文档库 最新最全的文档下载
当前位置:文档库 › 发光材料习题

发光材料习题

发光材料习题
发光材料习题

1.发光物质: 适当的材料吸收高能辐射,接着就发出光,其发射出的光子的能量比激发辐射的能量低,具有这种发光行为的物质就称为发光物质。

2.色心: 色心是指在原来透明的晶体中产生光学吸收带的类原子缺陷或者电子缺陷。或者解释为:透明晶体中由点缺陷、点缺陷对或点缺陷群捕获电子或空穴而构成的一种可导致可见光谱区的光吸收的缺陷。

3.量子效率: 发射的荧光光子数量与被吸收的激发光子数量的比值。

4流明效率: 是指发光材料发射的光通量(以流明为单位)与激发时输入的电功率或者吸收的其它形式能量总功率之比值。通常用用流明效率来表示荧光灯的发光效率。

5.量子化:物质吸收或发射能量是不连续的,能量只能取某一基本量的整数倍。

6.拉普拉斯算符:

7光谱项:2s+1L成为光谱项,左上角2s+1成为光谱多成性。

8.荧光探针:某荧光标记基团在激发光刺激下生成某波长的发射光,当另一屏蔽基团与其距离合适时,原发射光将会被屏蔽基团所吸收,并转化为其他波长的发射光或热能,称之为荧光探针。

9.能量传输:就是指发光中心受到外界激发后到产生发射以前的这一段过程中,激发能在基质晶格内传输的现象。

10.三基色:红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。

11.热释光(TL)剂量计的原理: 热释光剂量计是利用热致发光原理记录累积辐射剂量的一种器件。热释光剂量计将接收照射的这种剂量计加热,并用光电倍增管测量热释光输出,即可读出辐射剂量值。优点是即使搁置很长时间后,其读数衰减很少。此外,可制成各种形状的胶片佩章,以供个人剂量监测使用。

12.上转换材料:上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换成可见光的材料。

13.长余辉材料:在阳光和紫外线照射停止后仍能发光,并具有较长余辉时间的材料。14.激发光谱:激发光谱指发光材料在不同波长光的激发下,该材料的某一发光谱线与谱带的强度或发光效率与激发光波长的关系。

15.发射光谱:发射光谱是记录在某一特定波长光的激发下,发光材料所发射的不同光的强度或能量分布。

16.余辉:余辉是一种停止激发后仍然可以长时间观察到的发光现象。

17.热释发光:热释发光是固体被加热时表现出的一种发光现象。

简答题:

1.发光的机理分类。

答:光致发光;阴极射线发光;电致发光;摩擦发光;X射线发光;化学发光。

2.发光物质中发挥重要作用的几个物理过程

答:激活剂吸收激发光的能量变为激发态,然后又回到基态并发出光。

3.用于表征荧光材料发光特征的几个物理量。

答:亮度,光强度,照度,光通量

4.Y2O3:Eu3+的吸收光谱,请分析该图谱的特征,并分析光吸收的机理。

5.固态基质中能量的传递与输运的四种主要途径:

答:再吸收;共振传递;载流子传递;激子能量传递。

6.三基色荧光粉中,发蓝光的材料的光谱特征是什么?常见的粉体有哪几种?

答:Eu2+(4f7),具有5d到4f发射,在长波紫外光区到黄光区的变化。它的发射能级寿命为1微秒左右,原因是发射能级含有自旋八重态和六重态,而基态能级(4f7的8S)是八重态,因此自旋旋律降低了光跃迁速率。基质晶格是影响Eu2+发射颜色的决定因素。

常见粉体有BaMgAl10O17:Eu2+、Sr(PO4)Cl:Eu2+和Sr2Al6O11:Eu2+。

7 . 用于增感屏的X射线应满足哪些要求?

答:对X射线较有较高的吸收效率;密度高;将X射线转换为光的效率高;其发射光谱应能够覆盖胶片灵敏度范围(实际上为绿色或蓝色);稳定性好以及具有可以接受的价格。8.致电离(电磁的)辐射与凝聚态物质之间的相互作用共有三种方式,并绘图表示γ射线与凝聚态物质之间相互作用的几种主要类型的相对重要性。

答:○1:康普顿效应○2光电效应○3电子偶的产生

9:激光介质材料中,固体基质应该具备哪些性质?

答(1)能够与镧系元素很好地结合,使之均匀掺杂;

(2)良好的光学性能;

(3)具有可满足激发和激光波长的透明性;

(4)良好的硬度可满足激光操作的要求;

(5)良好的耐激光击穿损伤性能;

(6)在高重复率或连续操作的情况下,具有良好的热传导性和小的应力光学系数。

10:以Ca5(PO4)3F:Sb3+,Mn2+为例,分析材料的能量吸收、转移和发射过程。

Ca5(PO4)3F:Sb3+,Mn2+,其中Sb3+吸收紫外辐射,而不吸收紫外辐射。在紫外光的照射下,发出的光不包括发出的蓝色光和发出的黄色光。由于并不直接被激发,因此激发能量应由转移到(如下图)。发光过程如下所示:

11:位形坐标图中,各条曲线以及曲线上各点的物理意义。

11图12图

12.半导体中的发射跃迁示意图,1—6过程的涵义。

13.绘制低压荧光灯的剖面图,并解释该器件的发光与照明的机理。

14:正电子放射断层扫描摄影技术(PET)的医学成像原理。

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

发光材料

发光材料 连新宇豆岁阳董江涛陈阳郭欣高玮婧 北京交通大学材料化学专业100044 摘要:本文简要介绍了发光材料的发光机理,并根据机理分类介绍了几种典型的发光材料。补充介绍了新型发光材料并对发光材料的现状进行了介绍对其应用和发展前景做了展望。 关键词:发光材料分类新型展望 1 引言 发光材料已成为人们日常生活中不可缺少的材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示器、X射线透射仪等。目前发光材料主要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。最近,有机材料在电致发光上获得了重要应用。[1] 2 发光材料 发光是一种物体把吸收的能量,不经过热的阶段,直接转换为特征辐射的现象。发光现象广泛存在于各种材料中,在半导体、绝缘体、有机物和生物中都有不同形式的发光。 发光材料分为有机和无机两大类。通常把能在可见光和紫外光谱区发光的无机晶体称为晶态磷光体,而将粉末状的发光材料称为荧光粉。[2] 常用的发光材料按激发方式分为: (1) 光致发光材料,由紫外光、可见光以及红外光激发而发光,按照发光性能、应用范 围的不同,又分为长余辉发光材料、灯用发光材料和多光子发光材料。 (2) 阴极射线发光材料,由电子束流激发而发光的材料,又称电子束激发发光材料。 (3) 电致发光材料,由电场激发而发光的材料,又称为场致发光材料。 (4) X射线发光材料,由X射线辐射而发光的材料。 (5) 化学发光材料,两种或两种以上的化学物质之间的化学反应而引起发光的材料。 (6) 放射性发光材料,用天然或人造放射性物质辐照而发光的材料。 2.1光致发光材料 2.1.1光致发光材料的定义 发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。光致发光材料一个主要的应用领域是照明光源,包括低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一个重要的应用领域是等离子体显示。

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

发光材料

发光材料 发光与发光材料的定义 什么是发光: 1、当某种物质受到激发(射线、高能粒子、电子束、外电场等)后,物质将处于激发态,激发态的能量会通过光或热的形式释放出来。如果这部分的能量是位于可见、紫外或是近红外的电磁辐射,此过程称之为发光过程。 2、发光就是物质在热辐射之外以光的形式发射出多余的能量,这种发射过程具有一定的持续时间。 什么是发光材料: 能够实现上述过程的物质叫做发光材料。物质内部以某种方式吸收能量,将其转化成光辐射(非平衡辐射)的过程称为发光;在实际应用中,将受外界激发而发光的固体称为发光材料。它们可以粉末、单晶、薄膜或非晶体等形态使用,主要组分是稀土金属的化合物和半导体材料,与有色金属关系很密切。 高纯稀土氧化物Y2O3、Eu2O3、Gd2O3、La2O3、Tb4O7等制成的各种荧光体,广泛应用于彩色电视机、彩色和黑白大屏幕投影电视、航空显示器、X射线增感屏,以及用于制作超短余辉材料、各种灯用荧光粉等。 半导体发光材料有ZnS、CdS、ZnSe和GaP、GaAs1-xPx、GaAlAs、GaN等。主要用于制造各色大中型数字符号、图案显示器、数字显示钟、X 射线图像增强屏和长寿命各色发光二极管、数码管等。可见光发光二极管,因显示响应速度快而广泛应用于仪表、计算机,年产量成倍增长,不断取代其他显示器件

固体能带基本理论 固体中的光学跃迁 固体发光材料基本知识 发光的表征 光致发光材料的应用 1.反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。 2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。 荧光材料分无机荧光材料和有机荧光材料。 无机发光材料 无机荧光材料的代表为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物中心离子的窄带发射有利于全色显示,且物理化学性质稳定。由于稀土离子具有丰富的能级和 4f 电子跃迁特性,使稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。目前, 常见的无机荧光材料是以碱土金属的硫化物(如 ZnS、CaS)铝酸盐(SrAl2O4, CaAl2O4, BaAl2O4)等作为发光基质,以稀土镧系元素[铕(Eu) 、钐( Sm) 、铒(Er) 、钕(Nd)等] 作为激活剂和助激活剂。 无机荧光体的传统制备方法是高温固相法,但随着新技术的快速更新,发光材料性能指标的提高需要克服经典合成方法所固有的缺陷,一些新的方法应运而生,如燃烧法、溶胶—凝胶法[、水热沉淀法、微波法等。 有机发光材料 在发光领域中,有机材料的研究日益受到人们的重视。因为有机化合物的种类繁多,可调性好,色彩丰富,色纯度高,分子设计相对比较灵活。根据不同的分子结构,有机发光材料可分为:(1) 有机小分子发光材料;(2) 有机高分子发光材料;(3) 有机配合物发光材料。这些发光材料无论在发光机理、物理化学性能上,还是在应用上都有各自的特点。 有机小分子发光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性 本论文研究了Cu~+对ZnS:Cu电致发光材料发光特性的影响;讨论了晶体生长过程中灼烧温度、助熔剂的作用及对发光材料结构、粒度、发光特性的影响;采取相变技术和采用掺入两种激活剂的方法较大地提高了粉末电致发光材料的发光性能。研究表明,随着Cu+掺入量的增加,材料发光亮度随之增加,Cu+掺入浓度为0.15%时,发光材料的亮度达到最大,但发光亮度并不会随着Cu+掺杂浓度的增加一直增大。同时借助光致发光光谱进一步研究了ZnS:Cu的发光机理及发光特性,Cu+浓度小于0.15%时,光致发光光谱的峰值随Cu+浓度增加而逐渐增大,当Cu+浓度为0.15%时,光致发光光谱的峰值达到最大, Cu+浓度大于0.15%时,光致发光光谱的峰值开始迅速下降。通过改变灼烧温度及灼烧气氛达到改变晶体粒度的大小,随着焙烧温度的提高,ZnS:Cu的平均粒度增大,在800℃到1250℃之间可以获得平均粒度在5/μm-22/μm的发光材料,发光材料的亮度也呈增大的趋势。虽然助熔剂Br-、Cl-的加入对发光材料的粒度影响较小,但Br-、C1-起电荷补偿作用,可增加Cu+在晶体中的溶解度。我们采用晶体相变技术,获得了以立方相结构为主、结晶好、亮度高的绿色发光材料。本文提出在ZnS基质材料中同时掺入Cu+、Au+两种激活剂,通过改变掺杂比例来探索提高粉末电致发光材料发光性能的方法,在ZnS晶体中它们以一价阳离子形式进入ZnS晶格中,形成更多的发光中心。通过在基质ZnS材料中掺入Cu+和Au+两种不同浓度的激活剂,在不影响材料颜色的前提下,较大地提高了电致发光材料的亮度。论文的完成对改善绿色交流粉末电致发光材料ZnS:Cu的发光特性,获得优质的ZnS:Cu绿色发光材料及拓宽材料的应用领域有着重要的经济和现实意义。 同主题文章 [1]. Aron ,Vecht ,朱自熙. 八十年代粉末电致发光(EL)技术' [J]. 发光学报. 1981.(03) [2]. 近期外文资料索引' [J]. 液晶与显示. 1986.(06) [3]. 周连祥. 一种研究粉末电致发光(EL)器件频率特性的新方法' [J]. 发光学报. 1992.(01) [4]. 王金忠,杜国同,王新强,闫玮,马燕,姜秀英,杨树人,高鼎 三,Chang ,R ,P ,H. 退火对ZnO薄膜结构及发光特性的影响' [J]. 光学学报. 2002.(02) [5]. 谢伦军,陈光德,竹有章,汪,屿. ZnO薄膜表面和边缘的发光特性(英文)' [J]. 发光学报. 2006.(06)

上转换发光材料

上转换发光材料 上转换发光的概念: 上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展: 早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。 80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。 上转换发光的机理:

有机电致发光材料研究现状

<有机化学进展>结课论文 题目:有机电致发光材料的研究现状 院系: 专业: 班级: 学号: 姓名:

有机电致发光材料的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:小分子有机电致发光有机高分子聚合物电致发光 Research and development of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 一、发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

发光地功能化MOF材料

发光的功能化MOF材料 1.简介 金属-有机框架(MOFs)是近二十年来被学术界广泛关注的一种多孔材料[1-3],这种材料是利用有机配体与金属离子间的金属-配体配位作用而自组装形成的超分子网络结构。在MOFs 发展的早期,美国加州大学伯克利分校的O. M. Yaghi 教授、日本京都大学的S. Kitagawa 教授和美国北卡大学教堂山分校的Wenbin Lin 教授等分别对其做了更为详细的定义[4-6],通过归纳总结具体定义如下:MOFs 作为一类稳定的、可设计的、晶态的类沸石材料需具备以下条件:(1)通过配位键形成稳定结构;(2)通过设计变换有机配体(linker)和金属次级构筑单元(SBU)类型可以调控材料的空间结构;(3)具有良好的结晶性因而可精确定义其配位结构及空间构型。顾名思义,微孔金属-有机框架(MOFs)指框架中具有一定的被游离溶剂分子填充的孔道(孔径在 2 nm 以内)并能通过后续处理方法将孔道中客体分子除去而不影响框架结构的多孔材料。 MOF材料由于具有网状结构、均一孔道、孔径可调且具有巨大比表面积,以及独特的光、电、磁等性质引起了研究者的广泛关注。与传统发光材料相比,MOF发光材料具有不可比拟的优势,这些优势主要体现在它的组成、合成和性质上。 (1)组成方面 传统的发光材料,组成成分或者是有机化合物或者是无机化合物,所以其发光形式单一。而金属有机骨架是由金属离子与有机配体配位构筑而成的材料,兼具了有机材料与无机材料两种性能,从而增加了发光形式的多样性。同时易于引入功能化的组成成分,可以将发光性质、磁学特性、电学特性、催化特性等各种功能都整合到同一个MOFs材料中来实现MOFs结构的多功能设计,从而拓宽其应用范围。 (2)合成方面 无机发光材料在生产上采用的方法仍能是高温固相法。这种方法需要很高的锻烧温度,甚至高达几千摄氏度,并且保温时间比较长(24小时以上),对设备要

夜光发光材料

夜光发光材料Glow in the Dark Material 一、发光形式: 夜光材料可于黑暗处自动发光的材料,主要成分为稀土,属于无机类颜料。 长效夜光发光颜料先吸收各种光和热,转换成光能储存,然后在黑暗中自动发光,通过吸收各种可见光实现发光功能,该品不含放射性元素,并可无限次数循环使用,,尤其对450纳米以下的短波可见光、阳光和紫外线光(UV光)具有很强的吸收能力。 二、基本型态: 长效夜光粉有长效型6色,普通型 1 色,可添加各色荧光剂调色,各色夜光粉可相互混合调色。 三、应用参考颜色: 黄绿光,蓝绿光,天蓝光、紫光、白光、红光、可利用荧光颜料、染料,调整发光前后的颜色,荧光剂添加比例约为夜光粉的的 1%~5%,也可使用一般染、颜料调色,但会减低发光效果。 四、产品特性: ●长效型夜光粉,余辉发光时间比普通型夜光粉多10倍以上,耐候性好 ,户内、户外都可使用。 ●长效型夜光粉仗用的主要禁忌有三: 1. 避免与水份接触。 2. 避免与金属直接接触。 3. 避免高温直接摩擦,普通型夜光粉则无此禁忌。 ●长效型夜光粉比重为3.6,材料为稀土元素,材料本身无毒无害,不含 放射性物质,吸光时间长,放光时间也长。 ●普通型夜光粉比重为 4.1,材料为硫化锌:铜(ZnS:Cu),吸光和放光时 间较短。 ●夜光粉可适用于显示夜间物体、钟表、电话按键、按钮、野外仪器或 指示器、收音机、照相机、电影院座位号码、交通指示牌、一般饰品 、服装制品、电源开关、钓鱼器具、建筑装潢,消防紧急逃生系统辨 识、军事设备、运输工具使用……等等。 五、在涂料与网印油墨应用注意事项: ●使用中性或弱碱性透明树脂。

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

发光材料与LED综述

功能材料课报告 发光材料与LED 摘要:发光材料是一种功能材料,广泛应用于我们日常生活中,例如电视机、日光灯、发光二极管等。本文就应用于LED的两种发光方式,光致发光和电致发光,作了简单的介绍和说明,并着重介绍了LED的原理、发展历史、优点以及应用。在未来的几十年里,发光材料将继续快速向前发展,给我们的生活带来更大的变化。 关键词:发光材料;光致发光;电致发光;LED

功能材料是指通过光、电、磁、热、化学、生化等作用后具有特定功能的材料。随着时代的发展,人类将进入一个信息时代。为了解决生产告诉发展以及由此所产生的能源、环境等等一系列问题,更需要用高科技的方法和手段来生产新型的、功能性的产品,以获得各种优良的综合性能。近年来新型功能材料层出不穷,得到了突破性的进展,功能材料正在渗透到现代生活和生产的各个领域。 本文所论述的发光材料即为在不同的能量激发方式下可以发出不同波长的可见光的一种功能材料。 一.概述 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态,在返回到基态的过程中以光的形式放出能量。热辐射发光最常见的例子是太阳和白炽灯,而后一种发光方式应用也很广泛,比如阴极射线管、日光灯、发光二极管等,如图1。 图1 两种发光方式的典型例子:白炽灯和日光灯 按照激发能量方式的不同,发光材料的分类如下: 1.紫外光、可见光以及红外光激发而发光的为光致发光材料; 2.电子束流激发而发光的为阴极射线发光材料; 3.电场激发而发光的为电致发光材料; 4.X射线辐射而发光的为X射线发光材料; 5.用天然或人造放射性物质辐射而发光的为放射性发光材料。

常见发光材料

一.常见发光种类 光致发光 灯用材料 日光灯,节能灯,黑光灯,高压汞灯,低压汞灯,LED转换组合白光 长余辉材料 放射性永久发光,超长余辉,长余辉 紫外发光材料 长波3650发光,短波2537发光,真空紫外发光,量子点发光…… 红外线发光材料 上转换发光,红外释光,热释发光, 多光子材料 荧光染料\颜料 稀土荧光,有机荧光 电致发光 高场发光 直流粉末DCEL,交流粉末ACEL,薄膜发光,厚膜发光,有机发光 低场发光 发光二极管(LED),有机发光(OEL-OLED),硅基发光,半导体激光 阴极射线发光 彩色电视发光材料 黑白电视发光材料 像素管材料 低压荧光材料 超短余辉材料 放射线发光 α射线发光材料,β射线发光材料,γ射线发光材料,氚放射发光材料,闪烁晶体材料 X射线发光 X存储发光材料 X增感发光材料 CT扫描发光材料 摩擦发光 单晶发光,微晶发光 化学发光 有机化合物发光(荧光染料) 液体发光 有机稀土发光 生物发光 酶发光,有机发光, 反射发光(几何光学) 光学镀膜反射材料,玻璃微珠反射材料 二.常见发光材料成份 物质发光过程有激励、能量传输和发光三个过程。激励方式主要有电子束激发,光激发和电场激发。电子束激发有阴极射线(CRT)发光材料,真空荧光(VFD)材料,场发射(FED)显示材料;光激发有荧光灯用发光材料,等离子显示(PDP)发光材料,X射线激发光材料等;电场激发有电致发光(EL)材料,发光二极管(LED)材料。 1 .阴极射线(CRT)稀土发光材料

表1 阴极射线稀土发光材料 组份发光色余辉用途 Y2O2S:Eu3+ 红 M 彩电,终端显示 Y2O2S:Eu3+ 红 M 投影电视 Y3(Al,Ga)5O12:Tb3+ 绿 M 投影电视 Y2SiO5:Tb3+ 绿 M 投影电视 InBO3:Tb3+ 绿 M 终端显示 InBO3:Eu3+ 红 M 终端显示 Y2SiO5:Ce3+ 415nm S 束电子引示管 (Beam index tube) Y3Al3Ga2O12:Ce3+ 520nm S 束电子引示管 (Beam index tube) YAlO3:Ce3+ 370nm S 束电子引示管 (Beam index tube) Y3Al5O12:Ce3+ 535nm S 飞点扫描管 2 .真空荧光显示(VFD)稀土发光材料 VFD用稀土发光材料较少,效率也不高,如SnO2:Eu3+, Y2O2S:Eu3+,很少使用。 3. 场发射显示(FED)稀土发光材料 FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度(寻址时间)非常快,而功耗仅是LCD的1/3,其应用前景令人关注。FED稀土发光材料如表2所示。 表2 FED稀土发光材料 组成颜色发光效率 SrTiO3:Pr 红 0.4 Y2O3:Eu 红 0.7 Y2O2S:Eu 红 0.57 Y3(Al,Ga)5O12:Tb 绿 0.7 Y2SiO5:Tb 绿 1.1 SrGa2S4:Eu[1] 绿 4.0 ZnS:Cu,Al 绿 2.6 Y2SiO5:Ce 兰 0.4 SrGa2S4:Ce[1] 兰 1.5 ZnS:Ag,Cl 兰 0.75 4 .灯用稀土发光材料 使用稀土三基色荧光粉的节能灯流明效率高,显色性好,是欧美、日和我国大力推广的绿色照明。灯用稀土发光材料如表3所示。 表3 灯用稀土发光材料 组成颜色用途 Y2O3:Eu 红节能灯 Y(V,P)O4:Eu 红高压汞灯 MgAl11O19:Ce,Tb 绿节能灯 LaPO4:Ce,Tb 绿节能灯 GdMgB5O10:Ce,Tb 绿节能灯 BaMgAl10O17:Eu,Mn 兰绿节能灯

量子点发光材料简介

量子点发光材料综述 1.1 量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm 左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2 量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又称为宏观量子隧道效应[6][7]。 1.2.4 介电限域效应

长余辉发光材料概述

长余辉发光材料概述 摘要 本文综述了长余辉材料的发光机理及制备方法,并简单介绍了硫化物长余辉发光材料、铝酸盐长余辉发光材料及硅酸盐长余辉发光材料。 关键词:长余辉;发光材料 1.长余辉发光材料简介 长余辉发光材料简称长余辉材料,又称夜光材料、蓄光材料。它是一类吸收太阳光或人工光源所产生的光的能量后,将部分能量储存起来,然后缓慢地把储存的能量以可见光的形式释放出来,在光源撤除后仍然可以长时间发出可见光的物质[1]。 2.长余辉发光材料的基本机理 长余辉材料被激发以后,能长时间持续发光,其关键在于有适当深度的陷阱能态(即能量存储器)。光激发时产生的自由电子(或自由空穴)落入陷阱中储存起来,激发停止后,靠常温下的热扰动而释放出被俘的陷阱电子(或陷阱空穴)与发光中心复合产生余辉光。随着陷阱逐渐被腾空,余辉光也逐渐衰减至消失。而陷阱态来源于晶体的结构缺陷,换言之,寻求最佳的晶体缺陷以形成最佳陷阱(种类、深度、浓度等)是获得长余辉的主要因素。余辉时间的长短决定于陷阱深度与余辉强度,余辉光的强度依赖于陷阱浓度、容量与释放电子(或空穴)的速率。而晶体缺陷的产生除了材料制备过程中自然形成的结构缺陷外,主要是掺杂。 长余辉发光机理实际是发光中心与缺陷中心间如何进行能量传递的过程,具体的长余辉材料有不同的发光模型,但最流行的是两类:一是载流子传输;二是隧穿效应。前者包含电子传输、空穴传输和电子空穴共传输,后者包括激发、能量存储与热激励产生发射的全程隧穿和仅是“热激励”发射的半程隧穿。除这两类外,学术界还有学者提出位形坐标[2]、能量传递、双光子吸收和Vk传输模型。至今为止,上述模型都是根据已有的实验结果提出的假设,可以解释一定的实验现象,但缺乏足够的论据,也存在若干不确定因素,难以让人信服,而发光机理的研究又是为新材料设计提供物理依据所必须的,有待进一步深入。

发光材料综述

结构与物性结课作业 发 光 材 料 综 述 学院:物理与电子工程学院 专业:材料物理13-01 学号:541311020102 姓名:陈强

发光材料综述 摘要: 能够以某种方式吸收能量,将其转化成光辐射(非平衡辐射)物质叫做发光材料。发光是辐射能量以可见光的形式出现。辐射或任何其他形式的能量激发电子从价带进入导带,当其返回到价带时便发射出光子(能量为 1.8~3.1eV)。如果这些光子的波长在可见光范围内,那么,便产生了发光现象。 0引言 发光材料是国家重要战略能源,在人们的日常生活中也占据着重要地位,被广泛应用于各个领域,因此对发光材料的研制和运用受到越来越多的关注。 本文基于发光材料研究现状,分析发光材料种类和制备方式,并介绍几种不同发光材料在生活中的应用,以期推动我国发光材料研究探索,为国家建设和人们生活水平提高提供助力。发光材料是人类生活重要材料之一,在航天科技、海洋运输、医学医疗、出版印刷等各个领域被广泛应用,具有极为重要的战略地位。 随着科学技术的发展,发光材料研究已经成为了我国科学界广泛关注的焦点,其运用技术直接关系到人们日常生活质量和国防建设,因此如何推动发光材料研制,将其更加安全、合理、高效的应用于生产生活中,成为了亟待解决的问题。 1发光材料分类 发光材料按激发的方式可分为以下几类: 1.1光致发光材料 用紫外、可见及红外光激发发光材料而产生的发光称为光致发光,该发光材料称为光致发光材料。 光致发光过程分为三步:①吸收一个光子;②把激光能转移到荧光中心;③

由荧光中心发射辐射。 发光的滞后时间约为10-8s的称为荧光,衰减时间大于10-8s的称为磷光。 光致发光材料一般可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料。 按发光驰豫时间分类,光致发光材料分为荧光材料和磷光材料。 图1 1.2电致发光材料 所谓电致发光是在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象,又称场致发光。这种发光材料称为电致发光材料,或称场致发光材料。 1. 本征式场致发光 简单地说,本征式场致发光就是用电场直接激励电子,电场反向后电子与中心复合而发光的现象。 2. 注入式发光 注人式场致发光是由Ⅱ- Ⅳ族和Ⅲ - Ⅴ族化合物所制成的有 p - n 结的二极管,注人载流子,然后在正向电压下,电子和空穴分别由 n 区和 p 区注人到结区并相互复合而发光的现象。又称p-n结电致发光 目前大概可以有以下几种材料: 1.2.1直流电压激发下的粉末态发光材料 目前常用的直流电致发光材料有Zn S:Mn,Cu,其发光亮度大约为350 cd/m。

上转换发光材料综述

Upconversion DOI:10.1002/anie.201005159 Upconverting Nanoparticles Markus Haase and Helmut Sch?fer* Angewandte Chemie Keywords: doping ·nanoparticles ·nonlinear optics ·photon upconversion ·surface chemistry 5808 https://www.wendangku.net/doc/f03101451.html, 2011Wiley-VCH Verlag GmbH &Co.KGaA,Weinheim Angew.Chem.Int.Ed.2011,50,5808–5829

1.Introduction In linear optics it is assumed that optical properties are independent of the intensity of the incident light.The expression “nonlinear optics”is usually used to describe all other phenomena for which the optical properties of the material depend on the radiant flux density of the exciting light.Nonlinear optics,an integral part of contemporary optics,is based on a number of nonlinear phenomena and processes.Photon upconversion (UC)is one such phenom-enon and is characterized by the conversion of long-wave-length radiation,for instance infrared or near infrared (NIR)radiation,to short-wavelength radiation,usually in the visible range.The upconversion process proceeds by different mechanisms,which are summarized and discussed in detail in several review articles [1–3]and can be roughly divided into three classes:APTE effect (for addition de photon par transferts d ’energie),later also named ETU for energy-transfer upconversion,[4,5]excited-state absorption (ESA),and photon avalanche (PA).It is worth mentioning that the expression “upconversion”is sometimes used to describe the consequence of these mechanisms,that is,the conversion from long-wavelength to short-wavelength radiation,and sometimes for a specific mechanism itself. All three mechanisms are based on the sequential absorption of two or more photons by metastable,long-lived energy states.This sequential absorption leads to the population of a highly excited state from which upconversion emission occurs.In the case of ESA,the emitting ions sequentially absorb at least two photons of suitable energy to reach the emitting level (Figure 1).In ETU,one photon is absorbed by the ion,but subsequent energy transfer from neighboring ions results in the population of a highly excited state of the emitting ion (Figure 1).Energy-transfer steps between two ions,both in excited states,leading to emission lines at short wavelength were first mentioned by Auzel in 1966.[6,7] ETU and ESA should not be confused with two other nonlinear optical processes,simultaneous two-photon absorp-tion (STPA)[1,8–10]and second-harmonic generation (SHG),which is efficient if coherent excitation sources with suffi-ciently high power are used.[11–14]Several early reviews focused on the synthesis and application of upconversion phosphors.[4,5,15,16] Important requirements for photon upconversion,such as long lifetimes of the excited states and a ladder-like arrange-ment of the energy levels with similar spacings,are realized for certain ions of the d and f elements.A large number of suitable hosts doped with transition-metal ions (3d,4d,5d)have been reported to show upconversion,for example Ti 2+-,[17,18]Ni 2+-,[19–22]Mo 3+-,[23,24]Re 4+-,[23,25,26]or Os 4+-doped solids.[27–30]Actinide-doped materials have also been inves-U pconversion (UC)refers to nonlinear optical processes in which the sequential absorption of two or more photons leads to the emission of light at shorter wavelength than the excitation wavelength (anti-Stokes type emission).In contrast to other emission processes based on multiphoton absorption,upconversion can be efficiently excited even at low excitation densities.The most efficient UC mechanisms are present in solid-state materials doped with rare-earth ions.The development of nanocrystal research has evoked increasing interest in the development of synthesis routes which allow the synthesis of highly efficient,small UC particles with narrow size distribution able to form transparent solutions in a wide range of solvents.Meanwhile,high-quality UC nanocrystals can be routinely synthesized and their solu-bility,particle size,crystallographic phase,optical properties and shape can be controlled.In recent years,these particles have been discussed as promising alternatives to organic fluorophosphors and quantum dots in the field of medical imaging. From the Contents 1.Introduction 5809 2.Selection of Suitable Dopants and Host Materials 5810 3.Synthesis,Growth,and Properties of Rare-Earth-Doped Nanocrystals 58124.Surface Functionalization by Modification of the Ligand Shell and the Particle Surface 58205.Application of Upconversion Nanocrystals 58206.Conclusions and Outlook 5822 Figure 1.UC processes for lanthanide-doped crystals:a)excited-state absorption,b)energy-transfer upconversion.d :photon excitation,a :energy transfer,c :emission.Reproduced from reference [47]by permission of The Royal Society of Chemistry. [*]Prof.Dr.M.Haase,Dr.H.Sch?fer Inorganic Chemistry I,University of Osnabrück Barbarastrasse 7,49069Osnabrück (Deutschland)E-mail:helmut.schaefer@uos.de 5809 Angew.Chem.Int.Ed.2011,50,5808–5829 2011Wiley-VCH Verlag GmbH &Co.KGaA, Weinheim

相关文档