用Pb- Ca- Sn- Al 四元合金。胶体电池的电解液是由硅溶胶和硫酸配成的,硫酸溶液的浓度比AGM式电池要低, 通常为1.26~1.28g/cm3。电解液的量比AGM式电池约多20%, 跟富液式电池相当。这种电池采用的是富液式非紧装配结构, 正极板栅材料可以采用低锑合金, 也可以采用管状电池正极板。

(c) 电池放电容量

胶体电池的放电容量达到或接近开口式铅蓄电池的水平。AGM式电池的放电容量比开口式电池要低10%左右。

(d) 电池内阻及大电流放电能力

AGM电池内阻低, 大电流快速放电能力很强。胶体电池的内阻比AGM电池稍大, 但它的大电流放电能力并不亚于AGM电池。

(e) 热失控

热失控指的是电池在充电后期( 或浮充状态) ,由于没有及时调整充电电压, 使电池的充电电流和温度发生一种累积性的相互增强作用, 此时电池的温度急剧上升, 从而导致电池槽膨胀变形, 失水速度加大, 甚至电池损坏。这是AGM电池在使用不当时出现的一种具有很大破坏性的现象。胶体电池没有热失控现象。

(f) 使用寿命

胶体电池采用了富液式设计, 电解液密度比AGM电池低, 降低了板栅合金腐蚀速度; 电解液量也比AGM电池多15%~20%, 对失水的敏感性较低。胶体电池运行寿命达12~14 年, AGM密封铅蓄电池只有6-8年。

(g) 自放电

AGM电池的自放电速度为3%~5%/月。我们开发的储能用胶体电池自放电速度为1% /月。

3.2 先进的储能用胶体电池

先进的储能用胶体电池具有以下特点: 采用管式正极板或厚的平板电极( δ≧5 mm ); 悬挂式极群;复合式隔板; 板栅合金不含锑; 低密度电解液( d =1.240~1.260 g/mL ) (低温使用地区, 电解液密度要适当提高); 循环寿命1 600 次(DOD = 80%); 自放电速度慢, 1%/月;

特别适合部分荷电态运行; DOD =40%~80%条件下循环寿命超过5 500 次, 充电效率达99%。

四、小结和建议

(1) 胶体密封铅蓄电池是风能和太阳能发电系统最合算的储能装置。

(2) 电池容量和品位可根据具体的使用对象和要求来调整。在交通方便的地方, 可用AGM电池; 在交通不方便的地方, 建议使用长寿命的胶体电池。

(3) 钠硫电池、氧化还原电池和超电容器的工艺条件不如胶体电池成熟, 有待进一步开发研究。

钒电池储能系统的发展现状及其应用前景

电源技术 综述 钒电池储能系统的发展现状及其应用前景 崔艳华,孟凡明 (中国工程物理研究院电子工程研究所,四川绵阳,621900) 摘要:全钒液流电池从1984年问世以来,经历了快速的发展并逐步走向商业化。由于其独有的优势,近年来在固定型储能系统上的应用得到了推广。概述了钒电池储能系统的发展历程及其研究现状,列举了澳大利亚新南威尔士大学(UNSW)、日本住友电3j(SEI)、钒电池动力公司(VRBPower)建立的用于太阳能、风能储能及电站调峰、建筑物应急电源等不同场合的钒电池储能系统(VESS)。简要介绍了我国的钒电池研究现状,分析了钒电池对钒资源的需求,指出钒电池储能系统的大规模推广将会大力促进我国对再生能源的利用,优化钒资源的综合利用。 关键词:钒电池储能系统(VESS);太阳能;风能;电站调峰;应急电源;钒资源 中图分类号:TM912.9文献标识码:A文章编号:1002.087X(2005)11-0776 Developmentandprospectofvanadiumenergystoragesystem CUIYan-hua,MENGFan‘ming romaAcademyofEngineeringPhysics,P.0.Box919—516,MianyangSichuan621900,China) Abslract:Thevanadiumredoxflowbattery(VRB)technologydevelopedrapidlyandwasbeingsuccessfullycommercializedsincetheconceptofVRBwasbroughtforwardin1984.Theapplicationsforstationaryenergystoragesystemsspreadwidelybecauseofitsmanyadvantages.ThedevelopmentoftheVESS(VRBenergystoragesystem)wasreviewed.TheVRBprojectsestablishedbyUNSW、SEI、VRBPowerappliedonenergystoragesystemsuchassolarenergy,windturbine,load-levelingandtheemergencypowerwereparticularized.ThestatusofVRBinChinawasmentionedtoo.Analysisshowedthatthelarge—scaleVESShasagreatdemandforvanadiumresources,thereforethewidespreadofVRBwillpromotetheutilizationofChinaabundantvanadiumresourcesandacceleratethetechnologyofregenerativepowerstorage. 研words:vanadiumenergystoragesystem(VESS);solarenergy,wind,load-leveling;emergencypower;vanadiumresources 钒电池全称为全钒氧化还原液流电池(VanadiumRedoxBaRery,缩写为VRB),在1985年由澳大利亚新南威尔士大学的MarriaKazacos提出【”。经过近20年的研发,钒电池技术已趋成熟。在日本、南非等地用于电站调峰、太阳能储能、风能储能的钒电池系统已接近商业化。近年来全球对储能系统的需求快速增长,钒电池的优势及其成功范例展示了钒电池在储能市场的广阔前景。本文将介绍钒电池的发展过程及在储能领域的应用研究现状,并对钒电池和钒资源优化利用的关联做简要分析。 1工作原理及特性、 1.1钒电池的工作原理 采用不同价态的钒离子溶液分别作为正负极活性物质,通过外接泵把溶液从储液槽压入电池堆体内完成电化学反应。之后,溶液又回到储液槽,液态的活性物质不断循环流动。其电池反应如下: 收稿日期:2005—03一18 基金项目:中国工程物理研究院科学技术基金资助项目(20030325) 作者简介:崔艳华(1972一),女,重庆市人,副研究员,主要研究方向为化学电源。 Biography:CUlYan-hua(1972--),female,associateresearcher. 正极:V02++2H++e=VO”+H20 Vo=0.999V(vs.NHE)(1)负极:V2+一e=V”Vo=一0.255V(vs.NHE)(2)(2】式中:vo为氧化还原电对相对于标准氢电极的标准电势。从上式可知钒电池正负极的标准电势差为1.26V,这是对于正负极活性溶液浓度均为1mol/L而言,如果溶液浓度提升,电势差也会增大,更具实用价值。 1.2钒电池的优势及其应用 钒电池的活性物质以液态形式贮存在电堆外部的储液罐中,流动的活性物质使浓差极化可减至最小,且电池容量取决于外部活性溶液的多少,调整容易。并且储液罐可灵活放置在电池下层的地下室中,不必占用太多空间。由于不存在复杂的固相反应,因此电池寿命长,能耐受大电流充放。并且各个单体电池的均匀性好,维护相对容易。可通过更换溶液实现电池的“即时充电”,具备快速响应和超负荷工作能力;活性溶液可重复循环使用,不污染环境等众多优势。 钒电池作为储能电源主要应用在电厂(电站)调峰以平衡负荷,大规模光电转换、风能发电的储能电源以及作为边缘地区储能系统,不间断电源或应急电源系统。该电池是目前最有可能部分取代铅酸储能电池的理想电源。目前常用的钒电池系统主要用于电网调节、太阳能、风能的蓄能等。

储能市场报告

报告摘要: 储能是电力系统重要组成部分:在发电端、输配电端、用电端接入储能系统能够实现电网效率的提高和电能质量的改善。储能能够平滑可再牛能源的电能输出,实现削峰填谷。分布式发电+储能是能源互联网的基础。 下游增长催生储能需求:国内可再生能源装机规模持续上升,同时弃风弃光率居高不下,需要储能平滑输出;储能可以协助可再牛能源按照计划出力,为大规模并网创造条件。国家力推分布式发电与能源互联网的构建,储能是重要坏节。同时新能源汽车市场不断扩大,未来光储一体充电站、V2G (vehicle-to-grid)模式及老IH锂电储能应用等从中t期给储能带来发展机遇。 化学储能最具发展前景,短期看好铅炭电池:适合广泛用于电力系统储能的包括?铅炭电池、锂电池、钠硫电池、饥液流电池等。从短期来看,铅炭电池性价比高,在用八端削峰填谷己经能够实现经济性,有望快速占领市场;钾-电池适介分布式储能,能与分布式发电装机共同增长。其余几种电池随着技术的成熟带來成本的不断下降,应用范围有望逐渐扩人。 储能市场空间广阔:至2020年,国内风电与光伏的累计装机规模日标为350GW,给配套储能带来巨大的市场需求;用户侧储能经济性逐步显现,我们认为储能市场规模至少达千亿级別。 期待国内政策岀台:国外成熟的储能推广都是由政府补贴政策入手。目前国内对于储能的规划提至新高度。2014年发布的《能源发展战略行动计划(2014-2020)?中,储能首次被明确为“9 个重点创新领域”和“20个重点创新方向”么一,储能“十三五”规划大纲止在编写Z中,政策出台有望成为储能爆发起点。 1?储能在电力系统中的作用 储能可以对电力进行存储,在需耍的时候释放,能够有效解决电力在时间和空间上的不平衡。储能技术的应用贯穿于电力系统发电、输电、配电、用电的各个环节。储能技术与可再生能源的推广有着密切的关系,可以有效解决可再生能源并网屮面临的一系列问题。储能是构建能源互联网的胶介剂,能提高能源互联的效率。 图1:储能在电力系统中的应用

储能市场行业分析

2017-05-24 目前我国储能行业的处于刚起步。随着下游需求的爆发式增长,储能的商业化应用也愈加迫切。2015年之前,项目以示范应 用为主,集中在可再生能源并网、调频辅助服务、电力输配、分布式发及微电网、电动汽车光储式充电站;2015年-2020年,开始出现若干初具商业化但还不备规模的项目,逐步向商业化迈进;2020年之后,储能将逐步在各个领域实现商业化发展。 电力虽然是一种商品,但其生产、运输、消费几乎在同一时间完成,故经营上和一般商品也不一样。电力储存是近百年的 难题,影响着电力的商品属性,可以改变能源的使用方式,是未来能源产业发展变革的重要支撑。2016 年 2 月29 日, 国家发改委、能源局、工信部联合发布了《关于推进“互联网+”智慧能源发展的指导意见》(发改能源[2016]392 号,简称“指导意见”),指导意见多处提及推动储能产业发展,并对储能 产业进行了新的定义。

指导意见中提出了集中式和分布式储能应用,赋予了能源更丰富的应用方式。其中,集中式储能电站主要配套传统电网和新能源发电,实现传统电网的调频、调峰、削峰填谷等功能优化,或者解决新能源间歇性发电限制、并网限电等问题。 实现电网平滑的储能方案示意图 应对光伏限电的储能方案示意图

对铅炭电池、锂离子电池、液流电池、钠硫电池、锂离子超级电容进行了比较,未来在储能应用环境下,更关心全周期使用过程中的系统度电成本,其综合了循环寿命和系统成本两个影响因素,就当前指标而言,我们认为:1)铅炭电池最具成本优势,最有可能大规模应用到当前储能市场;2)锂电未来成本下降空间大,也将是主流技术路线;3)液流、钠流电池本身存在一些难以克服的问题,应用范围有限;4)锂离子超级电容初始投资太大,虽然循环性能很好,但投资回报期很长,一般资金进入;故未来五年仍然以铅炭和锂电路线为主。 主流储能电池性能指标比较 随着铅炭储能度电成本的下降,工商业企业用电的削峰填谷应用逐渐具有商业价值,一般情况下,用电尖峰时段约占用电全时段的5%,对应尖峰用电量约占总用电量的20%,这一

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

锂电池行业研究报告

锂电池行业分析 目录 一、锂电池概述 (2) 1、锂电池构成 (2) 2、锂电池产业链 (2) 二、锂电池行业生命周期 (3) 三、锂电池行业市场现状 (4) 1、3C类产品锂电池市场 (4) 2、新能源汽车锂电池市场 (4) 四、锂电池主要材料行业市场现状 (5) 1、正极材料 (6) 2、负极材料 (8) 3、隔膜材料 (10) 4、电解液 (10) 五、锂电池材料技术特点及技术趋势 (11) 六、动力电池市场前景 (12) 1、国家对汽车动力电池的产能门槛要求 (12) 2、动力电池技术发展路线 (13) 3、纯电动汽车发展 (13) 4、锂电池的竞争格局 (14)

一、锂电池概述 1、锂电池构成 锂离子电池:是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 锂电池材料主要由正极材料、负极材料、隔膜和电解液四大材料组成,此外还有电池外壳。 2、锂电池产业链 锂电池产业链经过二十年的发展已经形成了一个专业化程度高、分工明晰的产业链体系。 正负极材料、电解液和隔膜等材料厂商为锂离子电池产业链的上游企业,为锂离子电芯厂商提供原材料。 电芯厂商使用上游电芯材料厂商提供的正负极材料、电解液和隔膜生产出不同规格、不同容量的锂离子电芯产品;模组厂商根据下游客户产品的不同性能、使用要求选择不同的锂离子电芯、不同的电源管理系统方案、不同的精密结构件、不同的制造工艺等进行锂离子电池模组的设计与生产。

2020年中国钒电池市场调研报告

2020年中国钒电池市场调研报告 中国钒电池标准制定动态 2020年2月,由中科院大连化物所储能技术研究部和大连融科储能技术发展有限公司 联合牵头制定的首项液流电池国际标准“固定式液流电池2-1:性能通用条件及测试方法”正式颁布。这标志着我国液流电池技术水平得到了国际同行认可。液流电池国际标准的制定和实施,将在推进我国液流电池产业化和提升国际竞争力中发挥重要作用。 该项标准的负责人为大连化物所张华民研究员。依托大连化物所和大连融科储能技术发展有限公司在液流电池技术的国际领先地位,2014年,以张华民为主任委员的国家能源行 业液流电池标准化技术委员会首次向国际电工委员会建议由我国制定液流电池性能通用条 件及测试方法国际标准。经国际电工委员会/二次电池及电池组技术委员会各国成员投票, 该提议得到批准,并由国际电工委员会/二次电池及电池组技术委员会与燃料电池技术委员 会共同组织的液流电池联合工作组组织制定此标准。 该标准先后通过项目提案、工作草案、委员会草案、询问、最终国际标准稿等阶段,历时近6年得以正式发布。此次正式发布的首批液流电池国际标准共3项,其余两项为:欧洲牵头起草的“固定式液流电池1:术语及通用要求”标准和日本牵头起草的“固定式液流电池2-2:安全要求”标准。 2011-2018年中国钒电池装机容量 中国电池储能市场锂离子电池、铅蓄电池、液流电池是毫无争议的现阶段电池储能市场主流,截止到2017年底,三种技术规模占比分别为60%、35%、4%。参与储能项目建设的技术供应商数量分别为21家、8家和5家。 2017年国内电化学储能装机累计容量达到了389.8MW,其中钒电池装机容量约15.6MW,占比约4%;2018年国内电化学储能装机累计容量约为490.5MW,其中钒电池装机容量约19.3MW,占比约3.93%。近几年国内钒电池装机容量及占比情况如下图所示: 图表2011-2018年中国钒电池装机容量及占比电化学储能装机比重情况 单位:MW,MW,%

新能源储能系统发展现状及未来发展趋势

新能源储能系统发展现状及未来发展趋势 目录 第一章新能源储能系统相关论述 (1) 新能源相关论述 (1) 新能源定义 (1) 新能源分类 (1) 储能技术相关论述 (1) 储能技术的定义 (1) 储能技术的分类 (1) 第二章国内外新能源储能系统的发展动态分析 (2) 日本新能源储能系统的发展动态分析 (2) 新能源储能电池的发展现状及未来发展趋势 (2) 新能源储能系统的未来发展趋势 (3) 新能源储能系统在实际中的应用 (3) 美国在新能源储能系统的应用中漫漫求索 (4) 政策与投资力度 (4) 储能技术的经济性瓶颈 (5) 我国新能源储能系统的现状 (5) 储能是构建智能电网的关键环节 (6) 商业模式不成熟制约储能发展 (6) 第三章国内外在相关新能源储能技术上的发展现状 (8) 新能源储能系统的实际应用 (8) 创能、节能与储能的完美搭配 (9) 国内新能源储能技术瓶颈解析 (10) 新能源科技发展的核心—储能技术 (10) 新能源无"仓库储能"的尴尬 (10) 储能技术的突破效应 (11) "不能等肚子饿了才去种麦子" (12) 第四章新能源储能系统的发展趋势 (13) 日本新能源储能系统的发展趋势 (13) 储能电池的发展趋势 (13) 我国新能源储能系统的发展趋势 (13) 我国智能电网带动储能产业发展态势研究分析 (13) 新能源并网储能市场发展前景预测分析 (14)

第一章新能源储能系统相关论述 新能源相关论述 新能源定义 新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、海洋能、地热能和氢能。 新能源分类 新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、水能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能、等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。 储能技术相关论述 储能技术的定义 储能技术是将电力转化成其他形式的能量储存起来,并在需要的时候以电的形式释放。 储能技术的分类 目前全球储能技术主要有物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。

储能电池及市场前景

储能蓄电池主要是指使用于太阳能发电设备和风力发电设备以及可再生能源储蓄能源用的蓄电池。常见的储能蓄电池为铅酸蓄电池。 储能蓄电池分为以下三类: 1 排气式储能用铅酸蓄电池-电池盖上有能够补液和析出气体装置的 蓄电池。 2 阀控式储能用铅酸蓄电池-各个电池是密封的,但都带有在内压超出一定值时允许气体溢出的阀的蓄电池。 3 胶体储能用铅酸蓄电池-使用用胶体电解质的蓄电池。 储能用铅酸蓄电池必须具备以下特点 1 使用的温度范围比较广,一般要求在-30-60度的温度环境下可以正常运行。 2 蓄电池的低温性能要好,即使温度比较低的地区也可以使用。 3 容量一致性好,在蓄电池串联和并联使用中,保持一致性。 4 充电接受能力好。在不稳定的充电环境中,有更强的充电接受能力。 5 寿命长,减少维修和维护成本,降低系统总体投资。 太阳能蓄电池是‘蓄电池’在太阳能光伏发电中的应用,目前采用的有铅酸免维护蓄电池、普通铅酸蓄电池,胶体蓄电池和碱性镍镉蓄电池四种。国内目前被广泛使用的太阳能蓄电池主要是:铅酸免维护蓄电池和胶体蓄电池,这两类蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。 太阳能蓄电池又称免维护阀控铅酸蓄电池,是专门为太阳能发电系统研制生产的,具有以下优点: 1、安全性能好:正常使用下无电解液漏出,无电池膨胀及破裂。 2、放电性能好:放电电压平稳,放电平台平缓。 3、耐震动性好:完全充电状态的电池完全固定,以4mm的振幅,16.7HZ的频率震动1小时,无漏液,无电池膨胀及破裂,开路电压正常。 4、耐冲击性好:完全充电状态的电池从20CM高处自然落至1CM厚的硬木板上3次无漏液,无电池膨胀及破裂,开路电压正常。 5、耐过放电性好:25摄氏度,完全充电状态的电池进行定电阻放电3星期(电阻只相当于该电池1CA放电要求的电阻),恢复容量在75%以上。 6、耐充电性好:25摄氏度,完全充电状态的电池0.1CA充电48小时,无漏液,无电池膨胀及破裂,开路电压正常,容量维持率在上 95%以。 7、耐大电流性好:完全充电状态的电池2CA放电5分钟或10CA放电5秒钟。无导电部分熔断,无外观变形。

储能领域行业深度分析

储能领域行业深度分析 1. 储能:充放之间,实现能量的跨时间转移 储能即是将电能转化为其他形式的能量储存起来。储能的基本方法是先将电力转化为其他形式的能量存放在储能装置中,并在需要时释放;根据能量转化的特点可以将电能转化为动能、势能和化学能等。储能的目的主要是实现电力在供应端、输送端以及用户端的稳定运行,具体应用场景包括:1)应用于电网的削峰填谷、平滑负荷、快速调整电网频率等领域,提高电网运行的稳定性和可靠性;2)应用于新能源发电领域降低光伏和风力等发电系统瞬时变化大对电网的冲击,减少“弃光、弃风”的现象;3)应用于新能源汽车充电站,降低新能源汽车大规模瞬时充电对电网的冲击,还可以享受波峰波谷的电价差。 图 1:储能系统通过储能逆变器实现电能的充放电

目前市场上主要的储能类型包括物理储能和电化学储能。根据能量转换方式的不同可以将储能分为物理储能、电化学储能和其他储能方式:1)物理储能包括抽水蓄能、压缩空气蓄能和飞轮储能等,其中抽水蓄能容量大、度电成本低,是目前物理蓄能中应用最多的储能方式。2)电化学储能是近年来发展迅速的储能类型,主要包括锂离子电池储能、铅蓄电池储能和液流电池储能;其中锂离子电池具有循环特性好、响应速度快的特点,是目前电化学储能中主要的储能方式。3)其他储能方式包括超导储能和超级电容器储能等,目前因制造成本较高等原因应用较少,仅建设有示范性工程。 表 1:物理储能和电化学储能是目前主要的储能方式 储能主要应用于电网输配与辅助服务、可再生能源并网、分布式及微网以及用户侧各部分。在电网输配和辅助服务方面,储能技术主要作用分别是电网调峰、加载以及启动和缓解输电阻塞、延缓输电网以及配电网的升级;在可再生能源并网方面,储能主要用于平滑可再生能源输出、吸收过剩电力减少“弃风弃光”以及即时并网;在分布

锂离子电池的三大特性分析

锂离子电池的三大特性分析 时间:2014-11-12 11:12:47来源:本站原创浏览次数:9697 一、电池的容量特性 容量测试得到电池在不同倍率下的放电电压与容量关系曲线如图3所示。 图3 不同倍率下的放电电压与容量的关系曲线 从图中可以看出,在整个放电过程中锂离子电池的电压曲线可以分为3个阶段:1)电池在初始阶段端电压快速下降,放电倍率越大,电压下降的越快; 2)电池电压进入一个缓慢变化的阶段,这段时间称为电池的平台区,放电倍率越小,平台区持续的时间越长,平台电压越高,电压下降越缓慢。在锂离子电池的实际使用过程中,尽可能希望电池工作在平台区; 3)在电池电量接近放完时,电池负载电压开始急剧下降直至达到放电截止电压。从容量测试的结果中,同时还可以得到放电电流与容量的曲线关系,如图4所示。

图4 不同放电电流与容量的关系曲线 从图中可以看出,电池放电电流的大小,会直接影响到电池的实际容量。放电电流越大,电池容量相应减小,这表明放电电流越大,到达终止电压经历的时间越短。所以谈到电池容量时,应指明其放电电流(放电倍率)。 二、电池开路电压特性 开路电压测试[6]得到锂离子电池开路电压与电池SOC的关系曲线如图5所示。 图5 电池充电与放电时的OCV-SOC曲线

从图中可以看出,电池的OCV-SOC曲线与电池放电电压曲线趋势基本相同。在SOC的中间区间(20%<SOC<80%)内,电池的OCV变化极小,电池处于平台区;而在SOC的两端区间(SOC<10%和SOC>90%),OCV 的变化率较大,整个磷酸铁锂电池的OCV-SOC曲线呈现中间区域平坦,头尾两端陡峭的样子,开路电压法即是利用这一稳定的对应关系进行SOC估计。 锂离子电池OCV-SOC关系曲线受温度、放电倍率、老化程度因素影响较小[7],但在充放电2种状态下,两条特性曲线之间会存在一定差异。 三、电池内阻特性 图6表示磷酸铁锂电池在充电和放电时的欧姆内阻。 图6 电池内阻变化曲线

储能行业发展分析报告

特变电工新疆新能源股份有限公司 储能行业发展分析报告 市场管理部 二零一五年八月十八日 目录 一、储能产业发展状况 (3) (一)国外储能产业发展情况 (3) (二)中国储能产业发展情况 (5) 二、储能市场分析 (8) (一)全球市场 (8) (二)国内市场 (9) 三、政策支持 (10) (一)国内现有政策分析 (10) (二)国外政策经验借鉴 (12) 四、存在的问题和挑战 (13) (一)产业政策和行业标准缺失问题亟待解决 (13) (二)自主技术有待工程应用验证和进一步完善 (14) (三)产品成本过高,推广力度不足 (14) (四)商业模式模糊 (15) 五、国内主要储能变流器生产企业分析 (15)

(一)北京能高 (15) (二)四方继保 (16) (三)索英电气 (17) (四)中船鹏力 (18) 储能是指通过介质或者设备,利用化学或者物理的方法把能量存储起来,根据应用的需求以特定能量形式释放的过程,通常说的储能是指针对电能的储能。储能技术应用广泛,随着电力系统、新能源发电(风能、太阳能等)、清洁能源动力汽车等行业的飞速发展,对储能技术尤其大规模储能技术提出了更高的要求,储能技术已成为该类产业发展不可或缺的关键环节。特别是储能技术在电力系统中的应用将成为智能电网发展的一个必然趋势,是储能产业未来发展的重中之重。当前,储能领域正处于由技术积累向产业化迈进的关键时期。 随着我国社会和经济的发展对能源的消耗越来越多,煤炭的大量消耗的结果造成了我国严重的大气污染,严重影响人民的身体健康。因此,普及应用可再生能源、提高其在能源消耗中的比重是实现社会可持续发展的必然选择。由于风能、太阳能等可再生能源发电具有不连续、不稳定、不可控的特性,可再生能源大规模并入电网会给电网的安全稳定运行带来严重的冲击,而大规模储能系统可有效实现可再生能源发电的调幅调频、平滑输出、跟踪计划发电,从而减小可再生能源发电并网对电网的冲击,提高电网对可再生能源发电的消纳能力,解决弃风、弃光问题。因此,大规模储能技术是解决可再生能源发电不连续、不稳定特性,推进可再生能源的普及应用,实现节能减排重大国策的关键核心技术,是国家实现能源安全、经济可持续发展

储能技术应用和发展前景

储能技术应用和发展前景 深圳市中美通用电池有限公司网址:WWW+中美通用电池首字母+COM General Electronics Battery Co., Ltd. 网址:WWW+中美通用电池首字母+COM 储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

电子化学品锂电池行业分析报告

电子化学品锂电池行业分析报告

目录 一、电子化学品产业链概览 (5) 1、中国电子化学品行业特点 (5) 2、电子化学品产能向中国转移已成为大势所趋 (6) 3、国家政策支持力度加大 (7) 4、中国电子化学品行业增速超全球 (8) 5、电子化学品各子行业分化明显 (8) 二、锂电池化学品:最具应用前景的电子化学品材料 (9) 1、锂电池化学品是最具应用前景的电子化学品材料 (9) 2、中国锂电材料行业下行趋势将反转,在全球价值链底部攀升 (12) 3、原材料碳酸锂行业集中度不断攀升,供需处于紧平衡 (13) 4、3C 领域是锂电发展主战场 (14) 5、移动互联网时代来临强力拉动锂电池尤其是聚合物锂电池大发展 (15) 6、动力电池发展缓慢而曲折 (16) 三、正极材料:高压钴酸锂、锰酸锂和三元材料发展迅猛 (22) 1、高电压高压实钴酸锂(LCO) (24) 2、锰酸锂和磷酸铁锂 (25) 3、高电压镍钴锰酸锂材料(NCM 三元材料) (26) 4、富锂高锰层状固溶体(OLO)和镍锰尖晶石(LNMS) (27) 四、负极材料:石墨类量增价跌,LTO发展空间广阔 (28) 1、钛酸锂(LTO) (30) 2、硅碳复合负极材料 (31) 3、硅合金负极材料 (32) 五、锂电隔膜:国内生产商快速成长,进口替代效应显现 (32) 六、锂电电解液:全球产能释放迅猛,中国厂商迅速崛起 (36) 七、行业重点公司简况 (41)

1、新宙邦:高速成长的电子化学品巨头 (41) 2、江苏国泰:快速发展的锂电电解液龙头 (43) 3、杉杉股份:综合性锂电巨头 (44) 4、沧州明珠:迅速崛起的锂电隔膜巨头 (45)

国内储能市场测算及储能项目经济性分析

2016国内储能市场测算及储能项目经济性分析作者:中国储能网新闻中心来源:中国产业信息网发布时间:2016-11-3010:26:31 中国储能网讯:电力虽然是一种商品,但其生产、运输、消费几乎在同一时间完成,故经营上和一般商品也不一样。电力储存是近百年的难题,影响着电力的商品属性,可以改变能源的使用方式,是未来能源产业发展变革的重要支撑。2016年2月29日,国家发改委、能源局、工信部联合发布了《关于推进“互联网+”智慧能源发展的指导意见》(发改能源[2016]392号,简称“指导意见”),指导意见多处提及推动储能产业发展,并对储能产业进行了新的定义。 指导意见中提出了集中式和分布式储能应用,赋予了能源更丰富的应用方式。其中,集中式储能电站主要配套传统电网和新能源发电,实现传统电网的调频、调峰、削峰填谷等功能优化,或者解决新能源间歇性发电限制、并网限电等问题。 实现电网平滑的储能方案示意图 应对光伏限电的储能方案示意图 对铅炭电池、锂离子电池、液流电池、钠硫电池、锂离子超级电容进行了比较,未来在储能应用环境下,更关心全周期使用过程中的系统度电成本,其综合了循环寿命和系统成本两个影响因素,就当前指标而言,我们认为:1)铅炭电池最具成本优势,最有可能大规模应用到当前

储能市场;2)锂电未来成本下降空间大,也将是主流技术路线;3)液流、钠流电池本身存在一些难以克服的问题,应用范围有限;4)锂离子超级电容初始投资太大,虽然循环性能很好,但投资回报期很长,一般资金进入;故未来五年仍然以铅炭和锂电路线为主。 主流储能电池性能指标比较 随着铅炭储能度电成本的下降,工商业企业用电的削峰填谷应用逐渐具有商业价值,一般情况下,用电尖峰时段约占用电全时段的5%,对应尖峰用电量约占总用电量的20%,这一部分电量存在储能的商用价值。特别是部分工商业发达的大型城市,统计了国内大型城市的峰谷电价差,根据目前铅炭储能最低0.5元左右的度电成本,电价差大于0.8元/kWh的地区都有经济性,这些地区对应的2015年用电量合计约为3972.54亿kWh,若其中10%的用电量通过储能来进行削峰填谷,大约需要1.2亿kWh的储能设备(其容量对应日充放电量),若按铅炭储能每kWh约1250元的投资额计算,则对应累计市场规模1500亿元;若按锂电储能每kWh约2000元(考虑未来五年成本有望明显下降)的投资额计算,则对应累计市场规模2400亿元。 部分地区电价差及用电量统计 据统计数据显示,广东省、江苏省、浙江省、安徽省为用电大省,且电价差大多高于0.8元/kWh,已具备储能经济性,这四大省2015年工业用电量分别为3437.46亿kWh、3873.35亿kWh、2652.53亿

2018年锂电池行业分析报告

2018年锂电池行业分析报告

摘要 作为第三代电池技术,锂电池凭借着储能比能量高、循环寿命长、无污染等优点已经在电子产品领域取得了广泛的应用。同时,随着电动车行业的快速发展,大容量的动力锂电池市场前景广阔。 近年来,全球锂电池发展迅速,2011年全球锂离子电池(可充电的二次锂电池)市场规模达到153亿美元,同比增长29.7%,预计到2018年锂电池产业的产值将达到约320亿美元,其中电动汽车锂电池产值将占50%以上,超过160亿美元。2011年中国锂电池市场规模增速高于全球增速,2011年达到了397亿元人民币,同比增长43%,全年锂电池产量达到29.7亿颗,同比增长28.6%。保守估计,2018年中国锂电池行业市场规模可达到了900亿元人民币。 锂电池巨大的市场潜力除了归功于其性能优点,也离不开近年来相关产业政策的支持。近年来,国家多次明确支持锂电池技术的研发,并且制定了具体的奖励措施,例如国家对锂离子电池出口退税从13%上调至17%。同时我国和世界其他国家对于电动汽车发展的鼓励政策也直接刺激了对动力锂电池的需求。 目前全球锂电池产业目前主要集中在日本、中国和韩国三国,并且值得注意的是,近年来韩国企业发展迅速,去年三星已经取代日本三洋成为世界上最大的锂电池制造企业。中国锂电池制造业基地主要集中在广东、山东、江苏、浙江、天津等地。主要企业有比亚迪、欣旺达电子、天津力神电池等。

锂电池的生产工艺复杂,技术门槛极高。其核心材料主要是正极 材料、电解液和隔膜。其中正极材料是锂电池中最关键的原材料,决 定了电池的安全性能和电池能否大型化,约占锂电池电芯材料成本的 三分之一。目前,正极材料主要是钴酸锂、镍酸锂、锰酸锂、钴镍锰 酸锂、磷酸铁锂等,负极材料为石墨。正是因为锂电池技术门槛高,该行业存在很高的利润水平。整个行业的毛利润率水平在50%以上,其中,隔膜和正极材料生产企业利润率最高。 采用磷酸铁锂作为正极材料的锂电池普遍为业内看好,在磷酸铁 锂电池领域,国内领军企业比亚迪已经制造出了全球首款基于磷酸铁 锂电池的电动汽车F3DM。 目录 摘要 (1) 一、................ 锂电池行业主管部门及相关产业政策4 (一)行业界定 (4) (二)行业主管部门 (4) (三)相关产业政策 (4) 二、行业基本情况 (6) (一)行业概述 (6) (二)市场容量 (10) (三)行业竞争格局 (12)

储能电站成本与效益比较分析 哪种电池更为经济

储能电站成本与效益比较分析哪种电池更为经济? 2017-02-07 09:25:44 关键词:储能电站电池技术储能市场 现以三种不同电池,按照500kW-8h(4000kWh)储能电站,分别比较储能电站成本与效益。见下表1~表2。

表1 三种不同电池储能电站参数表 对表1的参数说明如下: 铅碳电池使用放电深度为60%DOD,所以4000kWh储能电站电池容量需要按照4000kWh/0.6=6667kWh配置; 锂电池使用放电深度为90%DOD,电池容量按照4000kWh/0.9=4445kWh 配置; 动力电容电池使用放电深度为90%DOD,但电池容量有约11.6%裕度,故电池容量按照4000kWh配置。 需要更换电池次数,是按照储能系统每天充放电1次,电池循环次数10000次计算,累计折合运行27年;锂电池和铅碳电池循环次数3000次,需要更换电池3次。

表2 储能电站投资成本与效益比较表 上表2用以下参数计算储能电站投资成本与效益: 商业峰谷电价差,按照以北京1.01元/KWh计算; 储能系统每年电价差收益按照365天计算; 储能系统累计收益年份按照电池使用循环次数10000次计算,为27年。从上表2看,以全寿命使用周期27年计算,有如下结论: 动力电容电池每度电储能成本最低,其次是铅碳电池和锂电池; 动力电容电池储能系统累计总收益高于铅碳电池储能系统; 动力电容电池系统设备累计投资最低,其次是铅碳电池和锂电池。

动力电容电池系统设备初始投资最高,其次是锂电池和铅碳电池。 4000kWh不同电池所建成的储能电站主要存在一下几点差异: 1.由于动力电容电池的充放电效率高, 所以在相同的功率下动力电容电池的配置容量是最小的,起到了节约资源的作用。 2.铅碳电池的每千瓦时电池价格最低,其次是锂电池;动力电容电池每千瓦价格最高。动力电容电池比铅碳电池高5倍多。 3.动力电容电池的循环次数是铅碳电池和锂电池的3倍多。所以在储能电站的27年的使用时间内动力电容电池不需要更换电池,而铅碳电池和锂电池需要更换至少3次以上的电池。 4.动力电容电池的全寿命周期每度电储能成本比铅碳电池、锂电池低很多。 基于以上优势,动力电容电池一定会在储能领域得到广泛应用。 现在常用的化学储能电站主要以锂电池储能电站和铅碳电池储能电站为主。近几年由于国家对与化学储能电站的重视虽然取得了一些进展,但是也暴露出了一系列问题,其中主要阻碍化学储能电站的推广的原因则是没有一种符合人们要求的电池。于是在社会的热切期盼之下动力电容电池应运而生。 西安德源纳米储能技术有限公司是电力储能电站、储能电源、后备电源、纯电动汽车与混合动力汽车动力电容电池集成设备、不间断电源、应急电源、充电设备、动力电容电池集成设备、电池管理系统的研究开发、生产、销售为一体的高新技术企业。其推出的动力电容电池具有:安全性好、寿命超长、适温性宽、优化设计、充电快速、环保高效、电池回收等七大优势。 安全性好优势:动力电容电池通过了挤压、针刺、短路、加热、震动等安全测试,电池不燃烧、不爆炸。

论文磷酸铁锂电池在电力储能市场的应用现状及分析

磷酸铁锂电池在电力储能市场的应用现状 及分析 摘要:本文通过中航锂电(洛阳)有限公司磷酸铁锂电池产品在国内电力储能市场领域的应用情况,分析国内锂电池储能市场现状,讨论了目前国内储能市场遇到的问题,探索了锂电池在电力储能市场的开发应用前景及市场运作模式。未来锂电储能市场的需求很大,但目前仍以科研示范项目为主;我国储能产业仍需要相关政府部门在颁布奖励政策、鼓励建设示范项目、建立健全产品标准化等方面做出部署,促进中国锂电储能产业发展。 关键词:磷酸铁锂电池储能应用现状 1引言 随着新能源技术的开发和应用,新能源发电项目越来越多,发电容量也越来越大。但新能源发电的可控性和电能质量等问题也随之浮现,这些问题都指向储能技术。储能是智能电网、新能源接入、分布式发电和微网以及电动汽车发展必不可少的支撑技术,这些领域巨大的发展前景也给储能创造出前所未有的机遇。未来无论是新能源智能电网建设、电动车还是风力发电、太阳能光伏发电等,其大规模推广和商业化应用,除政策等宏观环境外,前提和关键在储能技术。储能技术的好坏直接影响到新能源发电行业的发展,国家为推动储能技术的快速发展在政策上和资金上给与大力支持。目前,储能形式主要有以下几种:机械储能、化学储能、电池储能和相变储能,在各种储能形式中,化学储能是业内人士关注的热点,而化学储能中的磷酸铁锂电池(简称锂电池或锂电)储能产业链和技术最为成熟,许多国家都

已建或在建储能示范工程,锂电被认为最具有发展前景;而且,锂电池是电动车发展的首选,电动汽车为锂电池发展提供了广阔的市场前景。本文将重点阐述锂电池储能的现状,商务运作模式,并结合国内政策和市场预测对该现状进行对策分析(1)。 2国内能源背景及相关政策 2.1国内能源背景 在当今石油、天然气等不可再生能源日益枯竭的大环境下,世界各地都在寻找传统能源的替代品或者研究新能源发电技术。发展风电是解决我国能源环境问题的重要措施,根据新能源振兴规划,预计到2020 年我国风力装机容量将达到1.5 亿kW,将超过电力总装机容量的10%。 2.2新能源发展鼓励政策 《可再生能源发展“十二五”规划》中可再生能源发电在电力体系中上升为重要电源。并且制定的目标为“十二五”时期,可再生能源新增发电装机1.6亿千瓦,其中常规水电6100万千瓦,风电7000万千瓦,太阳能发电2000万千瓦,生物质发电750万千瓦,到2015年可再生能源发电量争取达到总发电量的20%以上。 财政部、国家发展改革委在《电力需求侧管理城市综合试点工作中央财政奖励资金管理暂行办法》中规定了对新能源项目建设的支持范围和奖励办法,奖励资金支持范围: (1)建设电能服务管理平台; (2)实施能效电厂; (3)推广移峰填谷技术,开展电力需求响应; (4)相关科学研究、宣传培训、审核评估等。 奖励资金奖励标准: (1)对通过实施能效电厂和移峰填谷技术等实现的永久性节约

2021年电化学储能行业分析报告( word 可编辑版)

2021 年电化学储能行业分析报告 2021 年2 月

目录 一、锂电储能应用广泛,装机规模持续提升潜力巨大 (6) 1、抽水蓄能装机规模最大,锂电储能快速发展 (7) 2、电化学储能产业链:上游材料、中游核心部件制造、下游应用 (9) 二、五年三千亿市场空间可期,能源革命是核心驱动力 (10) 1、能源结构转型对电网的冲击是发输配电侧储能的底层逻辑 (10) (1)全球脱碳趋势明确,高比例可再Th能源结构转型加速 (10) (2)可再Th能源波动性与电网稳定性的根本性矛盾催Th储能需求 (12) (3)发电侧与输配电侧储能的本质作用基本相同,未来5 年需求约131GWh (16) 2、多因素作用推动用电侧储能快速发展,未来5 年需求约93GWh (18) (1)欧美主要国家用电成本高昂,分布式光伏系统快速发展为储能提供市场基础18 (2)上网补贴(FIT)和净计量(NEM)政策到期或削减,分布式搭配储能有望得到推广19 (3)部分国家电力供应稳定性较差,不同规模的停电事件时有发Th,储能接受度提升19 (4)2010-2019 年锂电池价格下降87%,带动系统成本快速下降,储能经济性逐渐显现 (21) (5)未来5 年用电侧的储能系统需求约93GWh,年均复合增速95% (21) 3、5G 基站建设周期带动后备电源需求大幅提升 (22) (1)5G 建设加速,2019-2028 年宏基站需求近500 万个 (22) (2)5G 基站功耗大幅提升2.5-4 倍,带动后备电源扩容需求大幅增加 (23) (3)磷酸铁锂电池成为5G 基站后备电源的主流技术路线 (24) (4)未来5 年5G 基站的储能系统需求近35GWh (25) 4、汽车电动化转型加速,光储充模式有望推广 (26) (1)汽车电动化转型加速,未来5 年充电设施有望新增约440 万台 (26) (2)光储充一体化充电站模式有望推广,未来5 年国内储能系统需求约6.8GWh .27

相关文档
相关文档 最新文档