文档库 最新最全的文档下载
当前位置:文档库 › A microfluidic-based enzymatic assay for bioactivity screening

A microfluidic-based enzymatic assay for bioactivity screening

A microfluidic-based enzymatic assay for bioactivity screening
A microfluidic-based enzymatic assay for bioactivity screening

A microfluidic-based enzymatic assay for bioactivity screening combined with capillary liquid chromatography and mass spectrometry

Arjen R.de Boer,*Ben Bruyneel,Johannes G.Krabbe,Henk Lingeman,Wilfried M.A.Niessen and Hubertus Irth

Received 10th May 2005,Accepted 26th August 2005

First published as an Advance Article on the web 22nd September 2005DOI:10.1039/b506559c

The design and implementation of a continuous-flow microfluidic assay for the screening of (complex)mixtures for bioactive compounds is described.The microfluidic chip featured two microreactors (1.6and 2.4m L)in which an enzyme inhibition and a substrate conversion reaction were performed,respectively.Enzyme inhibition was detected by continuously monitoring the products formed in the enzyme-substrate reaction by electrospray ionization mass spectrometry (ESI-MS).In order to enable the screening of mixtures of compounds,the chip-based assay was coupled on-line to capillary reversed-phase high-performance liquid chromatography (HPLC)with the HPLC column being operated either in isocratic or gradient elution mode.In order to improve the detection limits of the current method,sample preconcentration based on a micro on-line solid-phase extraction column was employed.The use of electrospray MS allowed the simultaneous detection of chemical (MS spectra)and biological parameters (enzyme inhibition)of ligands eluting from the HPLC column.The present system was optimized and validated using the protease cathepsin B as enzyme of choice.Inhibition of cathepsin B is detected by monitoring three product traces,obtained by cleavage of the substrate.The two microreactors provided 32and 36s reaction time,respectively,which resulted in sufficient assay dynamics to enable the screening of bioactive compounds.The total flow rate was 4m L min 21,which a 25-fold decrease was compared with a macro-scale system described earlier.Detection limits of 0.17–2.6m mol L 21were obtained for the screening of inhibitors,which is comparable to either microtiter plate assays or continuous-flow assays described in the literature.

Introduction

The discovery of new chemical entities is primarily performed by high-throughput screening (HTS)technologies in microtiter-plate https://www.wendangku.net/doc/f63276936.html,rge libraries are screened against drug targets for their biological activity.A recent trend in HTS is the miniaturization of the screening assay to reduce costs,as less reagents and sample are consumed.This miniaturization leads to chip-based systems that are able to screen up to 1000samples per squared cm,using only nanoliters of sample per well.1–6Alternatives are the microfluidic screening devices in which homogeneous enzymatic assays are performed.After incubation of the reactants,on-chip electrophoresis is performed in these devices to separate the reaction product(s)from the substrate,thereby enabling the quantitation of the enzyme activity.7–12However,despite their speed and effi-ciency,these technologies can only be used for the screening of pure compound libraries.In many cases,samples to be screened are mixtures rather than pure compounds.Examples of mixtures are the reaction products of combina-torial synthesis,natural product extracts or mixtures from

active metabolite profiling.Typically,mixtures are deconvo-luted by employing fractionation strategies,resulting in time-consuming and laborious screening activities.

Recently,we have described an on-line high-performance liquid chromatography (HPLC)biochemical assay system using electrospray ionization mass spectrometry (ESI-MS)as detection method.13This approach overcomes the necessity of fraction collection allowing the simultaneous chemical and biological characterization of active sample components.So far,on-line systems have been used mainly on micro-HPLC levels with reagent flow rates in the order of 25–50m L min 21.For the screening of expensive protein targets,further miniaturization would be very beneficial.It is demonstrated that mixing enzyme and substrate on a chip in a continuous-flow mode is not problematic.14–16In addition,the use of a microfluidic system would allow the use of a wide variety of materials,dimensions and designs for the biochemical reactors.Although microfluidic systems have many advantages,the small size also has some drawbacks.Because the amount of sample that can be used decreases proportional to the size of the chip,more powerful detection methods are required.For example,laser-induced fluorescence (LIF)detection technique is mostly used for fluorescence-based assays.17–19However,most lasers are not tunable over a wide wavelength range,which imposes restrictions to the substrate labeling.An alternative detection method used is MS.14,17,19Unlike LIF,no labeling is

Vrije Universiteit Amsterdam,Faculty of Sciences,Department of Chemistry and Pharmaceutical Sciences,Section Analytical Chemistry &Applied Spectroscopy,De Boelelaan 1083,1081HV Amsterdam,The Netherlands.E-mail:ardeboer@https://www.wendangku.net/doc/f63276936.html,;Fax:+31(0)205987543;Tel:+31(0)205987536PAPER https://www.wendangku.net/doc/f63276936.html,/loc |Lab on a Chip

P u b l i s h e d o n 22 S e p t e m b e r 2005. D o w n l o a d e d b y S h e n z h e n U n i v e r s i t y o n 08/01/2014 09:25:55.

View Article Online / Journal Homepage / Table of Contents for this issue

required for MS.ESI-MS is highly compatible with the low flow rates used in microfluidics.Finally,identification of the molecular mass of bioactive compounds is possible.

The present paper describes the development and optimiza-tion of a chip-based screening system comprising on-line preconcentration,HPLC separation of ligands,an on-line enzyme inhibition assay and ESI-MS detection.

Experimental

Reagents

Cathepsin B 1(EC 3.4.22.1,bovine spleen;activity,19units per mg protein;one unit hydrolyses 1m mol L 21of N -a -CBZ-lysine p -nitrophenyl ester per min at pH 5.0at 25u C;M r 27500),Z -Phe-Arg-AMC (CBZ-Phe-Arg 7-amido-4-methylcoumarin hydrochloride,M r 649.2),biotin (SMC1,M r 244.3),cAMP (SMC2,adenosine 39,59-cyclic monophosphate,M r 329.2),antipain hydrochloride (N -(N -a -carbonyl-Arg-Val-Arg-al)-Phe,HCl content:not more than 1.8mol mol 21,M r 604.7(free base)),CA-074((L -3-trans -(propylcarbamyl)-oxirane-2-carbonyl)-L -isoleucyl-L -proline,M r 383.4),E-64(L -trans -3-carboxyoxiran-2-carbonyl-L -leucylagmatine,M r 357.4),leupeptin (N -acetyl-Leu-Leu-Arg-al,hemisulfate salt,M r 426.6(minus hemisulfate)),DTE (1,4-dithioerythritol)and ammo-nium formate were purchased from Sigma-Aldrich (Zwijndrecht,The Netherlands).Methanol (HPLC grade)was from J.T.Baker (Deventer,The Netherlands).Water was from a Milli-Q purification system (Millipore,Amsterdam,The Netherlands).All the chemicals used were of analytical grade or higher.Carrier solution/mobile phase consisted of 20mmol L 21ammonium formate in water (pH 7.0).The percentage of methanol in the mobile phase was dependent on the experiment.Enzyme (150nmol L 21)and substrate (50m mol L 21)were separately dissolved in carrier solution,which contained SMCs (60m mol L 21)and DTE (50m mol L 21).Concentrations were in-syringe concentrations.Instrumentation

The design of the microfluidic system is shown in Fig. 1.Sample and mobile phase were introduced by an Ultimate

HPLC pump and a Famos autosampler (LC Packings,Amsterdam,The Netherlands).The autosampler was coupled to a trapping column (Inertsil C 18,5m m particles,300m m 65mm,LC-Packings)and to a six-port switching valve.For sample trapping,the valve was positioned to direct the flow to the waste (3A).After 2.5min sample trapping the valve was switched to a plug (3B),which forced the flow to the analytical reversed-phase column (Biobasic C 18,5m m particles,180m m 610cm,Thermo Electron,Waltham,MA).After conditioning (2.5min),the amount of methanol in the carrier was increased to 30%for analysis.Alternatively,a gradient was applied to 77%of methanol in 30min,in combination with homemade PRP-1(5m m particles,Hamilton,Bonaduz,Switzerland)columns of 180m m 66mm (trapping)and 180m m 6125mm (analytical).The microfluidic chip was placed after the column,in which the column effluent (2m L min 21)was subsequently mixed with enzyme and substrate solution (both 1m L min 21).Enzyme and substrate solution were added by pressure-driven flow from syringe pumps (Harvard,Holliston,MA).The chip outlet was connected to an ion-trap mass spectrometer (LCQ Deca,Thermo Electron).Microfluidic chip

The chips were fabricated by Micronit Microfluidics (Enschede,The Netherlands)out of two layers of borofloat glass 33/D263.Chip dimensions were 45mm 615mm 62.2mm (Fig.2),having channels of 70m m deep 6125m m wide.Channels and interconnection holes were created by photolithography and by powder blasting of Al 2O 3-particles on the substrate using a moving nozzle.The average surface roughness of the channels was 2m m.The diameters of the conical-shaped holes were 600m m to 1.6mm.For the enzymatic reactions,two open tubular microreactors were created with volumes of 1.6and 2.4m L.The glass layers were joined by direct bonding at high temperatures.For analysis,a chip was placed in a chip holder (Standard 4515,Micronit).Connections to and from the chip were made by fused silica capillaries (id,50m m;od,360m m).The chip can withstand pressures up to 80bar and was therefore fully compatible with the back pressure from the MS

interface.

Fig.1Schematic overview of the on-line continuous-flow system:1,pump and autosampler;2,trapping column;3,switching valve;4,analytical column;5,syringe pumps;6,microfluidic chip;7,mass spectrometer.

P u b l i s h e d o n 22 S e p t e m b e r 2005. D o w n l o a d e d b y S h e n z h e n U n i v e r s i t y o n 08/01/2014 09:25:55.

Enzymatic assay

The cysteine protease cathepsin B 20was used as model enzyme to evaluate the performance of the microfluidic system.In the chip,cathepsin B was assayed with the substrate Z -Phe-Arg-AMC,which was hydrolyzed into Z -Phe-Arg-OH,Z -Phe-Arg-O-CH 3and AMC.DTE was added to maintain the active state of cathepsin B by preventing the formation of disulfide bonds.Enzymatic reactions were performed at 22u C.Mass spectrometry settings

The ion-trap mass spectrometer was equipped with electro-spray ionization (ESI),having an in-source low flow metal needle for an improved performance at low flow rates.Instrument control,data acquisition and data processing were performed using Xcalibur 1.2software (Thermo Electron).The following parameters were used:capillary temperature,150u C;sheath gas flow,5(AU);source voltage,4.0kV;capillary voltage,34V;tube lens offset,0.0V;quadrupole offset,23.0V;octapole offset,29.0V;inter-octapole lens voltage,223V,and entrance lens,250V.For MS/MS experiments,the following settings were used:for product Z -Phe-Arg-OH (m /z 456.6)the MS 2-settings were:activation-amplitude,35%;activation-Q,0.25,and for AMC (m /z 176.5):activation-amplitude,40%;activation-Q,0.40.The fragments monitored in selected MS/MS were m /z 395.2and m /z 117.2,respectively.

Results and discussion

Design of the microfluidic system

The core of the present analytical screening system is a continuous-flow enzyme assay (Fig.2).In the dual-reactor set-up,a solution comprising the active enzyme is mixed with the sample,which is introduced either directly (flow-injection mode)or via an LC column.In the first microreactor,active ligands present in the sample are allowed to interact with the enzyme (equation 1).The (remaining)enzyme activity is subsequently assayed by the addition of a substrate.The

enzyme–substrate reaction proceeds in the second micro-reactor (equation 2).Readout of the screening reaction is performed by on-line detection of the substrate conversion products using ESI-MS.Changes in the product signal reveal the presence of bioactive compounds in the sample,caused by the inhibition of the enzyme (equations 1and 3).In the miniaturized system described in this paper,the dual-reactor set-up is implemented on a glass microchip.

The advantages of chips as microreactor over fused silica capillaries are in their compactness,strength,greater degrees of freedom in design and material,and the presence of hair-pin curves to increase the diffusion rate.21An in-solution enzymatic assay was chosen over an immobilized format 22,23in order to avoid immobilization.Thereby,switching between enzymatic assays becomes easier and regeneration after reaction with an irreversible inhibitor is not an issue.

Miniaturizing a conventional-flow screening system 13(macro-scale system)to a chip-based system comprises a number of changes such as flow rates,reagent supply and the material.While the conventional system with the open tubular reactors is restricted to polymer reactors,the choice of materials for the chip is much larger,like glass,silicon,plastic,quartz and fused silica.The design of the chip is mainly dictated by the flow rates compatible with electrospray MS.In order to achieve proper mixing on the microchip,flow rates of 2m L min 21for capillary LC and 1m L min 21for both enzyme and substrate solutions were chosen.The choice of a total flow rate in the chip of 4m L min 21resulted in reaction times of 32and 36s in the two reactors,respectively.In comparison with the macro-scale system,the flow rates of both enzyme and substrate were reduced by a factor of 25.Employing the optimum concentrations of the macro-scale system did not result in sufficient product formation for screening.For that reason,the enzyme concentration was increased 5-fold,having an overall decrease in enzyme and substrate consumption of 5and 25times,respectively.Chip performance

Extra column band broadening is a key concern when implementing chip-based microfluidics in a capillary LC system.Band broadening negatively influences the sensitivity for bioactivity detection as the sensitivity is dependent on the height of the inhibitor peaks in the product trace(s).Both the design of the microreactors and the connections to the LC column and mass spectrometer are crucial.The band broad-ening was investigated by flow-injection of the inhibitor E-64at various flow rates and injection volumes by calculating the peak width at half height (w 1/2).Data were obtained by experiments using an autosampler connected to a UV-detector in the absence and presence of the chip.

As expected,the lower flow rates and injection volumes resulted in broader peaks when using the microfluidic system (Table 1).At an injection volume of 0.1m L,85%of the band broadening can be contributed to the microfluidic chip,independent of the flow-rate.The reason is that the connec-tions and channels of the chip increased the extra column volume and thus the sample dilution.At larger injection volumes (1m L),the percentage of band broadening that can

be

Fig.2The microfluidic chip as used for bioactivity screening:1,substrate solution;2,LC effluent;3,enzyme solution;4,open tubular microreactor with a volume of 1.6m L;5,open tubular microreactor with a volume of 2.4m L;6,flow towards mass spectrometer.The enzyme hydrolyses the substrate into products (equation 2)if no bioactive compound is eluting from the column.Bioactive compounds present in the eluate bind to the enzyme (equation 1),resulting in a decrease of substrate turnover (equation 3).

P u b l i s h e d o n 22 S e p t e m b e r 2005. D o w n l o a d e d b y S h e n z h e n U n i v e r s i t y o n 08/01/2014 09:25:55.

contributed to the chip was less (60%).A reason for this difference could be that diffusion at the borders of the sample plug is relatively more problematic for smaller injection volumes.

The band broadening and the analyte dilution resulting from it were compared between the microfluidic chip system and the macro-scale system.The maximum concentration of the bioactive peaks (C max )24was calculated for E-64injections from calibration curve measurements.The dilution factor was almost similar,only 10%higher for the microfluidic system.The peak height and shape was adequate for bioactivity screening.

Sensitivity of the chip-based screening system

The sensitivity of the microfluidic system was determined by measuring calibration curves of four cathepsin B inhibitors.The inhibitors caused negative peaks in the product mass chromatograms by inhibiting cathepsin B and thus the substrate turnover.The heights of which were plotted against the concentration (Fig.3).Fig.3shows that similar to conventional screening assays,leupeptin has the highest and CA-074the lowest affinity for cathepsin B.The affinity for cathepsin B is also expressed in IC 50values (the concentration of inhibitor that inhibits 50%of the enzyme activity),which are derived from Fig.3(Table 2).The measured order of affinities of the four inhibitors is in agreement with the affinities determined in microtiter plate assays and the macro-scale system.

Limits of detection (LODs)and IC 50values derived from the calibration measurements were compared with the conven-tional system (Table 2).The concentration LODs of the microfluidic system were 6times higher under similar experimental conditions,while the IC 50values were 4times higher.These differences could be caused by less efficient mixing of sample and reagents in the chip compared with the macro-scale system.In general,the application of microfluidics results in decreased channel diameters,which negatively

influences the fluid mixing.Mixing becomes a slow process as it is controlled by molecular diffusion only,having a strictly laminar flow.25,26Another reason could be wall effects,which means that non-specific binding of enzyme and substrate to the walls changed the overall enzymatic performance.However,with the current system no significant non-specific binding was determined.Despite the more unfavorable detection limit compared to the macro-scale system,the LODs are still in the concentration range for bioactivity screening,while the complete system is miniaturized to a micro-scale level.In addition,the absolute LODs and IC 50values with the chip

Table 1The effect of the chip implementation on the band-broadening.Peak widths at half-height (w 1/2)were calculated by means of the sum of the variances of the individual contributions (s 2).E-64(1.1mmol L 21)was injected at 0.1and 1m L at various flow rates.UV absorbance was performed at 214nm.No reagent flows were pumped in the chip

Flow rate/m L min 21w 1/2/s at an injection volume of 0.1m L

w 1/2/s at an injection volume of 1m L Total microfluidic system Contribution of the chip Total microfluidic system Contribution of the chip 13933100492262354293211839234

18

15

31

20

Fig.3Calibration curves of four cathepsin B inhibitors.Curves were obtained after plotting of the enzymatic activity (peak height)sigmoidally against the concentration inhibitor.The x -axis has a logarithmic scale to obtain typical concentration–response curves:&,leupeptin;$,antipain;m ,E-64;.,CA-074.The error bars represent 1SD (n 56).No LC column was present in the system.The injection volume was 0.4m L.Concentrations plotted were the concentrations present in the autosampler.

Table 2Comparison of LODs and IC 50values of the chip-based system with the conventional system.13The LODs were determined by the lowest concentration of inhibitor that could be detected using the product mass chromatograms.LODs were calculated from the mean of blank injections assuming a signal-to-noise ratio of 3.IC 50values were derived from Fig.3.Concentrations in the table are the concentrations that were present in the autosampler Inhibitor Concentration LOD chip/m mol L 21Concentration LOD conventional/m mol L 21Mass LOD chip/pmol Mass LOD conventional/pmol Concentration IC 50chip/m mol L 21Concentration IC 50

conventional/m mol L 21Antipain 0.250.0600.100.60 2.60.37CA-074 2.60.35 1.0 3.528 5.6E-64

0.200.100.080 1.0 3.7 2.1Leupeptin

0.17

0.018

0.068

0.18

0.98

0.11

P u b l i s h e d o n 22 S e p t e m b e r 2005. D o w n l o a d e d b y S h e n z h e n U n i v e r s i t y o n 08/01/2014 09:25:55.

were 4times and 6lower,respectively,which means that less sample is required for screening.Implementation of MS for detection

The main advantages of MS in comparison to fluorescence detection are the possibility to perform label-free assays,to detect all the products formed,and to identify the molecular mass of bioactive compounds simultaneously.An essential requirement of MS is the use of volatile buffers, e.g.,ammonium formate,in order to prevent ion suppression.Coupling the pressure-driven chip to the mass spectrometer was straightforward,generating product traces that were stable for hours.

Screening by MS was performed in the full spectrum MS and MS/MS mode.In the MS/MS mode,the enzymatic product is dissociated and the fragments were monitored for bioactivity detection.While the MS/MS mode provided more selectivity and stability,regarding sensitivity there was no real benefit from using MS/MS instead of full spectrum MS.

The conventional assay was also performed using a Shimadzu LCMS-2010quadrupole mass spectrometer (Kyoto,Japan).To make sure that differences between the chip-based assay and the conventional assay were not originating from the type of MS used,calibration curves of cathepsin B inhibitors were generated with both instruments.The results showed no significant differences.

In general,the ionization efficiency in MS is enhanced by the use of organic solvent.The enzymatic activity,however,decreases in most cases if organic solvents are used.27An optimum for LC-MS in the percentage of organic solvent used in the carrier flow was found at 35%.Due to dilution by reagent addition,the actual percentage of organic solvent in the chip was 18–23%.Screening mixtures

Screening mixtures for bioactivity not only requires an enzymatic assay,but also the separation of the compounds.Microfluidic separation is in most cases performed by capillary electrophoresis,but here LC was selected for its simplicity of combining with a microfluidic chip and MS.The suitability of the microfluidic system for screening mixtures was demon-strated by injecting a sample containing antipain and E-64(Fig.4).

The enzymatic reaction products were monitored by MS and reflect the enzymatic activity in the microreactor (A,B,C).At point 1the valve was switched to force the flow to the analytical column,where at point 2the methanol content in the mobile phase was increased for analysis.The higher level of methanol in the microreactor increased the involvement of methanol in the substrate hydrolysis and thus the intensity of mass chromatogram C.The negative peaks in the product mass chromatograms at 9.2and 14.3min reveal the presence of bioactive compounds,because less product was detected.This is due to a temporary decrease in substrate turnover by the inhibited enzyme.Mass spectra in the negative peaks (D,E)show the m /z values that motivates plotting of the extracted ion chromatograms (F,G).The positive peaks in the extracted ion chromatograms of m /z 358.7and 637.3have,compared to

the negative peaks,a similar retention time and peak shape,which indicate that they correspond to the bioactive com-pounds.m /z 358.1correlates with inhibitor E-64,where m /z 637.3belongs to the inhibitor antipain.Even though the mobile phase conditions for the separation were not optimal because of assay requirements,bioactive compounds were separated and detected by the microfluidic system.

To prove that the negative peaks were not caused by pumping instabilities or ionization suppression,two system monitoring compounds (SMCs)were present in the enzyme and substrate solutions.Because the MS traces of the SMCs show no negative peaks,the negative peaks in the product traces were from bioactivity (data not shown).

The microfluidic screening system was also applied for the screening of a complex sample for cathepsin B inhibitors (Fig.5).A 20%ethanolic green tea extract (80%water)

was

Fig.4Screening of a mixture containing two inhibitors by the microfluidic screening system.A,mass chromatogram of product AMC,m /z 176.5;B,mass chromatogram of product Z -Phe-Arg-OH,m /z 456.5;C,mass chromatogram of product Z -Phe-Arg-O-CH 3,m /z 470.4;D,mass spectrum in the negative peak at 9.2min;E,mass spectrum in the negative peak at 14.3min;F,extracted-ion chromatogram of m /z 358.7;G,extracted-ion chromatogram of m /z 637.3.

P u b l i s h e d o n 22 S e p t e m b e r 2005. D o w n l o a d e d b y S h e n z h e n U n i v e r s i t y o n 08/01/2014 09:25:55.

spiked with antipain and E-64and separated by LC gradient elution.An LC gradient was applied to achieve more separation efficiency.

The negative peaks in the product mass chromatograms (A,B)can be correlated to compounds present in the green tea extract,using the same procedure as demonstrated in Fig.4.The negative peak at 11.3min is due to E-64(E)and at 32.7min to antipain (G).The negative peak at 23.2min belongs to an unknown compound with an m /z of 313.1(D).Based on its molecular mass and its natural presence in green tea,it is likely that the peak at 25.2min (m /z 459.1;C)is (2)-epigallocatechin gallate or its isomer (+)-gallocatechin gallate,while the peak at 29.5min (m /z 443.1;F)can be (2)-epicatechin gallate.The identity of these compounds is not confirmed.Despite the fact that cathepsin B inhibition by catechins is not reported in the literature,it is not unlikely as catechins inhibit various enzymes (also cathepsin G)28that are involved in cancer metastasis.29,30SMC traces show no negative peaks,proving that these were from bioactivity (data not shown).

The application of gradient elution increased the power for screening necessary for these kinds of samples.Despite

changes in the mobile phase composition during the run,the assay continues to show sufficient enzymatic activity for detecting bioactivity.Similar to the isocratic-LC screening,the molecular masses of the bioactive compounds were detected.

Conclusions

Miniaturization of a continuous-flow system to a microfluidic format reduces the consumption of sample and reagents and provides a larger flexibility in the choice of reactor materials and designs.Integration of the chip-based assays with LC-MS is straightforward due to the compatibility of ESI-MS with the low flow rates used in the microfluidic assay.The continuous-flow principle also works on chip-level,with an enzyme that continuously cleaves substrate into products.

With respect to band broadening and signal stability,the microfluidic chip system is comparable to macro-scale screen-ing systems.Mixing reagents at the microfluidic level is more difficult and for that reason,the system performance can decrease.However,despite somewhat higher limits of detec-tion,the results show that screening for bioactivity by the chip-based system can be performed in a useful concentration range.Not only sufficient sensitivity is provided,determina-tion of the relative binding constants of the bioactive compounds is possible as well.

The system provides the necessary separation for (complex)mixtures and detects bioactive components present in the sample.Gradient elution makes the microfluidic system complete for bioactivity screening.

References

1 B.J.Battersby and M.Trau,Trends Biotechnol.,2002,20,167–173.2M.Entzeroth,Curr.Opin.Pharmacol.,2003,3,522–529.

3 D.N.Gosalia and S.L.Diamond,https://www.wendangku.net/doc/f63276936.html,A ,2003,100,8721–8726.

4R.P.Hertzberg and A.J.Pope,Curr.Opin.Chem.Biol.,2000,4,445–451.

5 A.Schober,G.Schlingloff, A.Gro?,T.Henkel,J.Albert,G.Mayer,H.Wurziger, D.Do ¨ring and H.Tietz,Microsyst.Technol.,2004,10,281–292.6J.Wo ¨lcke and D.Ullman,Drug Discovery Today ,2001,6,637–646.

7 C.B.Cohen,E.Chin-Dixon,S.Jeong and T.T.Nikiforov,Anal.Biochem.,1999,273,89–97.

8J.Dunne,H.Reardon,V.Trinh,E.Li and J.Farinas,Assay Drug Dev.Technol.,2004,2,121–129.

9 A.G.Hadd,S.C.Jacobson and J.M.Ramsey,Anal.Chem.,1999,71,5206–5212.

10S.Lin,A.S.Fischl,X.Bi and W.Parce,Anal.Biochem.,2003,314,

97–107.

11S.A.Sundberg,A.Chow,T.Nikiforov and H.G.Wada,Drug

Discovery Today ,2000,5,S92–S103.

12H.Xu and A.G.Ewing,Anal.Bioanal.Chem.,2004,378,

1710–1715.

13 A.R.de Boer,T.Letzel, D. A.van Elswijk,H.Lingeman,

W.M.A.Niessen and H.Irth,Anal.Chem.,2004,76,3155–3161.14S.Benetton,J.Kameoka,A.Tan,T.Wachs,H.Craighead and

J.D.Henion,Anal.Chem.,2003,75,6430–6436.

15K.Kanno,H.Maeda,S.Izumo,M.Ikuno,K.Takeshita,

A.Tashiro and M.Fujii,Lab Chip ,2002,2,15–18.16J.Wang,Electrophoresis ,2002,23,713–718.

17K.B.Mogensen,H.Klank and J.P.Kutter,Electrophoresis ,2004,

25,3498–3512.

18M.A.Schwarz and P.C.Hauser,Lab Chip ,2001,1,1–6.

19K.Uchiyama,H.Nakajima and T.Hobo,Anal.Bioanal.Chem.,

2004,379,

375–382.

Fig.5Screening a green tea extract by means of gradient elution.A,mass chromatogram of product AMC,m /z 176.1;B,mass chromato-gram of product Z -Phe-Arg-OH,m /z 456.2;C,extracted-ion chromatogram of the negative peak at 25.2min;D,extracted-ion chromatogram of the negative peak at 23.2min;E,extracted-ion chromatogram of the negative peak at 11.3min;F,extracted-ion chromatogram of the negative peak at 29.5min;and G,extracted-ion chromatogram of the negative peak at 32.7min.

P u b l i s h e d o n 22 S e p t e m b e r 2005. D o w n l o a d e d b y S h e n z h e n U n i v e r s i t y o n 08/01/2014 09:25:55.

20J.S.Mort and D.J.Buttle,Int.J.Biochem.Cell Biol.,1997,29,

715–720.

21Y.Yamaguchi, F.Takagi,K.Yamashita,H.Nakamura,

H.Maeda,K.Sotowa,K.Kusakabe,Y.Yamasaki and S.Morooka,AIChE J.,2004,50,1530–1535.22J.Krenkova ′and F.Foret,Electrophoresis ,2004,25,3550–3563.23S.-S.Park,S.I.Cho,M.-S.Kim,Y.-K.Kim and B.-G.Kim,

Electrophoresis ,2003,24,200–206.

24 B.L.Karger,M.Martin and G.Guiochon,Anal.Chem.,1974,46,

1640–1647.

25L.E.Locascio,Anal.Bioanal.Chem.,2004,379,325–327.

26J.M.Ottino and S.Wiggins,Philos.Trans.R.Soc.London,Ser.A ,

2004,362,923–935.

27 A.M.Klibanov,Trends Biotechnol.,1997,15,97–101.

28L.Sartor,E.Pezzato and S.Garbisa,J.Leukocyte Biol.,2002,71,

73–79.

29V.Crespy and G.Williamson,J.Nutr.,2004,134,

3431S–3440.

30 C.Jedeszko and B. F.Sloane,Biol.Chem.,2004,385,

1017–1027.

P u b l i s h e d o n 22 S e p t e m b e r 2005. D o w n l o a d e d b y S h e n z h e n U n i v e r s i t y o n 08/01/2014 09:25:55.

(完整word版)自动化设备技术协议

设备技术协议 甲方: 乙方: (甲方)向(乙方)购置设备。经双方充分协商,订立本技术协议,作为设备采购合同(合同号:)的附件,以便双方共同遵守。具体内容如下: 一、概述 本设备用于甲方第**事业部第**工厂**项目,预计交货期**天 二、设备描述 1、设备简介(包括对功能的基本介绍):见附件1 2、系统组成:(必须包含剩余电流保护装置) 3、参数指标: 4、供货范围清单要求:(按组成部分列配置清单) (以表格形式) 6、产品设计图(实物照片): 三、产品技术标准 (包含国标、行业标准……) 非标准设备,根据客户需求定制。 四、安装、调试 1.装卸:供方主导、需方协助装卸。 2.安装环境要求:地面平整;温度0~50℃;相对湿度10%~80%。 3.安装及调试过程(主导、协助等):供方主导安装及调试。 4.调试期限:7个工作日。 五、技术培训

供方免费对需方人员定期进行技术培训,培训内容包括:设备的正确使用和操作、软件功能的应用、设备的日常维护和一般故障的排除等,使操作人员对设备的性能有一个全面的认识,熟练操作整套设备及软件,并能对一般故障进行处理,为参与培训的人员提供必要的技术指导。 六、验收标准 1.包装情况 2.相关材料是否齐全 3.设备外观有无损伤 4.技术参数是否满足 5.产品试制情况 6.验收时间限制 七、产品交付资料 包含出厂合格证、维修保养手册、说明书等; 八、质量保证及售后服务 1)设备质保期从最终验收之日起 1 年; 2)在质保期内,供货方应提供免费的技术支持;当得到甲方的故障通知后,乙方应实施保修义务,在8小时内响应,并在24小时内给出解决方案,以减少甲方的损失。若维修需要其他配件的由乙方协助采购并安装调试,48小时内需解决问题。 3)质量保证期后,供货商向用户终身提供及时的、优质的、价格优惠的技术服务和备品备件供应。 4)乙方应保证所供设备及零配件不属于工信部颁布的《国家高耗能落后机电设备淘汰目录》中被淘汰的落后机电产品,否则甲方有权要求乙方对落后产品进行更换或做退货处理; 九、其他 1、本协议一式三份,甲方两份、乙方一份,每份具有同等效力。 2、除非有甲方的书面同意,否则乙方不得将其任何合同权利或义务转给第 三方。

IT设备操作及维护手册

信息部TI硬件操作及维护手册 目录 第一章:信息部工作职责 (2) 一、信息部经理岗位职责 (2) 二、网络管理专员岗位职责 (3) 第二章:门店设备的使用及维护 (3) 一、机房环境注意与日常维护 (3) 二、服务器操作与维护 (4) 三、网络设备的日常维护 (6) 四、监控系统的操作与维护 (6) 五、功放设备的使用和日常维护 (9) 六、UPS不间断供电源 (10) 七、点单收银电脑使用和维护 (12) 八、微型打印机使用和维护 (16) 九、排号等位使用和维护 (18) 十、门店网费电话费缴费流程 (19) 十一、钉钉考勤机操作流程 (21) 十二、钉钉审批流程 (26) 十三、天子星前厅点餐系统操作流程 (31)

第一章:信息部工作职责 一、信息经理岗位职责 1,拟定和执行企业信息化战略。 1)负责制订公司信息化中长期战略规划、当年滚动实施计划。 2)制定企业信息化管理制度、制定信息化标准规范。 3)负责公司信息化网络规划、建设组织。 4)制订IT基础资源(硬、软件)运行流程、制定网络安全、信息安全措施并组织实施, 实现IT资源集约管理。 5)负责公司集成信息系统总体构架,构建企业信息化实施组织,结合业务流程重组、项目管理实施企业集成信息系统。 6)负责集团公司网站建设计及总体规划。 2、办公自动化系统开发与运行 (1)根据公司发展战略和实际需要,组织实施公司办公自动化系 统、网站的运行管理和维护与更新,协助信息管理工作; (2)负责公司办公自动化设备(计算机及其软件、打印机)的维护、管理工作。 3、企业信息资源开发 根据企业发展战略和信息化战略要求,负责企业内外部信息资源开发利用。导入知识管理,牵头组织建立企业产业政策信息资源、竞争对手信息资源、供应商信息资源、企业客户信息资源、企业基础数据资源五大信息资源库。 4、建立信息化评价体系 根据公司信息化战略和企业实情,建立公司信息化评价体系和执行标准、制定全员信息化培训计划。 5、信息处理 负责信息的收集、汇总、分析研究,定期编写信息分析报告报公司领导决策参考;参与公司专用管理标准和制度的

监控自动化设备危险点分析与控制措施手册

监控自动化设备危险点分析与控制措施手册 12. 1 控制系统巡视 1、系统运行异常 1、巡视设备时,不得进行巡视规定以外的工 作。 2、巡视工程中应按照电厂规定的路线和项目 开展巡视,防止漏项未能及时发现系统异常造 成事故。 巡视设备如发现异常,应设法处理,并报告有 关领导,避免错过处理时机而扩大事态发展。 2、巡视人员收到机械损伤或 其他伤害、如触电、高空摔伤 1、巡视设备应戴安全帽。 2、巡视应携带照明器具。

3、巡视路线上的电缆沟等盖板应完好,稳固。 4、巡视路线上不得堆放杂物阻碍通道,如检修期需要揭开盖板或堆放器材,有碍巡视路线时,应在其周围设围栏和警示灯。 5、巡视不得过分靠近电源开关或导电体,雷雨天气不得靠近避雷器和避雷针,防止触电。 12. 2 水机保护系统巡 视 1、损坏模件引起保护系统误 动或拒动 1、巡视设备时,不得进行巡视规定以外的工 作。 巡视工程中应按照企业规定的路线和项目开 展巡视,防止漏项未能及时发现系统异常造成 事故。 巡视设备如发现异常,应设法处理,并报告有

关领导,避免错过处理时机而扩大事态发展。 2、巡视人员收到机械损伤或其他伤害、如触电、高空摔伤1、巡视设备应戴安全帽。 2、巡视应携带照明器具。 3、巡视路线上的电缆沟等盖板应完好,稳固。 4、巡视路线上不得堆放杂物阻碍通道,如检修期需要揭开盖板或堆放器材,有碍巡视路线时,应在其周围设围栏和警示灯。 5、巡视不得过分靠近电源开关或导电体,雷雨天气不得靠近避雷器和避雷针,防止触电。 12. 3 控制系统的维护 1模件插拔、检查、更换和存 储损坏 1、维护人员应按规定戴防静电手带,防静电 工作服,以防止静电损坏模件。 2、模件接线错误或新旧换件 接线不一致造成系统故障 1、必须事前进行检查,确保模件上的位开关、 跨接线和跳线完全一致。

自动化设备(DCS仪表)管理办法

XXXXXXX有限公司仪表自动化管理办法 文件编号:xxxxxx 拟文部门:动力设备部 编制人:xxx 审核人:xxx 批准人:xxx 发布日期:2015-1-5

第一章总则 第一条为了加强仪表自动化设备的管理工作,提高仪表自动化设备安全经济运行,依据中石化《仪表及自动控制设备管理制度》并结合公司实际情况,制定本办法。 第二条本办法所称仪表自动化设备包括测量、监测、控制、质量分析仪表、数据采集系统、控制系统(DCS、PLC等)、执行器、组合及智能仪表以及由它们组成的自动化系统和安全保护报警联锁系统。 第三条本办法适用于在用仪表自动化设备、更新零购项目仪表自动化设备管理,新、改、扩建、技改项目仪表管理按规建部有关规定执行。 第二章职责 第四条设备管理部职责 (一)负责贯彻执行中国石化及行业部门有关仪表自动化的管理制度、规程、办法、指令等。 (二)负责制订和修订仪化股份公司仪表自动化管理办法、检修规程及有关规定。 (三)负责组织对各使用单位的仪表自动化的完好及投用情况和管理工作进行检查、监督、考核。 (四)组织仪表自动化方面的技术交流、培训、咨询和应用开发,努力提高其应用水平。 (五)根据设备全过程管理的要求,负责组织重点更新、零购项目仪表自动化设备的规划调研、方案论证、设计选型和安装验收全过程工作,参与技术改造、新建装置仪表自动化设备的规划、设计、安装验收等工作。

第五条生产中心职责 (一)负责贯彻执行中国石化及仪化股份公司有关仪表自动化的管理制度、规程、办法、指令等规定。 (二)建立技术档案,对本单位仪表自动化的完好及投用情况进行管理考核。 (三)各单位负责对仪表自动化的管理。按规定及时上报有关仪表自动化的报表、资料。 (四)运保室(或同类机构)为仪表自动化的主管部门。 第六条安全环保监督部职责 负责对可燃、有毒气体报警器的管理进行安全监督。 第三章管理规定 第七条各单位应建立明确的仪表管理网络,明确职责。 第八条各单位要加强对仪表自动化设备的维护和检修,以保证仪表测量精度、可靠性和控制质量,使检测仪表和自动化系统处于良好状态。做好故障的统计和分析,及时消除故障,定期进行检修校验工作,健全原始记录和信息反馈。以上各项工作均要按公司统一表式填写建档。 第九条操作工应掌握仪表及自动化设备的简单原理、结构、性能,正确使用与操作,保持仪表自动化设备的清洁。 第十条设备主管部门应参与新建装置、技措项目、设备零购项目的仪器、仪表选型、验收工作。在办理竣工验收手续后,移交生产装置使用,附件、备件、工具、资料要齐全。 第十一条加强对仪器、仪表、DCS的电源、气源、伴热及空调系统的管理,仪器、仪表、DCS的电源、气源要保证专线专用,干净纯洁,并

自动化设备技术协议(完整版)

设备技术协议 甲方:____________________________________________ 乙方:____________________________________________ (甲方)向(乙方)购置 设备。经双方充分协商,订立本技术协议,作为设备采购合同(合同号:)的附件,以便双方共同遵守。具体内容如下: 一、概述 本设备用于甲方第**事业部第**工厂**项目,预计交货期**天 二、设备描述 1、设备简介(包括对功能的基本介绍):见附件1 2、系统组成:(必须包含剩余电流保护装置) 3、参数指标: 4、供货范围清单要求:(按组成部分列配置清单) (以表格形式) 6、产品设计图(实物照片): 三、产品技术标准 (包含国标、行业标准……) 非标准设备,根据客户需求定制。 四、安装、调试 1.装卸:供方主导、需方协助装卸。

2.安装环境要求:地面平整;温度0~50℃;相对湿度10%~80%。 3.安装及调试过程(主导、协助等):供方主导安装及调试。 4.调试期限:7个工作日。 五、技术培训 供方免费对需方人员定期进行技术培训,培训内容包括:设备的正确使用和操作、软件功能的应用、设备的日常维护和一般故障的排除等,使操作人员对设备的性能有一个全面的认识,熟练操作整套设备及软件,并能对一般故障进行处理,为参与培训的人员提供必要的技术指导。 六、验收标准 1.包装情况 2.相关材料是否齐全 3.设备外观有无损伤 4.技术参数是否满足 5.产品试制情况 6.验收时间限制 七、产品交付资料 包含出厂合格证、维修保养手册、说明书等; 八、质量保证及售后服务 1)设备质保期从最终验收之日起 1 年; 2)在质保期内,供货方应提供免费的技术支持;当得到甲方的故障通知后,乙方应实施保修义务,在8小时内响应,并在24小时内给出解决方案,以减少甲方的损失。若维修需要其他配件的由乙方协助采购并安装调试,48小时内需解决问题。 3)质量保证期后,供货商向用户终身提供及时的、优质的、价格优惠的技术服务和备品备件供应。 4)乙方应保证所供设备及零配件不属于工信部颁布的《国家高耗能落后机电设备淘汰目录》中被淘汰的落后机电产品,否则甲方有权要求乙方对落后产品进行更换或做退货处理; 九、其他

设备使用说明书范文 自动化设备说明书样本

自动化设备说明书样本 此文档为WORD 版可编辑修改 设备手册 目录 第1 章安全 ..................................................................... 5 1-1 内 容 . ......................................................................... 5 1-2安全装置的位 置 ................................................................ 6 1-3 安全装置的功 能 . ............................................................... 6 1-4 潜在危 险 . ..................................................................... 8 测试的过程中,压力测试增压缸是动作的 . ............................................. 8 压力测试完产品时动作 的 ........................................................... 8 推动产品时动作 的 ................................................................. 8 1-5 安全预 防 . (8) 1-5-1 机械方面 ................................................................ 8 1-5-2 电气方 面 ................................................................ 8 1-5-3 Lockout / Tag-out 程 序 (9)

PS6000+自动化系统用户操作手册

国电南自 PS 6000+ 自动化系统 用户操作手册 国电南京自动化股份有限公司 GUODIAN NANJING AUTOMATION CO.,LTD.

PS 6000+ 自动化系统 用户操作手册 国电南京自动化有限公司 2009年12月1日 * 本说明书可能会被修改,请注意最新版本资料 * 200 年月第版第次印刷

版本声明 本说明书适用于PS 6000+自动化系统版本 1.软件 软件版本 2.硬件 产品说明书版本修改记录表 * 技术支持电话:(025) 传真:(025) * 本说明书可能会被修改,请注意核对实际产品与说明书的版本是否相符* 2009年10月第3版第1次印刷 * 国电南自技术部监制

目录 版本声明 1 启动控制台 (1) 启动方法 (1) 启动进程 (1) 用户管理 (2) 退出进程 (5) 2 实时进程 (6) 实时库服务进程 (6) 103规约进程 (6) 在线系统 (6) 告警显示窗 (25) 用户管理 (30) 计算服务 (30) 历史服务 (30) 保护设备管理 (30) 曲线 (38) 实时库浏览 (41) 3 高级应用 (42) 拓扑分析 (42) 事故追忆 (42) 4 报表浏览器 (44) 报表浏览器菜单项 (44) 报表打印 (46) 5 故障录波分析软件 (49) 使用界面整体介绍 (49) 菜单 (50)

1 启动控制台 PS 6000+自动化系统的进程都集中在控制台,用户可以通过控制台启动或停止各进程。 启动方法 方法一:单击电脑桌面上的控制台图标 方法二:打开终端,输入命令: $cd $CPS_ENV/bin $./console 控制台启动后界面如图1所示: 图 1 启动进程 控制台把进程分为三类,分别是配置工具、功能配置和实时进程。每类对应一个按钮,点击按钮,弹出下拉框,列出该分类下的常用进程,选中即可启动对应进程。 点击配置工具,弹出下拉框,如图2所示: 图 2 点击功能配置,弹出下拉框,如图3所示: 图 3 点击实时进程,弹出下拉框,如图4所示:

非标自动化设备机械技术规范

非标自动化设备机械技术规范 为了在今后设备前期管理过程中,加强非标设备的质量控制工作,改善设备初期状态,确保设备在生产服役过程中有良好的开动率,特制定本规范。希望参与前期管理的技术人员参照执行,使技术要求更全面、准确、严密。 一、技术要求 一)、结构要求 1).机械机构设计需符合人机工程学,方便人员操作与维修; 2).机械结构设计需经过计算,达到正常使用的强度要求,并在安全余量之内; 3).机械结构设计需根据我方具体要求,对关键点进行FEMA分析和验证; 4).机械结构总体设计需考虑经济、环保、安全的原则。 二)、材料要求 1).结构件、面板类钢材要求Q235,传动件、一般零部件材料要求45#、需热处理部件材料要求20-40Cr或指定其他材料,各类型材必须是国标型材,特殊要求根据设备设计需求具体提出来; 2).所有材料必需有相应的合格证或符合质量要求的检验证书; 3).对于特殊部件的材料,需同时提供检测报告,报告内容主要涉及:成分、力学性能、物理性能等。 三)、钢构表面要求 1).钢结构件表面需经喷砂处理,除锈等级Sa2.5;若手工进行表面处理,需介于St2与St3之间。 2).喷砂后需喷涂底漆为红丹防锈漆一遍,面漆为醇酸调和漆两遍,总干膜厚度为125μm;附着力达到ISO等级1级或ASTM等级4B级; 3).结构件表面不能有明显的变形、划伤、撞伤、凹槽、凸现、缺失、分层等缺陷。四)、焊接要求 1).所有焊接都需有相应的焊接规范和标准,并进行焊接工艺验证;

2).现场焊接时,需满足焊接规范的要求; 3).焊缝表面不能有裂纹、气孔、夹渣、未熔合、未焊透、虚焊、形状缺陷及上述以外的其他缺陷; 4).主梁受拉区的翼缘板、腹板的对接焊缝应进行无损探伤,超声波探伤不低于11345中的I级,并提供报告的复印件。 五)、传动要求 1).传动设计需考虑传动效率最优化; 2).传动机构要求简单合理,以最少的环节实现功能; 3).传动设计需考虑现场噪音控制,尽一切可能降低噪音的产生; 4).变速箱(SIEMENS或SEW)、电机(SIEMENS或SEW变频电机)、轴承(SKF或NSK)等部件要求指定厂家或品牌; 5).变频电机采用的范围:风机、需调速的传动机构、需要和传动机构配合的传动系统。 六)、液压系统 1).液压系统应确保其安全性、系统的连续运行能力、可维护性和经济性,并能保证系统的使用寿命延长; 2).系统的所有部件应在设计上或以其他保护措施,防止压力超过系统或系统任何部分的最高工作压力及各具体元件的额定压力; 3).系统的设计、制造和调整,应使冲击压力和增压压力减至最低。冲击压力和增压压力不应引起危险; 4).应考虑由于阻塞、压降或泄漏等原因影响元件安全工作的后果; 5).无论是预期的还是意外的机械运动(包括加速、减速或物体的提升/夹持),都不应造成对人员有危险的状态; 6).系统设计需尽可能减少管路、管接头; 7).液压系统需实现防尘、防爆功能; 8).所有执行元件、管接头、阀门等部件需易于接近,且方便操作;

仪表自动化管理办法

仪表自动化管理办法 第一章总则 第一条为了加强仪表自动化设备的管理工作,提高仪表自动化设备安全经济运行,依据中石化《仪表及自动控制设备管理制度》并结合公司实际情况,制定本办法。 第二条本办法所称仪表自动化设备包括测量、监测、控制、质量分析仪表、数据采集系统、控制系统(DCS、PLC等)、执行器、组合及智能仪表以及由它们组成的自动化系统和安全保护报警联锁系统。 第三条本办法适用于在用仪表自动化设备、更新零购项目仪表自动化设备管理,新、改、扩建、技改项目仪表管理按规建部有关规定执行。 第二章职责 第四条设备管理部职责 (一)负责贯彻执行及行业部门有关仪表自动化的管理制度、规程、办法、指令等。 (二)负责制订和修订仪化股份公司仪表自动化管理办法、检修规程及有关规定。 (三)负责组织对各使用单位的仪表自动化的完好及投用情况和管理工作进行检查、监督、考核。 (四)组织仪表自动化方面的技术交流、培训、咨询和应用开发,努力提高其应用水平。 (五)根据设备全过程管理的要求,负责组织重点更新、零购项目仪表自动化设备的规划调研、方案论证、设计选型和安装验收全过程工作,参

与技术改造、新建装置仪表自动化设备的规划、设计、安装验收等工作。 第五条生产中心职责 (一)负责贯彻执行及仪化股份公司有关仪表自动化的管理制度、规程、办法、指令等规定。 (二)建立技术档案,对本单位仪表自动化的完好及投用情况进行管理考核。 (三)各单位负责对仪表自动化的管理。按规定及时上报有关仪表自动化的报表、资料。 (四)运保室(或同类机构)为仪表自动化的主管部门。 第六条安全环保监督部职责 负责对可燃、有毒气体报警器的管理进行安全监督。 第三章管理规定 第七条各单位应建立明确的仪表管理网络,明确职责。 第八条各单位要加强对仪表自动化设备的维护和检修,以保证仪表测量精度、可靠性和控制质量,使检测仪表和自动化系统处于良好状态。做好故障的统计和分析,及时消除故障,定期进行检修校验工作,健全原始记录和信息反馈。以上各项工作均要按公司统一表式填写建档。 第九条操作工应掌握仪表及自动化设备的简单原理、结构、性能,正确使用与操作,保持仪表自动化设备的清洁。 第十条设备主管部门应参与新建装置、技措项目、设备零购项目的仪器、仪表选型、验收工作。在办理竣工验收手续后,移交生产装置使用,附件、备件、工具、资料要齐全。 第十一条加强对仪器、仪表、DCS的电源、气源、伴热及空调系统的

自动化设备说明书样本

自动化设备说明书样本 此文档为WORD版可编辑修改

设备手册

目录 第 1 章安全 (5) 1-1内容 (5) 1-2安全装置的位置 (6) 1-3安全装置的功能 (6) 1-4潜在危险 (8) 测试的过程中,压力测试增压缸是动作的 (8) 压力测试完产品时动作的 (8) 推动产品时动作的 (8) 1-5安全预防 (8) 1-5-1 机械方面 (8) 1-5-2 电气方面 (8) 1-5-3 Lockout / Tag-out 程序 (9) 第 2 章操作原理 (10) 2-1内容 (10) 2-2系统概观 (11) 第 3 章安装 (12) 3-1内容: (12) 3-2设备需求 (13) 3-2-1 尺寸 (13) 3-2-2气源 (13) 3-3设备的移动 (13) 3-4设备的安装 (14) 第 4 章电源开启 / 关闭流程 (15) 4-1内容: (15) 4-2开启电源检查表 (16) 4-3关闭电源检查表 (16) 4-4开启设备流程 (17) 4-5停止设备流程 (17) 第 5 章设置 (18) 5-1内容: (18) 第 6 章手/自动运行操作 (19) 6-1内容 (19) 6-1-1手动过程: (19) 6-1-2自动过程: (24) 6-1-3异常画面: (26) 6-1-4 I/O画面: (27) 7-2气缸速度调整 (29)

第 8 章常见故障处理 (30) 8-1内容 (30) 8-2故障修理表 (31) 8-3电气部份故障处理 (32) 8-4一般的故障修理程序 (32) 第9 章预防的维护 (33) 9-1目的 (33) 9-2预防的维护检查表 (34) 附录 (35) M ODIFY_L INE电路图 (35) M ODIFY_L INE零件图 (35) M ODIFY_L INE气路图 (35) M ODIFY_L INE机械备件清单 (35) M ODIFY_L INE电气备件清单 (35) 气源数字显示器说明书 (35)

自动化系统使用维护检修规程

自动化系统使用维护检修规程 第一章总则 第一条制定本规程的目的是提高公司自动化系统软件、硬件的管理水平,以便员工更好地了解、掌握设备的技术性能,提高操作、维护和检修水平。确保自动化设备的安全可靠运行,进而降低自动化系统故障率,使自动化系统为生产提供强有力的保障。 第二条凡在本公司各生产区域内从事自动化系统(包括硬件、软件,下同) 使用、维修、开发的单位和个人,在操作、维护、检修自动化系统时必须遵守本规程。联网(生产用局域网)的计算机系统的病毒预防和控制,按《中华人民共和国计算机信息系统安全保护条例》执行。 第三条自动化系统使用单位(工艺)应当确定系统安全管理责任人,落实安全保护技术措施,保障本单位自动化系统安全,并协助设备点检及检修人员做好安全保护管理工作。 第四条本规程适用于我公司L1-L3级自动化系统,在执行中与控股公司有关规程发生冲突时,按控股公司规程执行。 第一章自动化系统安全的一般要求 第一节设备安装与配置 第五条自动化设备必须按照设计规范安装于通风良好、消防设施齐备的房间(现场机电一体化设备所带自动化设备除外),网络设备必须放置并固定于配线柜(或PLC柜)中。

第六条关键自动化设备必须提供不间断电源并确保UPS电池有效,以防止电源波动对设备的冲击、确保生产连续可靠运行。 第七条关键设备的控制系统必须提供电源、CPU和网络的冗余,必要的要提供服务器双机热备份机制,提高系统运行可靠性。 第八条自动化系统与信息化系统的接口必须安装硬件防火墙。调度管理自动化系统要安装防病毒软件。 第二节系统维护 第九条只有经过专业培训的维护人员才允许对自动化系统参数进行调整或对硬件设施进行维护。对系统软件修改或对硬件设备进行更换更新时,点检、检修人员必须同时到现场,必要时通知设备处人员到场,共同监督执行。 第十条点检人员应定期检查各系统运行情况。 第十一条自动化系统需要定期更换管理员口令和操作员口令。 第十二条维护人员口令字必须妥善保管,临时离开管理员界面时必须锁屏或注销管理员权限。 第二章自动化系统的使用(操作)要求 第一节操作室(调度室)管理 第十三条操作室(调度室)内应保持清洁、安静、严禁吸烟。 第十四条进入操作室(调度室)的人员应自觉爱护操作室(调度室)内所有设备。 第十五条未经操作室(调度室)管理人员同意, 任何人员不得

自动化设备使用说明书

(冲压生产线) 使 用 说 明 书 安全提示 1、!本机为自动化生产设备,它的运行是由程序自动控制的,必须由经过设备厂家培训的专门人员进行操作,严禁未经培训的人员操作机器。 2、 ! 3、 !更换或调试模具的时候请关掉柜子上的电源钥匙开关。 目录 一、主要功能与特点二、系统软硬件构成三、安装与调试 四、触摸屏系统及参数介绍 首页主画面参数设置手动画面报警信息坐标参数喷油参数 五、两台单独工序触摸屏介绍主画面参数设置报警信息六、按钮介绍 主控制按钮面板介绍两个单独加工工序按钮介绍 七、注意事项八、紧急及故障处理附件: 继电器位置及作用图 plc i/o图电路图 产品简介 本产品由控制系统、主送料机、主冲床和两台单独加工工序设备组成。控制系统与一般的普通冲床联机后即可把冲床改造成自动数控冲床。从而具有了条料自动精确进给、自动冲压、废料自动排除的功能。由于它具有高速、精确的特性,就可以实现原材料的最大利用率,提高产品的合格率,进而提高生产效率,降低成本。同时也改善了操作人员的劳动环境,使操作人员有可靠的安全保障,可以实现一人监控、操作多台机器,从而大大节约了人力资源,大大节约了生产成本。 特别说明:没有我厂电气工程师的允许,不要改动电气控制柜里的线路、plc和触摸屏里的程序、伺服驱动器里的参数。否则造成的后果自负。一、主要功能与特点 2、高精度与高速度进给。用伺服电机进行运行控制,可实现精确到0.01mm的移动距离。 3、操作简单,容易上手。本系统配备了威纶通的彩色触摸屏,可以实现图形化操作方式,界面简洁直观,所有操作“一指即可”。 4、加工尺寸可灵活调整。对于不同尺寸的工件,只需进触摸屏简单设置即可。 二、系统软硬件构成 1、硬件部分 电气控制柜:系统的核心控制部分,安装有主要控制元件。所有参数可以通过前门面板上的触摸屏设定。 控制柜的安装:为保证控制单元能正常工作,拥有更长的使用寿命,请将其安置于室内干燥清洁、通风良好的环境中,即要保证控制柜的两侧有300mm以上的空间。不要在柜子里堆放杂物,以免损坏线路和造成通风不畅.。柜子的操作面板必须方便操作人员接触,以便正常操作和在紧急状态下能迅速切断电源。 按钮控制面板:控制按钮主要用来手动调整和设定系统的位置。当系统所需参数通过触摸屏设定完毕后,通过操作该面板完成条料的冲压加工,具

自动化设备技术规范

1:设备使用条件及工厂环境. 1.1.供电环境:单相220V-240V、50HZ,三相(五线)380V/50HZ 1.2.设备使用环境温度、湿度:环境温度0-40度环境湿度<=90 1.3.气压:最小工作气压0.4Mpa 最大工作气压.0.7Mpa 2:机械系统要求 2.1.所有机械部件要做防锈处理 2.2.设备工装具备防呆功能 2.3关键部件淬火处理 2.4.工装具能实现快速换模 2.5.需要调整位置的加刻度尺来调整 2.6.机械、电气部件设计要有放错装置,以便符合产品装配及测量需要,防止出错。2.7按照购买方要求选购指定品牌、选择其它品牌需有甲方认可,并列出设备配置清单。 2.8设备外观以及颜色需按照甲方要求规定制作。 2.9设备所有运动部件要有防护措施。 2.10与产品和操作人员接触到的零部件必须去毛刺或有相应的防护、防止伤害操作员或产品。 3:电气系统要求 3.1.设备电源电压要求如下; 单相、220V-240V/50HZ 三相、380V-400V/50HZ 3.2设备必须有安全保护装置、断路器手动操作手柄要在控制柜外,安装在容易操作的 位置关闭电源时电源开关关至隔离位置并可用锁锁住。 3.3设备断路器未断开的情况下控制柜门无法打开,只有在断路器切断电源的情况下才

能打开。 3.4设备必须可靠接地,必须安装漏电保护器。设备应安装安全继电器,且输入输出回 路直接与各执行机构相连。应为双通道形式。设备进线端电箱内断路器必须有漏电保护功能。 3.5电机必须有过载保护。 3.6设备运行应充分考虑节能,尽可能选用推广的节能设备。 3.7设备高度不超过2200MM(根据设备类型和安装场地由购买方规定设备高度) 3.8控制柜要有防水、防尘、防小动物结构,符号IP54防护标。 3.9控制柜内元器件安装应方便清洁、维护、维修。 3.10保证控制柜内的正常温度和湿度(如有必要需增加对流风扇) 3.11电气柜内张贴电气控制对象示意图。 3.12每根电线两端应标注对应的编码号,编码号应和电气原理图上的号码标注一致。 3.13PLC输入输出接口应有20%的余量。 3.14电控箱布线要求合理、美观。 3.15工控机和电气控制元件要求安装牢靠、避免跌落。 3.16所有电箱要求加锁、避免非授权人员操作。 3.17在PLC和人机界面设计中,要求设计三个不同级别的权限:操作员、技术员、工程 师。针对作业员只能够启停设备更换程序,技术员只能够根据规格更改参数和操作员权限,针对工程师应开放所有权限,可以更改设定规格,并能适当增加相应参数。 4:气动系统要求 4.1进气端使用三联件(空气过滤、减压阀、油雾分离器) 4.2急停开关按下总气源应该关闭。

喷涂机操作说明书

喷涂机操作说明书 1

喷涂机 操作说明书 公司名称:厦门迈斯维自动化设备有限公司 公司地址:厦门市集美区杏林高浦西潭路34号之

二 目录 1 安装机台 (3) 1-1 电源 .................................................................................................... 1-2 气压源 ................................................................................................ 1-3 使用注意事项..................................................................................... 2 操作画板 .................................................................................................... 2-1 主要操作画板..................................................................................... 3 软件画面操作............................................................................................. 3-1主画面 ................................................................................................ 3-2参数设置画面 .................................................................................... 3-3点胶参数画面 .................................................................................... 3-4示教画面 ............................................................................................

自动化设备机械技术规范(试行)

自动化设备机械技术规范(试行) 为了在今后设备前期管理过程中,加强非标设备的质量控制工作,改善设 备初期状态,确保设备在生产服役过程中有良好的开动率,特制定本规范。希 望参与前期管理的技术人员参照执行,使技术要求更全面、准确、严密。 一、技术要求 (一)、结构要求 1.机械机构设计需符合人机工程学,方便人员操作与维修; 2.机械结构设计需经过计算,达到正常使用的强度要求,并在安全余量之内; 3.机械结构设计需根据我方具体要求,对关键点进行FEMA分析和验证; 4.机械结构总体设计需考虑经济、环保、安全的原则。 (二)、材料要求 1.结构件、面板类钢材要求Q235,传动件、一般零部件材料要求45#、需热处理部件材料要求20-40Cr或指定其他材料,各类型材必须是国标型材,特 殊要求根据设备设计需求具体提出来; 2.所有材料必需有相应的合格证或符合质量要求的检验证书; 3.对于特殊部件的材料,需同时提供检测报告,报告内容主要涉及:成分、力学性能、物理性能等。 (三)、钢构表面要求

1.钢结构件表面需经喷砂处理,除锈等级Sa2.5;若手工进行表面处理,需介于St2与St3之间。 2.喷砂后需喷涂底漆为红丹防锈漆一遍,面漆为醇酸调和漆两遍,总干膜厚度为125μm;附着力达到ISO等级1级或ASTM等级4B级; 3.结构件表面不能有明显的变形、划伤、撞伤、凹槽、凸现、缺失、分层等缺陷。 (四)、焊接要求 1.所有焊接都需有相应的焊接规范和标准,并进行焊接工艺验证; 2.现场焊接时,需满足焊接规范的要求; 3.焊缝表面不能有裂纹、气孔、夹渣、未熔合、未焊透、虚焊、形状缺陷及上述以外的其他缺陷; 4.主梁受拉区的翼缘板、腹板的对接焊缝应进行无损探伤,超声波探伤不低于11345中的I级,并提供报告的复印件。 (五)、传动要求 1.传动设计需考虑传动效率最优化; 2.传动机构要求简单合理,以最少的环节实现功能; 3.传动设计需考虑现场噪音控制,尽一切可能降低噪音的产生; 4.变速箱(SIEMENS或SEW)、电机(SIEMENS或SEW变频电机)、轴承(SKF或NSK)等部件要求指定厂家或品牌;

自动化设备说明书样本

关注未来,期待成为您的战略合作伙伴 F ocus O n F uture, We expect to be your strategic supplier 设备手册 Handbook 目录 第 1 章安全 (3) 1-1内容 (3) 1-2安全装置的位置 (4) 1-3安全装置的功能 (5) 1-4潜在危险 (7) 测试的过程中,压力测试增压缸是动作的 (7)

压力测试完产品时动作的 (7) 推动产品时动作的 (7) 1-5安全预防 (7) 1-5-1 机械方面 (7) 1-5-2 电气方面 (7) 1-5-3 Lockout / Tag-out 程序 (8) 第 2 章操作原理 (8) 2-1内容 (8) 2-2系统概观 (9) 第 3 章安装 (11) 3-1内容: (11) 3-2设备需求 (12) 3-2-1 尺寸 (12) 3-2-2气源 (12) 3-3设备的移动 (12) 3-4设备的安装 (13) 第 4 章电源开启 / 关闭流程 (14) 4-1内容: (14) 4-2开启电源检查表 (15) 4-3关闭电源检查表 (15) 4-4开启设备流程 (16) 4-5停止设备流程 (16) 第 5 章设置 (17) 5-1内容: (17) 第 6 章手/自动运行操作 (18) 6-1内容 (18) 6-1-1手动过程: (18) 6-1-2自动过程: (23) 6-1-3异常画面: (25) 6-1-4 I/O画面: (26) 7-2气缸速度调整 (28) 第 8 章常见故障处理 (29) 8-1内容 (29) 8-2故障修理表 (30) 8-3电气部份故障处理 (31) 8-4一般的故障修理程序 (31) 第9 章预防的维护 (32) 9-1目的 (32) 9-2预防的维护检查表 (33)

JT-AOI设备使用指南

JT-AOI操作说明 Ver 1.3.1 警告! 1 机器运行时,请勿将手或其他物体放入机器中!否则可能造成严重人生或物品伤害! 2 维修保养时,请断开机器所有电源,并确认UPS开关和伺服控制器开关正常关闭。 3 非专业人士请勿维护保养设备。 4 不正当操作可能造成设备财物损坏或人生伤害。

一.设备按钮介绍: 左后方的总电源开关 紧急开关 操作开关,左侧的绿色的开关与右侧的绿色开关为上板测试开 关。红色开关为退板停止开关。黄色开关为夹板测试或暂停开关。 左侧绿色开关与右侧绿色按钮开关为上板开关。 注:通过程序控制,可以调整左右上板开关的配合方式。 二.开机说明: z确认外部供电交流电源~220V,接入功率不小于1000V A。如图所示。 z打开机器左后侧总电源开关。按住工控电脑旁边的UPS电源开关并保持3秒钟,听到”嘀”声后电源开启,这时所有的控制开关灯全部正常点亮。检查UPS的输入输出电压显示是否在正常范围以内。 z用外用表确认机器后方的静电接线座电压正常,否则需要检查电源接地是否正常。

z打开工控电脑,等待WINDOWS2000操作系统正常启动。缺省登录用户MPSAOI,缺省密码smtaoi 三. 关机说明: z先确认已经关闭所有的应用程序,工作台的XY轴已经回到原点。 z关闭WINDOWS2000操作系统,并等待操作系统完全正常关闭后 z按住工控电脑旁边的UPS电源开关并保持3秒钟,听到”嘀”声后电源自动关闭。 z关闭机器左后侧总电源开关。整机电源关闭。 注意:如果需要整机移动,必须关闭总电源开关, 四.软件介绍: JT-AOI将软件部分分成了三个模块,它们是: 1.MPSAOI: 为在线检测模块.所有的在线检测都是通过这个模块完成 2.AOIEDIT: 为离线编辑模块,通过它,可以实现完全离线编程. 3.AOILOGVIEW:为错误报告模块,它的作用就是辅助MPSAOI在线测试用.通过这个模块,可以方 便查看MPSAOI检测的记录报告,并且通过网络,方便其它工位查看相关的记录文件。 注:如果需要多工位错误查看需特别说明。

相关文档
相关文档 最新文档