文档库 最新最全的文档下载
当前位置:文档库 › 神经网络例子

神经网络例子

神经网络例子
神经网络例子

神经网络

1.单层感知器

数据分类

输出为0和1

解决线性可分的分类模型

例1.从待分类的数据中取出一部分数据及其对应的类别作为样本数据,设计并训练一个能对分类数据进行分类的单层感知器神经网络

代码:

%给定训练样本数据

P=[-.4 -.5 .6;.9 0 .1];

%给定样本数据所对应的类别,用0和1来表示两种类别

T=[1 1 0];

%创建一个有两个输入、样本数据的取值范围都在[-1 1]之间,并且网络只有一个神经元的感知器神经网络

net=newp([-1 1;-1 1],1);

%设置网络的最大训练次数为20次

net.trainParam.epochs=20;

%使用训练函数对创建的网络进行训练

net=train(net,P,T);

%对训练后的网络进行仿真

Y=sim(net,P)

%计算网络的平均绝对误差,表示网络错误分类

E1=mae(Y-T)

%给定测试数据,检测训练好的神经网络的性能

Q=[0.6 0.9 -0.1;-0.1 -0.5 0.5];

%使用测试数据,对网络进行仿真,仿真输出即为分类的结果

Y1=sim(net,Q)

%创建一个新的绘图窗口

figure;

%在坐标中绘制测试数据点,并根据数据所对应的类别用约定的符号画出

plotpv(Q,Y1);

%在坐标中绘制分类线

plotpc(net.iw{1},net.b{1})

2.线性神经网络模型

线性神经网络类似感知器,但是线性神经网络的激活函数是线性的,而不是硬线转移函数,因此,线性神经网络的输出可以是任意值,而感知器的输出不是0就是1,线性神经网络网络和感知器一样只能解决线性可分的问题.

例2.要求设计一个线性神经网络,寻找给定数据之间的线性关系

代码:

P=[1.1 -1.3];

T=[0.6 1];

%创建一个只有一个输出,输入延迟为0,学习速率为0.01的线性神经网络,minmax(P)表示样本数据的取值范围

net=newlin(minmax(P),1,0,0.01);

%对创建的神经网络进行初始化,设置权值和阈值的初始值

net=init(net);

net.trainParam.epochs=500;

%设置网络训练后的目标误差为0.0001

net.trainParam.goal=0.0001;

net=train(net,P,T);

y=sim(net,P)

%求解网络的均方误差值

E=mse(y-T)

3.BP神经网络

预测

能逼近任意非线性函数

例3.表2-4为某药品的销售情况,现构建一个如下的BP神经网络对药品的销售进行预测:输入层为三个结点,隐含层结点数为5,隐含层的激活函数为tansig(双曲正切S型传递函数);输出层结点数为1,输出层的激活函数为logsig(S型的对数函数),并利用此网络对药品的销售量进行预测,预测的方法采用滚动预测方式,即用前三个月的销售量来预测第四个月的销售量,如用1、2、3月的销售量为输入预测第4个月的销售量,用2、3、4月的销售

代码:

%以每三个月的销售量经归一化处理后作为输入

P=[0.5152 0.8173 1.000;

0.8173 1.000 0.7308;

1.000 0.7308 0.1390;

0.7308 0.1390 0.1087;

0.1390 0.1087 0.3520;

0.1087 0.3520 0.000]’;

%以第四个月的销售量归一化处理后作为目标向量

T=[0.7308 0.1390 0.1087 0.3520 0.000 0.3761];

%创建一个BP神经网络,每一个输入向量的取值范围为[0,1],隐含层为5个神经元,输出层有一个神经元,隐含层的激活函数为tansig,输出层的激活函数为logsig,训练函数为梯度下降函数

net=newff([0 1; 0 1; 0 1],[5 1],{‘tansig’,’logsig’},’traingd’);

net.trainParam.epochs=15000;

net.trainParam.goal=0.01;

%设置学习速率为0.1

LP.lr=0.1;

net=train(net,P,T)

4.RBF神经网络

属于前向神经网络,能够以任意精度逼近任意连续函数,特别适合于解决分类问题

例4.建立一个径向基神经网络,对非线性函数y=sqrt(x)进行逼近,并作出网络的逼近误差曲线

代码:

%输入从0开始变化到5,每次变化幅度为0.1

x=0:0.1:5;

y=sqrt(x);

%建立一个目标误差为0,径向基函数的分布密度为0.5,隐含层神经元个数的最大值为20,每增加5个神经元显示一次结果

net=newrb(x,y,0,0.5,20,5);

t=sim(net,x);

%在以输入x和函数值与网络输出之间的差值y-t坐标上绘出误差曲线,并用“*”来标记函数值与输出值之间的差值

plot(x,y-t,’*-’)

5.自组织竞争神经网络

属于前向神经网络,特别适合于解决模式分类和识别方面的问题

例5.人口分类是人口统计中的重要指标,现有1999年共10个地区的人口出生比例情况如下:

出生男性百分比分别为:0.5512 0.5123 0.5087 0.5001 0.6012 0.5298 0.5000 0.4965 0.5103

0.5003;

出生女性百分比分别为:0.4488 0.4877 0.4913 0.4999 0.3988 0.4702 0.5000 0.5035 0.4897

0.4997;

建立一个自组织神经网络对上述数据分类,给定某个地区的男女出生比例分别为:0.5,0.5,测试训练以后的自组织神经网络的性能,判断其属于哪个类别.

代码:

P=[0.5512 0.5123 0.5087 0.5001 0.6012 0.5298 0.5000 0.4965 0.5103 0.5003; 0.4488 0.4877

0.4913 0.4999 0.3988 0.4702 0.5000 0.5035 0.4897 0.4997];

%创建一个自组织神经网络,[0 1;0 1]表示输入数据的取值范围在[0 1]之间,[3 4]表示竞争层组织结构为3×4,其余参数取默认值

net=newsom([0 1;0 1], [3 4]);

net.trainParam.epochs=500;

net=init(net);

net=train(net,P);

y=sim(net,P);

%获取训练后的自组织神经网络的权值

w1=net.IW{1,1};

%绘出训练后自组织神经网络的权值分布图

plotsom(w1,https://www.wendangku.net/doc/fc3238886.html,yers{1}.distances);

%输入测试数据

p=[0.5;0.5];

%对网络进行测试

y_test=sim(net,p);

%将测试数据所得到的单值向量变换成下标向量

y_test=vec2ind(y_test)

6.学习向量量化(LVQ)神经网络

属于前向神经网络,在模式识别和优化领域有着广泛应用

例6.针对一组输入向量,设计一个LVQ神经网络,经过训练后,能对给定的数据进行模式识别.

代码:

%输入向量P及其对应的类别向量C

P=[-6 -4 -2 0 0 0 0 2 4 6;0 2 -2 1 2 -2 1 2 -2 0];

C=[1 1 1 2 2 2 2 1 1 1];

%将类别向量C转换为目标向量T

T=ind2vec(C);

%绘制输入向量P,用颜色将输入向量分为两类

Plotvec(P,C,’*r’) ;

axis([-8 8 -3 3])

%创建一个LVQ神经网络,隐含层有5个神经元,[0.6 0.4]表示在隐含层的权值中,有60%的列的第一行的值是1,40%的列的第一行值为1,也就是说60%的列属于第一类,40%属于第二类,网络的其他参数取默认值

net=newlvq(minmax(P),5,[0.6 0.4]);

net.trainParam.epoches=100;

net=train(net,P,T);

%给定数据,输出网络的分类结果测试网络的性能

p=[0 1;0.2 0];

y=sim(net,p);

yc=vec2ind(y)

%对给定数据,一个归为第二类,一个归为第一类

yc =

2 1

7.Elman神经网络

反馈神经网络,他是一种有非线性元件构成的反馈系统,其稳定状态的分析比属于前向神经网络要复杂得多

可解决旅行商问题(TSP)

例7.下表为某单位办公室七天上午9点到12点的空调负荷数据,数据已经做了归一化处理,预测方法采用前6天数据作为网络的训练样本,每3天的负荷数据作为输入向量,第4天的负荷作为目标向量,第7天的数据作为网络的测试数据

空调负荷数据表

代码:

%根据预测方法得到输入向量和目标向量

P=[0.4413 0.4707 0.6953 0.8133 0.4379 0.4677 0.6981 0.8002 0.4517

0.4725 0.7006 0.8201; 0.4379 0.4677 0.6981 0.8002 0.4517 0.4725

0.7006 0.8201 0.4557 0.4790 0.7019 0.8211; 0.4517 0.4725 0.7006

0.8201 0.4557 0.4790 0.7019 0.8211 0.4601 0.4811 0.7101 0.8298 ]';

T=[0.4557 0.4790 0.7019 0.8211;0.4601 0.4811 0.7101 0.8298;0.4612

0.4845 0.7188 0.8312]';

%输入向量的取值范围为[0 1],用threshold来标记

threshold=[0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1; 0 1];

%创建一个Elman神经网络,隐含层的神经元的个数为17个,4个输出层神经元,隐含层激活函数为tansig,输出层激活函数为purelin

net=newelm(threshold,[17,4],{'tansig','purelin'});

net.trainParam.epoches=3000;

net=init(net);

net=train(net,P,T);

%输入测试数据

P_test=[0.4557 0.4790 0.7019 0.8211 0.4601 0.4811 0.7101 0.8298 0.4612

0.4845 0.7188 0.8312]';

T_test=[0.4615 0.4891 0.7201 0.8330]';

y=sim(net,P_test)

%在测试数据下,计算网络的输出和实际目标向量之间的差值

Error=y-T_test;

%在坐标平面上画出差值曲线

Plot(1:4,error,'-')

8.基于遗传算法的BP神经网络

BP神经网络是人工神经网络中应用最广泛的

缺陷:学习收敛速度太慢;不能保证收敛到全局最小点;网络结构不易确定

(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据 y=anew'; 1、 BP 网络构建 (1)生成 BP 网络 net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。 [ S1 S2...SNl] :各层的神经元个数。 {TF 1 TF 2...TFNl } :各层的神经元传递函数。 BTF :训练用函数的名称。 (2)网络训练 [ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV ) (3)网络仿真 [Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ) {'tansig','purelin'},'trainrp' BP 网络的训练函数 训练方法 梯度下降法 有动量的梯度下降法 自适应 lr 梯度下降法 自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrp Fletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgp

人工神经网络Matlab实现代码

以下是用Matlab中的m语言编写的BP神经网络代码,实现的是一个正弦函数的拟合过程,包括了初始化、BP算法、绘制曲线等过程,可以将代码放到一个M文件中运行,以下是代码: defaultpoints=20; %%%%%%%%%隐含层节点数 inputpoints=1; %%%%%%%%%输入层节点数 outputpoints=1; %%%%%%%%%输出层节点数 Testerror=zeros(1,100);%%%%每个测试点的误差记录 a=zeros(1,inputpoints);%%%%输入层节点值 y=zeros(1,outputpoints);%%%样本节点输出值 w=zeros(inputpoints,defaultpoints);%%%%%输入层和隐含层权值 %初始化权重很重要,比如用rand函数初始化则效果非常不确定,不如用zeros初始化 v=zeros(defaultpoints,outputpoints);%%%%隐含层和输出层权值 bin=rand(1,defaultpoints);%%%%%隐含层输入 bout=rand(1,defaultpoints);%%%%隐含层输出 base1=0*ones(1,defaultpoints);%隐含层阈值,初始化为0 cin=rand(1,outputpoints);%%%%%%输出层输入 cout=rand(1,outputpoints);%%%%%输出层输出 base2=0*rand(1,outputpoints);%%输出层阈值 error=zeros(1,outputpoints);%%%拟合误差 errors=0;error_sum=0; %%%误差累加和 error_rate_cin=rand(defaultpoints,outputpoints);%%误差对输出层节点权值的导数 error_rate_bin=rand(inputpoints,defaultpoints);%%%误差对输入层节点权值的导数 alfa=0.5; %%%% alfa 是隐含层和输出层权值-误差变化率的系数,影响很大 belt=0.5; %%%% belt 是隐含层和输入层权值-误差变化率的系数,影响较小 gama=5; %%%% gama 是误差放大倍数,可以影响跟随速度和拟合精度,当gama大于2时误差变大,容易震荡 %%%%规律100个隐含节点,当alfa *gama =1.5时,效果好,其他值误差变大,belt基本不影响效果 %%%%规律200个隐含节点,当alfa *gama =0.7时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样 %%%%规律50个隐含节点,当alfa *gama =3时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样 trainingROUND=200;% 训练次数,有时训练几十次比训练几百次上千次效果要好很多sampleNUM=361; % 样本点数 x1=zeros(sampleNUM,inputpoints); %样本输入矩阵 y1=zeros(sampleNUM,outputpoints); %样本输出矩阵 x2=zeros(sampleNUM,inputpoints); %测试输入矩阵

BP神经网络的数据分类MATLAB源代码.doc

%%%清除空间 clc clear all ; close all ; %%%训练数据预测数据提取以及归一化 %%%下载四类数据 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ; data ( 501:1000 , : ) = data2 ( 1:500 , : ) ; data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ; data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ; %%%%%%从1到2000间的随机排序 k = rand ( 1 , 2000 ) ; [ m , n ] = sort ( k ) ; %%m为数值,n为标号

%%%%%%%%%%%输入输出数据 input = data ( : , 2:25 ) ; output1 = data ( : , 1) ; %%%%%%把输出从1维变到4维 for i = 1 : 1 :2000 switch output1( i ) case 1 output( i , :) = [ 1 0 0 0 ] ; case 2 output( i , :) = [ 0 1 0 0 ] ; case 3 output( i , :) = [ 0 0 1 0 ] ; case 4 output( i , :) = [ 0 0 0 1 ] ; end end %%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本 input_train = input ( n( 1:1500 , : ) )’ ; output_train = output ( n( 1:1500 , : ) )’ ; input_test = input ( n( 1501:2000 , : ) )’ ;

基于神经网络理论的系统安全评价模型

(神经网络,安全评价) 基于神经网络理论的系统安全评价模型 王三明 蒋军成 (南京化工大学,南京,210009) 摘要 本文阐述了人工神经网络基本原理,研究分析了BP神经网络模型的缺陷并提出了优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。 关键词 神经网络 网络优化 安全评价  1. 引言 人工神经网络模拟人的大脑活动,具有极强的非线形逼近、大规模并行处理、自训练学习、自组织和容错能力等优点,将神经网络理论应用于系统安全评价之中,能克服传统安全评价方法的一些缺陷,能快速、准确地得到安全评价结果。这将为企业安全生产管理与控制提供快捷和科学的决策信息,从而及时预测、控制事故,减少事故损失。   2. 神经网络理论及其典型网络模型 人工神经网络是由大量简单的基本元件-神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有人的大脑的记忆、辨识能力,完成各种信息处理功能。人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下,仍能保证稳定的输出。人工神经网络这种模拟人脑智力的特性,受到学术界的高度重视和广泛研究,已经成功地应用于众多领域,如模式识别、图象处理、语音识别、智能控制、虚拟现实、优化计算、人工智能等领域。 按照网络的拓扑结构和运行方式,神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。目前在模式识别中应用成熟较多的模型是前馈多层式网络中的BP反向传播模型,其模型结构如图1。 2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和

零基础入门深度学习(5) - 循环神经网络

[关闭] 零基础入门深度学习(5) - 循环神经网络 机器学习深度学习入门 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。 文章列表 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 零基础入门深度学习(3) - 神经网络和反向传播算法 零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络 往期回顾 在前面的文章系列文章中,我们介绍了全连接神经网络和卷积神经网络,以及它们的训练和使用。他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列;当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。这时,就需要用到深度学习领域中另一类非常重要神经网络:循环神经网络(Recurrent Neural Network)。RNN种类很多,也比较绕脑子。不过读者不用担心,本文将一如既往的对复杂的东西剥茧抽丝,帮助您理解RNNs以及它的训练算法,并动手实现一个循环神经网络。 语言模型 RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以为语言模型来建模。那么,什么是语言模型呢? 我们可以和电脑玩一个游戏,我们写出一个句子前面的一些词,然后,让电脑帮我们写下接下来的一个词。比如下面这句:我昨天上学迟到了,老师批评了____。 我们给电脑展示了这句话前面这些词,然后,让电脑写下接下来的一个词。在这个例子中,接下来的这个词最有可能是『我』,而不太可能是『小明』,甚至是『吃饭』。 语言模型就是这样的东西:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。 语言模型是对一种语言的特征进行建模,它有很多很多用处。比如在语音转文本(STT)的应用中,声学模型输出的结果,往往是若干个可能的候选词,这时候就需要语言模型来从这些候选词中选择一个最可能的。当然,它同样也可以用在图像到文本的识别中(OCR)。 使用RNN之前,语言模型主要是采用N-Gram。N可以是一个自然数,比如2或者3。它的含义是,假设一个词出现的概率只与前面N个词相关。我

BP神经网络地设计实例(MATLAB编程)

神经网络的设计实例(MATLAB编程) 例1 采用动量梯度下降算法训练BP 网络。训练样本定义如下: 输入矢量为 p =[-1 -2 3 1 -1 1 5 -3] 目标矢量为t = [-1 -1 1 1] 解:本例的MATLAB 程序如下: close all clear echo on clc % NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练 % SIM——对BP 神经网络进行仿真pause % 敲任意键开始 clc % 定义训练样本 P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量

clc % 创建一个新的前向神经网络 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net.IW{1,1} inputbias=net.b{1} % 当前网络层权值和阈值 layerWeights=net.LW{2,1} layerbias=net.b{2} pause clc % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 1000; net.trainParam.goal = 1e-3; pause clc % 调用TRAINGDM 算法训练BP 网络 [net,tr]=train(net,P,T);

循环神经网络(RNN, Recurrent Neural Networks)介绍

循环神经网络(RNN, Recurrent Neural Networks)介绍 标签:递归神经网络RNN神经网络LSTMCW-RNN 2015-09-23 13:24 25873人阅读评论(13) 收藏举报分类: 数据挖掘与机器学习(23) 版权声明:未经许可, 不能转载 目录(?)[+]循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考: https://www.wendangku.net/doc/fc3238886.html,/2015/09/recurrent-neural-networks-tutorial-part-1-introd uction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解。 循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。但是,目前网上与RNNs有关的学习资料很少,因此该系列便是介绍RNNs的原理以及如何实现。主要分成以下几个部分对RNNs进行介绍: 1. RNNs的基本介绍以及一些常见的RNNs(本文内容); 2. 详细介绍RNNs中一些经常使用的训练算法,如Back Propagation Through Time(BPTT)、Real-time Recurrent Learning(RTRL)、Extended Kalman Filter(EKF)等学习算法,以及梯度消失问题(vanishing gradient problem) 3. 详细介绍Long Short-Term Memory(LSTM,长短时记忆网络);

BP神经网络的基本原理+很清楚

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rinehart和 McClelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本 也是最重要的功能:加权、求和与转移。其中x 1、x 2 …x i …x n 分别代表来自神经元1、2…i…n 的输入;w j1、w j2 …w ji …w jn 则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权 值;b j 为阈值;f(·)为传递函数;y j 为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出 : (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f (·), 1 (·),则隐层节点的输出为(将阈值写入求和项中): 输出层的传递函数为f 2

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明)

Matlab训练好的BP神经网络如何保存和读取方法(附实例说明) 看到论坛里很多朋友都在提问如何存储和调用已经训练好的神经网络。 本人前几天也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:save net %net为已训练好的网络 然后在命令窗口 输入:load net %net为已保存的网络 加载net。 但一般我们都会在加载完后对网络进行进一步的操作,建议都放在M文件中进行保存网络和调用网络的操作 如下所示: %% 以函数的形式训练神经网络 functionshenjingwangluo() P=[-1,-2,3,1; -1,1,5,-3]; %P为输入矢量 T=[-1,-1,1,1,]; %T为目标矢量 net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') %创建一个新的前向神经网络 inputWeights=net.IW{1,1} inputbias=net.b{1} %当前输入层权值和阀值 layerWeights=net.LW{2,1} layerbias=net.b{2} net.trainParam.show=50; net.trainParam.lr=0.05; net.trainParam.mc=0.9;

基于matlab实现BP神经网络模型仿真

基于BP神经网络模型及改进模型对全国历年车祸次数预测 一、背景 我国今年来随着经济的发展,汽车需求量不断地增加,所以全国每年的车祸次数也被越来越被关注,本文首先搜集全国历年车祸次数,接着通过这些数据利用BP神经网络模型和改进的径向基函数网络进行预测,最后根据预测结果,分析模型的优劣,从而达到深刻理解BP神经网络和径向基函数网络的原理及应用。所用到的数据即全国历年车祸次数来自中国汽车工业信息网,网址如下: https://www.wendangku.net/doc/fc3238886.html,/autoinfo_cn/cszh/gljt/qt/webinfo/2006/05/124650 1820021204.htm 制作历年全国道路交通事故统计表如下所示: 二、问题研究 (一)研究方向 (1)通过数据利用BP神经网络模型预测历年全国交通事故次数并与实际值进行比较。(2)分析BP神经网络模型改变训练函数再进行仿真与之前结果进行对比。 (3)从泛化能力和稳定性等方面分析BP神经网络模型的优劣。 (4)利用径向基函数网络模型进行仿真,得到结果与采用BP神经网络模型得到的结果进行比较。

(二)相关知识 (1)人工神经网络 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 人工神经网络有以下几个特征: (1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性网络关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。 (2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。 (3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。 (4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。 (2)BP神经网络模型 BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。 (3)径向基函数网络模型 径向基函数(Radial Basis Function,RBF)神经网络由三层组成,输入层节点只传递输入信号到隐层,隐层节点由像高斯函数那样的辐射状作用函数构成,而输出层节点通常是简单的线性函数。 隐层节点中的作用函数(基函数)对输入信号将在局部产生响应,也就是说,当输入信号靠近基函数的中央范围时,隐层节点将产生较大的输出,由此看出这种网络具有局部逼近能力,所以径向基函数网络也称为局部感知场网络。

多层循环神经网络在动作识别中的应用

Computer Science and Application 计算机科学与应用, 2020, 10(6), 1277-1285 Published Online June 2020 in Hans. https://www.wendangku.net/doc/fc3238886.html,/journal/csa https://https://www.wendangku.net/doc/fc3238886.html,/10.12677/csa.2020.106132 Multilayer Recurrent Neural Network for Action Recognition Wei Du North China University of Technology, Beijing Received: Jun. 8th, 2020; accepted: Jun. 21st, 2020; published: Jun. 28th, 2020 Abstract Human action recognition is a research hotspot of computer vision. In this paper, we introduce an object detection model to typical two-stream network and propose an action recognition model based on multilayer recurrent neural network. Our model uses three-dimensional pyramid di-lated convolution network to process serial video images, and combines with Long Short-Term Memory Network to provide a pyramid convolutional Long Short-Term Memory Network that can analyze human actions in real-time. This paper uses five kinds of human actions from NTU RGB + D action recognition datasets, such as brush hair, sit down, stand up, hand waving, falling down. The experimental results show that our model has good accuracy and real-time in the aspect of monitoring video processing due to using dilated convolution and obviously reduces parameters. Keywords Action Recognition, Dilated Convolution, Long Short-Term Memory Network, Deep Learning 多层循环神经网络在动作识别中的应用 杜溦 北方工业大学,北京 收稿日期:2020年6月8日;录用日期:2020年6月21日;发布日期:2020年6月28日 摘要 人体动作识别是目前计算机视觉的一个研究热点。本文在传统双流法的基础上,引入目标识别网络,提出了一种基于多层循环神经网络的人体动作识别算法。该算法利用三维扩张卷积金字塔处理连续视频图

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

BP神经网络MATLAB代码

BP神经网络matlab代码 p=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;]'; %====期望输出======= t=[4554292834972261692113913580445126363471385435562659... 4335288240841999288921752510340937293489317245684015... 3666]; ptest=[284528334488;283344884554;448845542928;455429283497;29283497 2261;... 349722616921;226169211391;692113913580;139135804451;35804451 2636;... 445126363471;263634713854;347138543556;385435562659;35562659 4335;... 265943352882;433528824084;433528821999;288219992889;19992889 2175;... 288921752510;217525103409;251034093729;340937293489;37293489 3172;... 348931724568;317245684015;456840153666]'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%将数据归一化 NodeNum1=20;%隐层第一层节点数 NodeNum2=40;%隐层第二层节点数 TypeNum=1;%输出维数 TF1='tansig'; TF2='tansig'; TF3='tansig'; net=newff(minmax(pn),[NodeNum1,NodeNum2,TypeNum],{TF1TF2 TF3},'traingdx');

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

神经网络模型原理

2 BP 神经网络模型原理 2.1 BP 模型概述 BP(Back-Propagation)神经网络是一类前馈型神经网络,它由输入层、中间层和输出层组成,中间层也就是隐含层,可以是一个或多个。每层包含若干互不连接的神经元节点,相邻层之间各神经元通过不断变化的连接强度或权值进行全连接。图1 所示为BP 神经网络拓扑结构。其中:输入层有n 个节点,对应输入x1~xn;输出层有m 个节点,对应输出y1~ym;隐含层有q个节点,对应的输出z1~zq;输入层与隐含层之间的权值vik,隐含层与输出层之间的权值为wkj。 BP 网络中隐含层激活函数通常采用S 型的对数或正切函数和线性函数。由于激活函数是连续可微的,不仅使得网络的容错性较好,而且可以严格利用剃度法进行推算,权值修正的解析式十分明确[7]。 BP 网络中隐含层激活函数通常采用S 型的对数或正切函数和线性函数。由于激活函数是连续可微的,不仅使得网络的容错性较好,而且可以严格利用剃度法进行推算,权值修正的解析式十分明确[7]。 2.2 BP 学习算法 BP 学习算法是一种有监督的学习过程,它是根据给定的(输入、输出)样本数据来进行学习,并通过调整网络连接权值来体现学习的效果。就整个神经网络来说,一次学习过程由输入数据的正向传播和误差的反向传播两个子过程构成。设有N 个学习样本(Xk,Y*k ),k=1,2,…,N,对样本(Xk,Y*k),在正向传播过程中,样本k的输入向量Xk=(x1k,x2k,…,xnk)从输入层的n 个节点输入,经隐含层逐层处理,在输出层的m 个节点的输出端得到样本k 的网络计算输出向量Yk=(y1k,y2k,ymk)。比较Yk 和样本k 的期望输出向量Y*k =(y *1k ,y *2k ,…,y *mk ),若N个学习样本的计算输出都达到期望的结果,则学习过程结束;否则,进入误差反向传播过程,把Yk 与Y*k的误差由网络输出层向输入层反向传播,在反向传播过程中,修改各层神经元的连接权值[8]。 BP 反向传播算法的具体步骤可归纳如下: (1)输入N 个学习样本(Xk,Y*k ),k=1,2,…,N。 (2)建立BP 网络结构。确定网络层数L≥3 和各层节点数,由学习样本输入向量Xk 的长度n 确定网络输入层节点数为n;由学习样本输出向量Y*k的长度m确定网络输出节点数为m;第l 层的节点数为n(l)。定义各层间连接权矩阵,第l 层连接第l+1 层的连接权矩

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

相关文档
相关文档 最新文档