文档库 最新最全的文档下载
当前位置:文档库 › 教你如何检测光耦的好坏

教你如何检测光耦的好坏

教你如何检测光耦的好坏
教你如何检测光耦的好坏

教你如何检测光耦的好坏

目录:解决方案星级:3星级人气:13886发表时间:2013-08-05 15:05:00

【大中小】文章出处:超毅电子网责任编辑:ZY作者:ZY

光电耦合器——又称光耦合器或光耦,它属于较新型的电子产品,现在它广泛应用于计算机、音视频……各种控制电路中。由于光耦内部的发光二极管和光敏三极管只是把电路前后级的电压或电流变化,转化为光的变化,二者之间没有电气连接,因此能有效隔断电路间的电位联系,实现电路之间的可靠隔离。

随着光电耦合器的日益稳定且普遍的情况下,市场上出现了许许多多、各式各样的光耦,因此山寨牌的光耦也浮现出来了,为了让广大的消费者能买到好的光耦,亿光代理商超毅电子跟大家讲解一下如何检查光耦的好坏:

判断光耦的好坏,可在路测量其内部二极管和三极管的正反向电阻来确定。更可靠的检测方法是以下三种。

1、比较法拆下怀疑有问题的光耦,用万用表测量其内部二极管、三极管的正反向电阻值,用其与好的光耦对应脚的测量值进行比较,若阻值相差较大,则说明光耦已损坏。

2、数字万用表检测法下面以EL817光耦检测为例来说明数字万用表检测的方法,检测电路如图1所示。检测时将光耦内接二极管的+端{1}脚和-端{2}脚分别插入数字万用表的Hfe 的c、e插孔内,此时数字万用表应置于NPN挡;然后将光耦内接光电三极管C 极{5}脚接指针式万用表的黑表笔,e极{4}脚接红表笔,并将指针式万用表拨在RX1k挡。这样就能通过指针式万用表指针的偏转角度——实际上是光电流的变化,来判断光耦的情况。指针向右偏转角度越大,说明光耦的光电转换效率越高,即传输比越高,反之越低;若表针不动,则说明光耦已损坏。

3、光电效应判断法仍以EL817光耦合器的检测为例,检测电路如图2所示。将万用表置于RX1k电阻挡,两表笔分别接在光耦的输出端{4}、{5}脚;然后用一节1.5V的电池与一只50~100Ω的电阻串接后,电池的正极端接EL817的{1}脚,负极端碰接{2}脚,或者正极端碰接{1}脚,负极端接{2}脚,这时观察接在输出端万用表的指针偏转情况。如果指针摆动,说明光耦是好的,如果不摆动,则说明光耦已损坏。万用表指针摆动偏转角度越大,表明光电转换灵敏度越高。

用两个万用表就可以测了。光电耦合器由发光二极管和受光三极管封装组成。如光电耦合器4N25,采用DIP-6封装,共六个引脚,①、②脚分别为阳、阴极,③脚为空脚,④、⑤、⑥脚分别为三极管的e、c、b极。

以往用万用表测光耦时,只分别检测判断发光二极管和受光三极管的好坏,对光耦的传输性能未进行判断。这里以光耦4N25为例,介绍一种测量光耦传输特性的方法。

1、判断发光二极管好坏与极性:用万用表R×1k挡测量二极管的正、负向电阻,正向电阻一般为几千欧到几十千欧,反向电阻一般应为∞。测得电阻小的那次,红笔接的是二极管的负极。

2、判断受光三极管的好坏与放大倍数:将万用表开关从电阻挡拨至三极管hFE挡,使用NPN型插座,将E孔连接④脚发射极,C孔连接⑤脚集电极,B孔连接⑥脚基极,显示值即为三极管的电流放大倍数。一般通用型光耦hFE值为一百至几百,若显示值为零或溢出为∞,则表明三极管短路或开路,已损坏。

3、光耦传输特性的测量:测试具体接线见下图,将数字万用表开关拨至二极管挡位,黑笔接发射极,红笔接集电极,⑥脚基极悬空。这时,表内基准电压2.8V经表内二极管挡的测量电路,加到三极管的c、e结之间。但由于输入二极管端无光电信号而不导通,液晶显示器显示溢出符号。当输入端②脚插入E孔,①脚插入C孔的NPN插座时,表内基准电源2.8V经表内三极管hFE挡的量电路,使发光二极管发光,受光三极管因光照而导通,显示值由溢出符号瞬间变到188的示值。当断开①脚阳极与C孔的插接时,显示值瞬间从188示值又回到溢出符号。不同的光耦,传输特性与效率也不相同,可选择示值稍小、显示值稳定不跳动的光耦应用。由于表内多使用9V叠层电池,故给输入端二极管加电的时间不能过长,以免降低电池的使用寿命及测量精度,可采用断续接触法测量。

电机烧坏原因及判断方法 防范措施

电机烧坏原因及判断方法、防范措施 1 缺相运行 造成电机缺相的原因很多,如控制回路的热继电器或磁力启动器的触头由于温度高而氧化,导致接触不良缺相;电机引线或电缆一相断开;电源动力保险一相烧融断开;电机绕组接头焊接不好,过热后融化断开等。 1.2 长期过电流运行 最为常见的是机械装置与电动机的不匹配,就是平时所说的小马拉大车现象;机械部分瞥压、堵转或卡涩后过负荷运行;机械与电机连接处同心度不好;电机本身轴承严重卡涩或损坏;电机绕组选择不合理或接线错误,空载电流就偏大;定子绕组匝间有短路;电源电压过高;电动机在检修过程中取过定子铁芯,造成容量不足等。1.3 电机冷却系统故障 常见的低压电动机一般采用风冷。如果周围环境条件太差、灰尘太大、油污严重,就会导致电动机的表面通风散热槽堵塞;电动机的冷却风叶太小、与转轴存在相对运动或有叶片损坏;电动机冷却风叶安装错误,正向吹风变成反向吸风,冷却效果明显下降等。 1.4 电机绕组接线错误 绕组接线错误常见的原因有三个:①星形接法接成了三角形接法,造成单相绕组承担高电压而过流运行;②电机引出线的首尾搞反,不满足三相交流电互差120电角度的要求,造成启动瞬间定子绕组冒烟;③定子绕组一路接法误接成两路或两路接法误接成四路,造成空载电流偏大或烧损。 1.5 定子绕组制作工艺及绝缘强度不符合要求 低压电动机在烧损后,在定子绕组修复的过程中,存在造成工艺和强度不符合要求的原因。①没有专用的电机绕线、嵌线、划线、接线和焊接的专用工具;②没有按照绕组绕线、嵌线、划线、接线和焊接的标准执行,造成匝间短路;③电机绕组浸漆没有严格按照“三烘两浸”的程序和标准进行; ④绕组层间、相间绝缘没垫好;五是电机绕组端部整形不好,端部太大碰触端盖造成接地。 1.6 运行人员操作不当 连续工作制的电动机频繁启动,由于启动电流过大,加速电机绕组绝缘老化而烧损,尤其是电机热态情况下频繁启动;运行人员在不关闭泵或风机出入口门的情况下带负荷启动电机;对长期停运的电机,未进行绝缘测试和盘车,启动电动机。 2 技术防范措施 针对归纳总结出来的电动机定子绕组烧损原因,结合从事电机检修与维护的工作经验,并参照相关规程,提出如下一些防止低压电动机烧损的技术措施。 2.1 加装缺相保护 依据《电力工程电气设计手册》电气二次部分规定:应装设两相保护,条件

光耦使用技巧

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1 a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2 (I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R 2。由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

无刷电机判断好坏的方法

无刷电机判断好坏的方法 无刷电机是目前市场上较流行的电动车电机 无刷电机有斜槽与直槽区分,但判断电机的方法却是一样的,如下: 用万用表的红(+)表接霍尔线的负极,黑(-)表依次量黄,绿,兰三根霍尔线,电阻为1400到1980之间,但所量的三个数据是一样的,相差不大。然后用万用表的红(+)接霍尔线的正极,黑(-)表依次量黄,绿,兰三根霍尔线,电阻为550到800之间,三个数据要相等,或相差不大。可以判断电机的霍尔好坏。 粗线依次两两相接,盘动电机要有一顿一顿的感觉,三根线并接在一起,前后转动电机要有相当大的阻力,且均匀。可以判断电机相线是否断路。 双动力电机与变频继电器 (1)双动力电机只的是电机里边两个线圈 倒入11跟线其中8跟无刷是普通低速线而电机高速线圈是在电机右边的3跟大线上 (2)记电器是在与控制器相配的当转把拧到一定程度时控制器会有承受不住的压力他就输出过高的电流通过记电器发出信号产生,记电器在低速挡,变换到告诉挡而产生不停的传唤到电机的高速线上 电动车更改控制器。有刷与无刷 (1)有刷控制器用普通行控制器相改很简单但是电量显示版12V改36V就用36直接12V 电量显示版〈不过改了跟没改一样是不准的〉 (2)无刷控制器用体陪的控制器相改如过反转有两种办法去排斥 1翻倒电机 2用电机的8跟线+正-负A黄B蓝C绿 小线是SA黄SB蓝SC绿 正负不动 大线A与B相换小线SA与SC相换 就可以了 电动车电机怎样维修〈有刷与无刷〉 (1)有刷电机用万能表量通的话证明电机是好的不通为坏 (2)无刷电机八跟线 分别是黑 红 黄 绿 蓝 大黄 大绿 大蓝 用完能表的红笔量电机的黑线用黑笔量三跟小线分别阻止是650-750之间证明电机没问题

教你如何选择光电耦合器

我们以6N137为例:来说明怎样选择器件 6N137高速光电耦合器 6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AlGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。 特性: ①转换速率高达10MBit/s; ②摆率高达10kV/us; ③扇出系数为8; ④逻辑电平输出; ⑤集电极开路输出; 工作参数: 最大输入电流,低电平:250uA 最大输入电流,高电平:15mA 最大允许低电平电压(输出高):0.8v 最大允许高电平电压:Vcc 最大电源电压、输出:5.5V 扇出(TTL负载):8个(最多) 工作温度范围:-40°C to +85°C 典型应用:高速数字开关,马达控制系统和A/D转换等 6N137光耦合器的内部结构、管脚如图1所示。 6N137光耦合器的真值如表1所示: 6N137光耦合器的真值表 输入使能输出 H H L L H H H L H L L H H NC L L NC H 需要注意的是,在6N137光耦合器的电源管脚旁应有—个0.1uF的去耦电容。在选择电容类型时,应尽量选择高频特性好的电容器,如陶瓷电容或钽电容,并且尽量靠近6N137光耦合器的电源管脚;另外,输入使能管脚在芯片内部已有上拉电阻,无需再外接上拉电阻。 6N137光耦合器的使用需要注意两点:第一是6N137光耦合器的第6脚Vo输出电路属于集电极开路电路,必须上拉一个电阻;第二是6N137光耦合器的第2脚和第3脚之间是一个LED,必须串接一个限流电阻。 ------------------------------------------------------------ 一、6N137原理及典型用法 6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏

夏普·光耦选型参数Opto_Line_Card_Full

https://www.wendangku.net/doc/f83387260.html, Pack performance into the smallest dimensions with Sharp’s solutions for Lighting, Sensing, and Power handling. Sharp’s Lighting, Drivers, Power handling, and Sensing modules are specifically designed for engineers with small applications demanding higher packaging density and a smaller end product. Combine our Lighting with our Driver and Sensing modules for a complete solution. Sharp’s Sensors pro-vide the best cost/performance numbers in the industry, while Sharp’s Photointerrupters are at the forefront in size and ambient light management. Sharp’s Distance Sensors outperform capacitive, ultrasonic, and light-intensity offerings. Lighting ? LED Modules ? LED Drivers ? Ambient Light Sensors ? Blue Laser Diodes Power ? Photocouplers ? Phototriacs Sensors ? Photointerrupters ? Optical System Devices ? Emitters/Detectors Electronic Components Group Selector Guide

用摇表测电动机好坏

用摇表测电动机好坏文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

用摇表测电动机好坏 用万用表为什么不能测量电机,必须用摇表? 答:因为万用表里供测量电阻所使用的电源最高是9V,而电机是工作在220V或 380V的交流电压下,其脉冲峰波达500多伏特.而兆欧表(摇表)的供电电压是500V,只要在500V的电压下线圈的相与相间、相与地间的漏电微弱(包括容性电流),那么电机就是合格的了.普通万用表只能测几十千欧的电阻(指针在刻度盘1/3-2/3的范围内最准确),用它去测上兆欧的电阻,表笔动没动你都不大察觉得出(万用表测电阻时,它的刻度是不均匀的,上百上千欧的只占刻度盘右边一小点位置). 绝缘电阻表(兆欧表)使用方法: 现代生活日新月异,人们一刻也离不开电。在用电过程中就存在着用电安全问题, 在电器设备中,例如电机、电缆、家用电器等。它们的正常运行之一就是其绝缘材料的绝缘程度即绝缘电阻的数值。当受热和受潮时,绝缘材料便老化。其绝缘电阻便降低。从而造成电器设备漏电或短路事故的发生。为了避免事故发生,就要求经常测量各种电器设备的绝缘电阻。判断其绝缘程度是否满足设备需要。普通电阻的测量通常有低电压下测量和高电压下测量两种方式。而绝缘电阻由于一般数值较高(一般为兆欧级)。在低电压下的测量值不能反映在高电压条件下工作的真正绝缘电阻值。兆欧表也叫绝缘电阻表。它是测量绝缘电阻最常用的仪表。它在测量绝缘电阻时本身就有高电压电源,这就是它与测电阻仪表的不同之处。兆欧表用于测量绝缘电阻即方便又可靠。但是如果使用不当,它将给测量带来不必要的误差,我们必须正确使用兆欧表绝缘电阻进行测量。 兆欧表在工作时,自身产生高电压,而测量对象又是电气设备,所以必须正确使用, 否则就会造成人身或设备事故。使用前,首先要做好以下各种准备: (1)测量前必须将被测设备电源切断,并对地短路放电,决不允许设备带电进行测量,以保证人身和设备的安全。

光耦选型经典指南

光耦选型经典指南 1.0.目的: 针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。 2.0.适用范围: 本指导书适用于瑞谷光偶的设计,选型,替代等。 3.0.说明: 目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。 4.0.内部结构图及CTR 的计算方法: ●规格定义CTR:Ice/I F*100% (检测条件:I F =5 ma Vce=5V, 2701,2801系列) 5.0.光偶主要特性分析,设计选型替代要求: 5.1外观尺寸: 设计,选型,替代注意: ●封装正确,本体MARK字迹要清晰,品牌正确,与技术规格书一致; ●替代时,如都为标准件封装,基本上装配没有问题,但需注意厚度是否与原料 相同,是否满足整机的工艺要求。 5.2不同输入控制电流I F,CTR 值不同;

●由图表显示,IF在5-15ma时CTR值最大;在小于5mA时(目前我们产品设计大 多如此),CTR值一般小于正常额定规格值; ●附加Cosmo KPS2801-B 实测数据: J16(2009年第16周生产)的光耦在室温下的CTR I F(VCE=5V)#1 #2 #3 #4 #5 #6 #7 1mA 88.3% 90.48% 90.57% 86.56% 87.1% 85.12% 87..39% 2mA 133% 130% 130% 125% 135% 122% 126% 3mA 150% 154% 154% 147% 151% 139% 150% 5mA 177% 187% 183% 177% 178% 170% 177% J25(2009年第25周生产)的光耦在室温下的CTR I F(VCE=5V)#1 #2 #3 #4 #5 #6 #7 1mA 69.24% 78.61% 66.68% 66.41% 65.7% 75.5% 79.0% 2mA 97% 105% 110% 104% 101% 122% 126% 3mA 121% 121% 131% 132% 129% 151% 151% 5mA 166% 147% 174% 174% 173% 210% 196% ●评注:IF不同,CTR不同,且差异非常大;不同DATECODE的也有差异,但在IF=5ma时, CTR值都在规格(130-260)范围内; ●设计,选型,替代注意:设计时工作电流应接近来料的检测电流值(目前大多 IF=5ma),否则应用的CTR值无法保证,产品动态性能将很差; 5.3不同环境温度,CTR 值不同;

光耦测量方法

用两个万用表就可以测了。光电耦合器由发光二极管和受光三极管封装组成。如光电耦合器4N25,采用DIP-6封装,共六个引脚,①、②脚分别为阳、阴极,③脚为空脚,④、⑤、⑥脚分别为三极管的e、c、b极。 以往用万用表测光耦时,只分别检测判断发光二极管和受光三极管的好坏,对光耦的传输性能未进行判断。这里以光耦4N25为例,介绍一种测量光耦传输特性的方法。 1.判断发光二极管好坏与极性:用万用表R×1k挡测量二极管的正、负向电阻,正向电阻一般为几千欧到几十千欧,反向电阻一般应为∞。测得电阻小的那次,红笔接的是二极管的负极。 2.判断受光三极管的好坏与放大倍数:将万用表开关从电阻挡拨至三极管hFE挡,使用NPN型插座,将E孔连接④脚发射极,C孔连接⑤脚集电极,B孔连接⑥脚基极,显示值即为三极管的电流放大倍数。一般通用型光耦hFE值为一百至几百,若显示值为零或溢出为∞,则表明三极管短路或开路,已损坏。 3.光耦传输特性的测量:测试具体接线见下图,将数字万用表开关拨至二极管挡位,黑笔接发射极,红笔接集电极,⑥脚基极悬空。这时,表内基准电压2.8V经表内二极管挡的测量电路,加到三极管的c、e结之间。但由于输入二极管端无光电信号而不导通,液晶显示器显示溢出符号。当输入端②脚插入E孔,①脚插入C孔的NPN插座时,表内基准电源2.8V经表内三极管hFE挡的测量电路,使发光二极管发光,受光三极管因光照而导通,显示值由溢出符号瞬间变到188的示值。当断开①脚阳极与C孔的插接时,显示值瞬间从188示值又回到溢出符号。不同的光耦,传输特性与效率也不相同,可选择示值稍小、显示值稳定不跳动的光耦应用。 由于表内多使用9V叠层电池,故给输入端二极管加电的时间不能过长,以免降低电池的使用寿命及测量精度,可采用断续接触法测量。 817是常用的线性光藕,在各种要求比较精密的功能电路中常常被当作耦合器件,具有上下级电路完全隔离的作用,相互不产生影响。 当输入端加电信号时,发光器发出光线,照射在受光器上,受光器接受光线后导通,产生光电流从输出端输出,从而实现了“电-光-电”的转换。普通光电耦合器只能传输数字信号(开关信号),不适合传输模拟信号。线性光电耦合器是一种新型的光电隔离器件,能够传输连续变化的模拟电压或电流信号,这样随着输入信号的强弱变化会产生相应的光信号,从而使光敏晶体管的导通程度也不同,输出的电压或电流也随之不同,817光电耦合器不但可以起到反馈作用还可以起到隔离作用。 主要范围 开关电源、适配器、充电器、UPS、DVD、空调及其它家用电器等产品. 技术资料: 小知识: 一、光电耦合器的种类较多,但在家电电路中,常见的只有4种结构: 1.第一类,为发光二极管与光电晶体管封装的光电耦合器,结构为双列直插4引脚塑封,内部电路见表一,主要用于开关电源电路中。 2.第二类,为发光二极管与光电晶体管封装的光电耦合器,主要区别引脚结构不同,结构为双列直插6引脚塑封,内部电路见表一,也用于开关电源电路中。 3.第三类,为发光二极管与光电晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于A V转换音频电路中。 4.第四类,为发光二极管与光电二极管加晶体管(附基极端子)封装的光电耦合器,结构为双列直插6引脚塑封,内部电路见表一,主要用于A V转换视频电路中。 类别型号 第一类 PC817 PC818 PC810 PC812 PC502 LTV817 TLP521-1 TLP621-1 ON3111 OC617 PS2401-1 GIC5102 第二类 TLP632 TLP532 TLP519 TLP509 PC504 PC614 PC714 PS208B PS2009B PS2018 PS2019

光耦选型最全指南及各种参数说明

光耦选型手册 光耦简介: 光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。 光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。 光耦的分类: (1)光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 (2)常用的分类还有: 按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。 按通道分,可分为单通道,双通道和多通道光电耦合器。 按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。 按输出形式分,可分为: a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。 b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。 c、达林顿三极管输出型,其中包括交流输入型,直流输入型。 d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。 e、低导通输出型(输出低电平毫伏数量级)。 f、光开关输出型(导通电阻小于10Ω)。 g、功率输出型(IGBT/MOSFET等输出)。 光耦的结构特点: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。

确定电机好坏的判断方法

确定电机好坏的判断方法 如果仅仅是判别好坏的话根本就不需要太注意阻值,只要用万用表分别测量电机引出来的每一根线;任意的两个引线都必须有阻值,否则电机已经损坏。如果任意两引线的电阻(万用表的最小欧姆档测量)值为0欧或阻值很小,则也证明此电机已损坏。(短路或局部短路)三根线的,通常都是白红蓝。一般白色是启动线,红色是运行,蓝色是公共地。 下面是量的方法 首先找出哪两根线电阻最大,空掉那根线的就是公共地。<零线>用公共地量其他两根线哪个大哪个就是启动相,哪根小就是运行相。量接地就是电机外壳和三根线,电阻应该是很大,看是单相还是三相了。三相用R×10档只要阻值一样就行了,用R×10K测任意一相与外壳阻值。单相呢?看是正转还是正反转。正转一般阻值相差30%--50%,阻值高的是主绕组,正反转的阻值是一样的,再测与外壳阻值。 电机三根线任意测,得到三组电阻值,好的电机最大的阻值正好等于另外两组阻值之和电机时转时停,有时转起来时速度又很慢,这是怎么回事? 电机工作过程中,有时出现电机突然停转,过一会儿,又重新启动但启动后仅仅转几分钟,就又停下来停一会儿后,又能启动,如此周而复使。有时还出现启动时,电机转速很慢,工作一会之后就停止不转了。这种故障如不及时发现处理,时间一长,很容易烧坏电机和控制系统的器件。 故障原理分析:如果我们了解热继电器的特点的话,就能理解这种故障发生的原因。热继电器是利用电流的热效应来保护电动机免受长期过载危害的一种继电器。而热继电器上有一个可以选择手动复位和自动复位按钮,在孵化设备中我们将热继电器设置成可自动复位方式,当接触器所带负载长时间在过载条件下工作时,热继电器能在有效时间内断开接触器线包电源,保护电机。 但是当热继电器内的自锁机构冷却之后,热继电器内的控制开关又将电源送到接触器上驱动电机工作,这时系统又恢复正常,但过不了几分钟,热继电器又重新发热断开接触器电源,电机又停转,如此周而复始。 故障分析及处理:从上述分析中我们知道故障的起因在热继电器,那么引起热继电器保护动作的原因是什么呢?我们知道,负载缺相或偏相(某一相电压很低)是引起热继电器动作的主要原因。判断方法采用直接检测法,关闭机器,依据从后到前的原则,对每一个器件进行测量判断,从电机一直查到用户电源闸刀保险丝,将可能引起缺相或接触不良的控制器件更换或拧紧。 实际维修中经常出现的几种情况:

各种光电耦合器参数

常用参数 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持 IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。 脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP 的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。 传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。 入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。 入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。 最大额定值 参数名称 符号 最大额定值 单位 V 反向电压 5 V R I 正向电流 50 mA

常用光耦简介及常见型号

常用光耦简介及常见型 号 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常用光耦简介及常见型号 常用光耦简介及常见型号 光电耦合器(简称光耦)是开关电源电路中常用的器件。光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 常用的4N系列光耦属于非线性光耦 常用的线性光耦是PC817A—C系列。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。 线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较 好,能以线性特性进行隔离控制。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带 负载能力下降。 在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光 耦代换。

常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为 这4种光耦均属于非线性光耦。 ? 经查大量资料后,以下是目前市场上常见的高速光藕型号: ? 100K bit/S: 6N138、6N139、PS8703 1M bit/S: 6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8 701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-450 2、HCPL-2530(双路)、HCPL-2531(双路) 10M bit/S: 6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、H CPL-2611、HCPL-2630(双路)、HCPL-2631(双路)

光耦选型经典指引

光耦选型经典指南 一、文档说明: 针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。 光耦属于易失效器件,选型和使用过程中要特别的小心。 目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。 二、原理介绍: 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装 图四光电耦合器之内部结构图可控硅接收型 6脚封装 图五光电耦合器之内部结构图双二极管接收型 6脚封装

光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 内部结构图及 CTR 的计算方法: 规格定义 CTR:Ice/I F *100% (检测条件:I F =5 ma Vce=5V, 2701,2801 系列)

如何判断电机的好坏

如何判断电机的好坏 小电机生产厂家力辉教你如何判断电机的好坏 一、如何检测交流三相电机的好坏 1、摇表摇,500V的摇表即可,摇三个接线柱上的线对电机外壳的绝缘阻值,应该在0.5M欧以上就说明没有对地短路(烟台电机维修)。 2、万用表测:测A/B/C三相间的阻值,是否相等,应该是差不多,差的太多也能转,但是用不长了,记住电机越大,阻值越小!但是不能三相都为0欧,除非你是特别大,如50KW以上的电机!记住如果是调速电机的6个端子阻值可不一样哟! 3、检查轴承、风扇,一般缠电机就让全换了!因为有时候轴承抱死也会烧电机的哟! 4、电机的空载电流一般为额定电流的10%~50%,有时电机空转电流还为零哟! 5、电机额定电流运行时,是满负荷运行,输出功率基本为100%。运行电流小,说明电机输出功率变小,是轻负载运行。 二、如何检测交流单相电机的好坏 用500V兆欧表测量电动机绕组与外壳的绝缘电阻,不应小于0.5兆欧;用万用表测量绕组各引线,没有断线;上述都符合要求,电动机就是好的。

检测电容器的好坏用指针万用表方便些(也有带电容档的数字表,可直接测量)。 将万用表拨到1K或10K电阻档,测电容器的2个引线,表针快速向右偏转后慢慢回到左侧电容器是好的;始终偏向右侧说明电容器被击穿了;指针不动则电容器内部断线或没有容量了。用这种方法只能判断电容器的好坏. 三.直流电机的好坏 先看看有无断线,测测电阻是否正常。 如果是有刷直流马达的话,可以让转子旋转,用万用表测输出的直流电是否正常。 如果是无刷直流马达、并且三相引出,可以让转子旋转,用万用表测输出的交变电压是否正常。 输出电压大小和转速成正比。

光耦选型指南(1)

光耦选型指南(1) 1.0.目的: 针对光偶选型,替代,采购,检测及实际使用过程中出现的光偶特性变化引起的产品失效问题,提供指导。 2.0.适用范围: 本指导书适用于瑞谷光偶的设计,选型,替代等。 3.0.说明: 目前发现,因光偶的选型,光偶替代,光偶工作电流,工作温度设计不当等原因导致产品出现问题,如何减少选型,设计,替代导致的产品问题,这里将制订出相关指导性规范。 4.0.内部结构图及CTR 的计算方法: ●规格定义CTR:Ice/I F*100% (检测条件:I F =5 ma Vce=5V, 2701,2801系列) 5.0.光偶主要特性分析,设计选型替代要求: 5.1外观尺寸: 设计,选型,替代注意: ●封装正确,本体MARK字迹要清晰,品牌正确,与技术规格书一致; ●替代时,如都为标准件封装,基本上装配没有问题,但需注意厚度是否与原料 相同,是否满足整机的工艺要求。 5.2不同输入控制电流I F,CTR 值不同;

●由图表显示,IF在5-15ma时CTR值最大;在小于5mA时(目前我们产品设计大 多如此),CTR值一般小于正常额定规格值; ●附加Cosmo KPS2801-B 实测数据: ●评注:IF不同,CTR不同,且差异非常大;不同DATECODE的也有差异,但在IF=5ma时, CTR值都在规格(130-260)范围内; ●设计,选型,替代注意:设计时工作电流应接近来料的检测电流值(目前大多 IF=5ma),否则应用的CTR值无法保证,产品动态性能将很差; 5.3不同环境温度,CTR 值不同;

●由图表显示,CTR 值与光偶的工作环境有关,温度太高或太低都小于常温附近 的检测值; ●附加Cosmo KPS2801-B 实测数据(单体): CE F ●评注:温度不同,CTR不同,温度太高或太低都低于常温,且差异很大; ●设计,选型,替代注意:产品在高低温CTR的值是否满足产品反馈环路的增 益?产品动态稳定吗?开关机,输出是否产生震荡掉沟等不良, 5.4光偶有RL阻值大小及工作频带带宽要求;

如何判断电机的好坏

如何判断电机的好坏 电动机运行或故障时,可通过看、听、闻、摸四种方法来及时预防和排除故障,保证电动机的安全运行。 一、看 观察电动机运行过程中有无异常,其主要表现为以下几种情况。 1.定子绕组短路时,可能会看到电动机冒烟。 2.电动机严重过载或缺相运行时,转速会变慢且有较沉重的"嗡嗡"声。 3.电动机维修网正常运行,但突然停止时,会看到接线松脱处冒火花;保险丝熔断或某部件被卡住等现象。 4.若电动机剧烈振动,则可能是传动装置被卡住或电动机固定不良、底脚螺栓松动等。 5.若电动机内接触点和连接处有变色、烧痕和烟迹等,则说明可能有局部过热、导体连接处接触不良或绕组烧毁等。 二、听 电动机正常运行时应发出均匀且较轻的"嗡嗡"声,无杂音和特别的声音。若发出噪声太大,包括电磁噪声、轴承杂音、通风噪声、机械摩擦声等,均可能是故障先兆或故障现象。 1. 对于电磁噪声,如果电动机发出忽高忽低且沉重的声音,则原因可能有以下几种。 (1)定子与转子间气隙不均匀,此时声音忽高忽低且高低音间隔时间不变,这是轴承磨损从而使定子与转子不同心所致。 (2)三相电流不平衡。这是三相绕组存在误接地、短路或接触不良等原因,若声音很沉闷则说明电动机严重过载或缺相运行。 (3)铁芯松动。电动机在运行中因振动而使铁芯固定螺栓松动造成铁芯硅钢片松动,发出噪声。 2.对于轴承杂音,应在电动机运行中经常监听。监听方法是:将螺丝刀一端顶住轴承安装部位,另一端贴近耳朵,便可听到轴承运转声。若轴承运转正常,其声音为连续而细小的"沙沙"声,不会有忽高忽低的变化及金属摩擦声。若出现以下几种声音则为不正常现象。 (1)轴承运转时有"吱吱"声,这是金属摩擦声,一般为轴承缺油所致,应拆开轴承加注适量润滑脂。 (2)若出现"唧哩"声,这是滚珠转动时发出的声音,一般为润滑脂干涸或缺油引起,可加注适量油脂。 (3)若出现"喀喀"声或"嘎吱"声,则为轴承内滚珠不规则运动而产生的声音,这是轴承内滚珠损坏或电动机长期不用,润滑脂干涸所致。 3.若传动机构和被传动机构发出连续而非忽高忽低的声音,可分以下几种情况处理。 (1)周期性"啪啪"声,为皮带接头不平滑引起。 (2)周期性"咚咚"声,为联轴器或皮带轮与轴间松动以及键或键槽磨损引起。 (3)不均匀的碰撞声,为风叶碰撞风扇罩引起。 三、闻 通过闻电动机的气味也能判断及预防故障。若发现有特殊的油漆味,说明电动机内部温度过高;若发现有很重的糊味或焦臭味,则可能是绝缘层维修网被击穿或绕组已烧毁。 四、摸 摸电动机一些部位的温度也可判断故障原因。为确保安全,用手摸时应用手背去碰触电动机外壳、轴承周围部分,若发现温度异常,其原因可能有以下几种。

光耦问题大解决

最近在使用光耦的时候遇到几个问题恳请指教? 小生在使用光耦的时候遇到几个问题,恳请大侠指教: 1:CTR(50%-300%)是什么意思?在电路中这个CTR是多少?与If有关吗? 2:光耦的工作方式是电流控制还是电压控制。最近在PS2561与TL431配合稳压反馈的电路中,外部参数怎么调整光耦都在正常工作,很费解。 3:希望有大侠分享光耦的使用心得。 潮光光耦网答:1、CTR(50%-300%)是电流传输比, CTR(Curremt-Trrasfer Ratio),它等于直流输出电流IC与直流输入电流IF的百分比。简单来讲,就是个电流放大系数。50%-600%是该系列光耦的CTR,在电路中是多少要看你选择的是哪个光耦。 2、光耦是电流控制的,你调节外部参数还在那个工作的范围里面,肯定可以工作啊,如果你把限流的电阻加很大就会出问题了。 3、CTR是电流传输比Ice/If我知道。但是在具体电路中CTR的值是变化的还是固定的呢。我用 的光耦是NEC的PS2561,W系列。传输比是130%-260%,看规格书是说CTR与If有关,是吗? 另外我也想知道怎么来测量光耦的传输比。 在这个电路中,我通过改变R425的阻值,从100R改变为15K,光耦均能正常工作,R426 两端 的电压维持在1V。当R425=100R的时候,Vk=22.9V,计算得出流过光耦的电流为1.1mA;当 R425=15K的时候,Vk=3.68V,计算得出流过光耦的电流为0.13mA.这个电流变化还是很大的 ,但是光耦正常工作。 关于东芝光耦缺货型号,瑞萨(原NEC)光耦替代方案.

关于东芝光耦缺货型号,潮光光耦网(https://www.wendangku.net/doc/f83387260.html,)建议各位采购和技术人员,瑞萨(原NEC)光耦替代方案 另外还有很多高速光耦型号的替代 详情登录https://www.wendangku.net/doc/f83387260.html, 光耦器件在变频器电路中的作用 一、电路中为什么要使用光耦器件?电气隔离的要求。A与B电路之间,要进行信号的传输,但两电路之间由于供电级别. 一、电路中为什么要使用光耦器件? 电气隔离的要求。A与B电路之间,要进行信号的传输,但两电路之间由于供电级别过于悬殊,一路为数百伏,另一路为仅为几伏;两种差异巨大的供电系统,无法将电源共用;

光耦简介及常见型号

常用光耦简介及常见型号 光电耦合器(简称光耦)是开关电源电路中常用的器件。光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 常用的4N系列光耦属于非线性光耦 常用的线性光耦是PC817A—C系列。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。 线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。 在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。 常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。 常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 经查大量资料后,以下是目前市场上常见的高速光藕型号: 100K bit/S: 6N138、6N139、PS8703 1M bit/S: 6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路) 10M bit/S: 6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路) 光耦合器的增益被称为晶体管输出器件的电流传输比(CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。 可控硅型光耦 还有一种光耦是可控硅型光耦。 例如:moc3063、IL420; 它们的主要指标是负载能力; 例如:moc3063的负载能力是100mA;IL420是300mA; 光耦的部分型号 型号规格性能说明 4N25 晶体管输出 4N25MC 晶体管输出

怎么判断一个电机的好坏

怎么判断一个电机的好坏 一、看 观察电动机运行过程中有无异常,其主要表现为以下几种情况。 (1).定子绕组短路时,可能会看到电动机冒烟。 (2).电动机严重过载或缺相运行时,转速会变慢且有较沉重的"嗡嗡"声。(3).电动机正常运行,但突然停止时,会看到接线松脱处冒火花;保险丝熔断或某部件被卡住等现象。 (4).若电动机剧烈振动,则可能是传动装置被卡住或电动机固定不良、底脚螺栓松动等。 (5).若电动机内接触点和连接处有变色、烧痕和烟迹等,则说明可能有局部过热、导体连接处接触不良或绕组烧毁等。 二、听 电动机正常运行时应发出均匀且较轻的"嗡嗡"声,无杂音和特别的声音。若发出噪声太大,包括电磁噪声、轴承杂音、通风噪声、机械摩擦声等,均可能是故障先兆或故障现象。 (1). 对于电磁噪声,如果电动机发出忽高忽低且沉重的声音,则原因可能有以下几种: <1>定子与转子间气隙不均匀,此时声音忽高忽低且高低音间隔时间不变,这是轴承磨损从而使定子与转子不同心所致。 <2>三相电流不平衡。这是三相绕组存在误接地、短路或接触不良等原因,若声音很沉闷则说明电动机严重过载或缺相运行。 <3>铁芯松动。电动机在运行中因振动而使铁芯固定螺栓松动造成铁芯硅钢片松动,发出噪声。 (2).对于轴承杂音,应在电动机运行中经常监听。监听方法是:将螺丝刀一端顶住轴承安装部位,另一端贴近耳朵,便可听到轴承运转声。若轴承运转正常,其声音为连续而细小的"沙沙"声,不会有忽高忽低的变化及金属摩擦声。若出现以下几种声音则为不正常现象。 <1>轴承运转时有"吱吱"声,这是金属摩擦声,一般为轴承缺油所致,应拆开轴承加注适量润滑脂。 <2>若出现"唧哩"声,这是滚珠转动时发出的声音,一般为润滑脂干涸或缺油引起,可加注适量油脂。 <3>若出现"喀喀"声或"嘎吱"声,则为轴承内滚珠不规则运动而产生的声音,这是轴承内滚珠损坏或电动机长期不用,润滑脂干涸所致。 (3).若传动机构和被传动机构发出连续而非忽高忽低的声音,可分以下几种情况处理。 <1>周期性"啪啪"声,为皮带接头不平滑引起。 <2>周期性"咚咚"声,为联轴器或皮带轮与轴间松动以及键或键槽磨损引起。 <3>不均匀的碰撞声,为风叶碰撞风扇罩引起。 三、闻

相关文档
相关文档 最新文档