文档库 最新最全的文档下载
当前位置:文档库 › Determining Kinetic Parameters for Isothermal Crystallization of Glasses

Determining Kinetic Parameters for Isothermal Crystallization of Glasses

Determining Kinetic Parameters for Isothermal Crystallization of Glasses
Determining Kinetic Parameters for Isothermal Crystallization of Glasses

Determining Kinetic Parameters for Isothermal Crystallization

of Glasses

C.S.Ray w

Marshall Space Flight Center,NASA,Huntsville,Alabama 35812

T.Zhang,S.T.Reis,and R.K.Brow

Materials Science &Engineering Department,University of Missouri—Rolla,Rolla,Missouri 65409

Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses.The techniques are experimentally simple and quick,compared with isothermal techniques.However,the analytical models used for non-isothermal data analysis,that were derived from models originally developed for describing isothermal transformation kinetics,are fundamentally ?awed.The present paper describes a technique for determining the kinetic parameters for isother-mal crystallization in glasses,which eliminates most of the com-mon problems that generally make the study of isothermal crystallization laborious and time consuming.In this technique,the volume fraction of a glass that is crystallized as a function of time during an isothermal hold was determined in a separate experiment using differential thermal analysis.The activation energy (345710kJ/mole)and Avrami parameter (0.8970.09)for crystallization of Li 2O .2SiO 2glass determined by the pres-ent technique are consistent with the similar values reported in the literature.

I.Introduction

T

HE

process of overall crystallization in glasses,which occurs due to the combined effects of nucleation and crystal growth,is best described by the Johnson–Mehl–Avrami–Ko-lmogorov (JMAK)model.1–5The JMAK model assumes a transformation occurring strictly under conditions of isother-mal heat treatment,and yields the kinetic parameters for crys-tallization that describe the complete transformation process.Most notable among these parameters are the activation energy for crystallization,E ,and the dimensionality of crystal growth or the Avrami parameter,n .E and n are determined from ex-periments in which the volume fraction (x )that is crystallized in a melt is measured as a function of time (t )when the melt is held isothermally at different temperatures,T .Although,several techniques such as X-ray diffraction (XRD)analysis and optic-al microscopy are available 6–9to measure the extent of x ,the thermal analysis techniques,10–13including differential thermal analysis (DTA)and differential scanning calorimetry (DSC),are considered the most suitable and convenient means.

For measuring x using DTA or DSC,the temperature of the melt (for a glass composition under investigation)is quickly de-creased to a pre-determined value (say,T )and held there until crystallization is complete.The crystallization event is displayed on a temperature–time thermogram as an exothermic peak such

as the one shown schematically in Fig.1(a).The fraction crys-tallized (X t )at any time,t ,is determined from the ratio of the area at time t (A t )to the total area (A 0)of the exothermic peak,X t 5A t /A 0,Fig.1(a).

It is often dif?cult to experimentally obtain an idealized crys-tallization exotherm as shown in Fig.1(a).Obtaining such an exotherm depends notably upon two factors:(1)the choice of a

suitable isothermal hold temperature that is,generally,un-known for an unknown system,and that depends upon the characteristic temperature-time-transformation (TTT)diagram of the melt,and (2)the ef?ciency and capability to quickly and precisely attain the proper hold temperature that,in most cases,lies within a very narrow temperature range.As a result,one often ends up obtaining from these experiments one of the two types of curves shown in Figs.1(b)and (c).Figure 1(b)is typical of thermal pro?les where the temperature T does not fall within the temperature range for crystallization of the melt.Upon quenching the melt,the temperature shows several oscil-lations before being stable at T .Figure 1(c)typically depicts the simultaneous occurrence of crystallization and temperature os-cillations,making it dif?cult to identify the crystallization event and,hence,to accurately determine the time taken for a particular volume fraction to crystallize.

Determining the kinetic parameters for crystallization by con-ventional isothermal heating techniques is tedious,time-con-

E.Zanotto—contributing editor

w

Author to whom correspondence should be addressed.e-mail:Chandra.S.Ray@https://www.wendangku.net/doc/f33549195.html,

Manuscript No.22172.Received August 25,2006;approved November 4,2006.

Presented at the 8th International Symposium on Crystallization in Glasses and Liquids,Jackson Hole,USA.

J ournal

J.Am.Ceram.Soc.,90[3]769–773(2007)DOI:10.1111/j.1551-2916.2006.01478.x r 2007The American Ceramic Society

769

suming and often yields uncertain results.Non-isothermal crys-tallization techniques,where melts are cooled or glasses heated at constant rates,are widely used for determining crystallization parameters,as they typically produce well-de?ned crystalliza-tion peaks that are usually easier to observe on the temperature–time pro?le.Only a small number of references on non-isother-mal crystallization studies is cited here11,13–25from a huge body of reports available in the literature.However,the analytical models that are used for non-isothermal crystallization data analysis are considered fundamentally?awed.25–28In this work, crystallization of a lithium disilicate glass was accomplished via isothermal heat treatment(as a function of time)so that the JMAK analytical model can be properly used for data analysis. The fraction crystallized in the glass during isothermal heat treatment was determined using a conventional DTA analysis of the samples,which is a new approach,and is considered rapid and convenient.The purpose of the present work is to develop a method which eliminates most of the common problems that generally make the studies of isothermal crystallization labori-ous and time consuming,and to generate at the same time ex-perimental data appropriate for analysis using the correct analytical model.

The complete experimental protocol includes?rst an isother-mal heat treatment of a glass as a function of time to achieve time-dependent partial crystallization at a particular tempera-ture.The isothermal heat treatment is then followed by a DTA scan of the partially crystallized glass at a?xed heating rate, which produces a crystallization peak for the fraction of glass that did not crystallize(remained un-transformed)during the previous isothermal heat-treatment step.From the area of this DTA peak,the fraction of the sample that crystallized during isothermal heat treatment can be easily determined and then analyzed using the JMAK equation to calculate the crystalliza-tion parameters.This method is tested here using a lithium di-silicate(Li2Oá2SiO2)glass which is frequently used as a model glass for the studies of nucleation and crystallization and has numerous experimental data available for comparison.

II.Theoretical Approach

According to the JMAK equation,the volume fraction crystal-lized,x,in a glass after isothermally heating at a temperature,T, for a time,t,is given by

x?1àexp?àektTn (1)

where k is the reaction-rate constant,and n is known as the Avrami parameter that is related to the dimensionality of crystal growth.The temperature dependence of k is expressed by the Arrhenius equation as

k?k0exp?àE=RT (2)

where k0is a frequency factor,E is the activation energy for the overall transformation(crystallization),and R is the gas con-stant.

From Eqs.(1)and(2),one obtains

ln?àlne1àxT ?n ln ttn ln k(3)

and

ln k?ln k0àE=RT(4)

A plot of ln[àln(1àx)]vs.(ln t),Eq.(3),for experimental data obtained at a temperature T produces a straight line whose slope yields the value for n.With this value of n,the value for(ln k)at T can be determined from the intercept of the straight line. From Eq.(4),the values of(ln k)determined this way at dif-ferent temperatures when plotted as a function of reciprocal temperature yield the value for the activation energy for crys-tallization,E.The primary task,therefore,is to determine the volume fraction crystallized,x,in the partially crystallized glasses after isothermal heat treatments for different times at different temperatures.

During crystallization of a sample in a DTA,an exothermic peak whose area is proportional to the volume of glass is ob-served.Consequently,the DTA peak area for a partially crys-tallized glass produced during a preceding isothermal heat treatment would be smaller,as the fraction of glass present in the sample is smaller.If A is the DTA peak area per unit volume of a glass that has already been given an isothermal heat treat-ment at a temperature T for a time t,and x is the volume frac-tion crystallized during the isothermal heat treatment,then A?A0e1àxT(5) where A0is the area of the exothermic peak for an as-quenched (uncrystallized)glass sample,as A5A0for x50.The percent crystallinity in the glass would be given by100[(A0àA)/A0]. Combining Eq.(5)with Eq.(3),we obtain

ln?lneA0=AT ?neln tTtneln kT(6) Thus,plots of ln[ln(A0/A)]vs.(ln t)can be used to determine n and E,the kinetic parameters for crystallization.

III.Experimental Procedure

A100g sample of lithium disilicate,Li2Oá2SiO2(LS2),glass, was prepared by melting a homogeneous mixture of reagent grade crystalline powders of lithium carbonate(Li2CO3)and silica(SiO2)in a platinum crucible at a temperature of14001C for3h in air.The melt was stirred for about12s three times using an alumina rod for homogenization and then quenched onto a steel plate.The glass was ground and screened to a par-ticle size between425and500m m,and immediately stored in a vacuum desiccator until used for experiments.XRD of the as-quenched glass did not show the presence of any crystalline material.

Glass particles weighing about1g were placed in a platinum tray that was inserted into a pre-heated,well-insulated muf?e furnace for an isothermal heat treatment.The temperature was measured by a Pt/Pt-10%Rh thermocouple placed very close and just above the sample tray in the furnace.After a speci?ed time,the platinum tray containing the glass particles was re-moved from the furnace and allowed to cool to room tempera-ture.The temperature and time ranges for heat treatments of the LS2glass particles were5151–5751C,and0.5–4h,respectively. This temperature range is outside of the nucleation range for LS2,which is reported to be4251–5001C.29,30

To attain the isothermal heat-treatment temperature,the glass particles had to pass through the temperature region for nucleation,when some additional nuclei are expected to form in the glass over those already present in the as-made glass.As the same heating procedure,namely,inserting the glass particles directly into the pre-heated furnace,was used for all the iso-thermal heat-treatment experiments,the number(density)of additional nuclei formed during the heating-up cycle should be nearly the same in all the glasses.In other words,crystallization in glasses in all the isothermal experiments conducted in this study is believed to occur on a?xed number of nuclei.

About45–50mg of the heat-treated glass particles were used for the DTA experiments,which were performed with a Perkin-Elmer DTA-7apparatus(Model DT7,Perkin-Elmer Corp., Norwalk,CT).The glass particles contained in a platinum cup were heated at a rate of101C/min in?owing(about30mL/min) nitrogen gas.A high purity(99.99%)alumina powder was used as a reference material,and the DTA apparatus was periodically calibrated for temperature using indium,aluminum,and gold melting point standards.The area under a DTA peak was cal-culated using the Pyris software package(1996)provided by the

770Journal of the American Ceramic Society—Ray et al.Vol.90,No.3

Perkin-Elmer Corporation.A detailed procedure for calculating the DTA peak area is given elsewhere.31

After the isothermal heat treatment,the glass particles were cooled to room temperature before being scanned in a DTA, thereby,making them pass,once again,through the nucleation region.This offers the possibility of developing some more nu-clei that may affect the area of the crystallization peak in the subsequent DTA run.An auxiliary experiment was,therefore, performed to assess the contribution of additional nuclei formed in the glass during heating and cooling steps(to and from the isothermal heat-treatment temperature)on the extent of overall crystallization.In this auxiliary experiment,the glass particles were inserted into the furnace at5151C,held at that temperature for5min,and then removed from the furnace to allow the sample to cool to room temperature.The5min hold time is considered suf?cient for the glass to attain the pre-set tempera-ture of5151C.A DTA scan of this heat-treated glass produced a crystallization peak that was indistinguishable from the DTA crystallization peak of the as-made glass,which suggests that the number of additional nuclei so formed was too small to cause any observable effect on the DTA peak.It is believed that due to very high heating and cooling rates experienced by the glass particles,estimated41501C/min,the temperature range for nu-cleation was passed in less than a minute,allowing very little

time for forming suf?cient number of nuclei in the glasses.

IV.Experimental Results

A set of representative DTA curves for the LS2glass after iso-thermal heat treatment at5751C for0.5,1,2,and3h is shown in Fig.2,along with the DTA curve for the as-quenched glass. Only the portion of the curves that contain the crystallization peak has been shown.It is clear that longer isothermal heat-treatment times produce samples that exhibit smaller DTA crys-tallization peaks.With longer heat-treatment time,a larger vol-ume of the glass will be crystallized,leaving a smaller volume of residual glass to produce a smaller crystallization peak in the subsequent DTA scan.It is worth noting that the peak tem-perature of the crystallization exotherms did not change signif-icantly for the different heat treatments,indicating that the crystallization mechanism of the residual glass did not noticea-bly change.

The range of temperatures selected for isothermal heat treat-ments,5151–5751C,includes the initial portion of the common bell-shaped crystal growth rate curve for the LS2glass.Conse-quently,the crystallized fraction after isothermal heat treatment for any given time within this temperature range is expected to increase and the fraction of residual glass in the specimen to

decrease,with increasing temperature,thus decreasing the peak area of the subsequent DTA crystallization exotherm.The effect

of temperature is summarized in Fig.3,which shows the DTA

curves for the LS2glass after1h heat treatments between5151 and5751C.

The volume(or mass)fraction of glass that is crystallized

after an isothermal heat treatment at different temperatures,

calculated from x5(A0àA)/A0,is shown in Fig.4.The JMAK plots that use the results of Fig.4and are based on Eq.(6),are

shown in Fig.5.The values of n and ln k extracted from these

plots are given in Table I for each temperature.Figure6shows

the Arrhenius plot(Eq.(4))of the latter parameters,and the slope of this plot yields an activation energy,E,of345710 kJ/mol.

V.Discussion

The crystallized fraction of a lithium disilicate glass after sub-jecting to isothermal heat treatments has been determined by a simple DTA procedure to yield crystallization kinetic parame-ters that are comparable with those obtained by traditional an-alytical techniques.10,13For example,the values of the Avrami parameter,n,are independent of temperature(Table I)and

its

Fig.4.Crystallized volume fraction X[5(A0àA)/A0]determined as a

function of time for an LS2glass heated isothermally at the temperatures

indicated.Here,x was determined by a new differential thermal analysis

method.Lines are polynomial?ts through the data points.

March2007Determining Kinetic Parameters for Isothermal Crystallization of Glasses771

average value (0.8970.09)indicates that this LS 2glass crystal-lizes primarily by surface crystallization,in agreement with previous reports.32,33

The value of E obtained for the LS 2glass in the present iso-thermal study,345710kJ/mol,is somewhat greater than the values reported in the literature from isothermal (267–319kJ/mol)7,10,34and non-isothermal (DTA or DSC)studies (240–338kJ/mol).21,30,35–37One possible reason for this difference may involve our assumption that the DTA peak area is linearly pro-portional to the volume of glass that remains untransformed after the isothermal heat treatment (Eq.(5)).A non-linear rela-tionship between x and A will produce a different value for E .However,given the wide range of E -values reported in the lit-erature for the LS 2glass,the value of E determined in this study is not unreasonable.

Nonetheless,to ascertain the correctness of the present E -value and,hence,to establish the usefulness of the present meth-od,further investigations are continuing to determine the acti-vation energy for crystallization using a more traditional method like XRD.A part of the glass that was given the same and simultaneous isothermal heat treatment in the present ex-periments is now being analyzed by XRD to determine the crys-tallized fraction (x ),and,thus,the value of E for making a direct comparison.

For a spherical crystal growth mechanism occurring on a ?xed number of nuclei (i.e.,a condition of no concurrent nu-cleation)during crystallization,the reaction rate constant (Eqs.(1)and (2))at any temperature,T ,can be expressed as 38:k 5(p N 0/3)1/3U ,where N 0is the ?xed nucleation density (num-ber of nuclei per unit volume)and U is the crystal growth rate at T .As discussed earlier,a condition of occurring crystallization on a ?xed number of nuclei is nearly ful?lled in the present ex-periments.As k is known (Table I),the value of N 0,thus,can be

estimated provided the value of U at the respective temperature is known.

The crystal growth rate data for the LS 2glass reported by Burgner and Weinberg 39were used in the present calculations for N 0.The values of k from Table I,average values of U from Burgner and Weinberg,39and the calculated values of N 0at dif-ferent temperatures used in the present isothermal experiments are shown in Table II.A small increasing trend with increasing temperature is observed (Table II)for the values of N 0,the rea-son for which is not clearly understood at this time.Since all the glasses used in these experiments were prepared from the same batch melting,the N 0-value should be independent of the iso-thermal heat-treatment temperature.In any case,considering the high scatter in U -values reported by different investigators (see Burgner and Weinberg 39),the scatter in the N 0values at different temperatures in the present study (Table II)is consid-ered reasonable.These values for the nucleation density (Table II)are also found to be in good agreement with the N 0-value of 1.71?1013m à3determined previously 40in a completely differ-ent type of experiment for a similarly quenched (bar-cast onto a steel plate in air)LS 2glass.A reasonable agreement between the N 0values obtained in two separate and entirely different type of experiments further justi?es the usefulness and accuracy of the present method.

Continuing Studies:

This study is the ?rst of several planned to develop and utilize a convenient DTA technique to quantitatively characterize the crystallization kinetics of oxide glass melts.In addition to the quantitative XRD analysis of the LS 2glass mentioned above,the following studies are presently underway.

(1)The new DTA method will be used to measure the JMAK crystallization kinetic parameters for several other well-studied glass compositions,including 40Li 2O á60SiO 2(mol%),Na 2O á2CaO á3SiO 2,and BaO á2SiO 2.

(2)The appropriateness of the assumption that the DTA peak area is linearly proportional to the volume of the untrans-formed glass (Eq.(5))will be

veri?ed.

Fig.5.Johnson–Mehl–Avrami–Kolmogorov plots (Eq.(6))for an LS 2glass using crystallized volume fraction data obtained at the tempera-tures indicated.Lines are the least square ?ts through the data

points.

Fig.6.Arrhenius plot (Eq.(4))using ln k -values obtained from the Johnson–Mehl–Avrami–Kolmogorov analysis of the data in Fig.5.The straight line is a least squares ?t through the data points.

Table I.Values of Avrami Exponents and Rate Constant Determined by the Johnson–Mehl–Avrami–Kolmogorov (JMAK)Analysis for Isothermally Heat-Treated LS 2Glass

Powders with Particle Size of 425–500m m

Temperature (1C)

Temperature (K)

1000/T(1/K)

n

ln k

515788 1.2690.97à11.97530803 1.2450.77à11.27545818 1.2220.82à10.37560833 1.2000.92à9.25575848 1.1790.96à8.30Table II.Density of Nuclei,N 0,in the As-Made LS 2Glass

Calculated Using the k -Values in Table I

Temperature (1C)

k (s à1)from Table I

Average U (ms à1)from Burgner and Weinberg 39

N 05(3/p )(k /U )3(#m à3)

515 6.33?10à6 3.25?10à100.71?1013530 1.27?10à5 6.60?10à100.68?1013545 3.14?10à513.5?10à10 1.20?10135609.61?10à530.0?10à10 3.14?1013575

2.49?10à471.5?10à10 4.03?1013

772Journal of the American Ceramic Society—Ray et al.Vol.90,No.3

(3)The method will be used to describe the crystallization kinetics of more complex glasses,including Ca–Sr–Zn–silicate composition developed for sealing solid oxide fuel cells.

VI.Conclusion

Conventional DTA is used to characterize the crystallized frac-tion of a LS 2glass,following a series of isothermal heat treat-ments,and the JMAK transformation kinetics theory is used to determine the crystallization kinetics parameters.The Avrami parameter,n 50.8970.09,and the activation energy,E 5345710kJ/mol,are consistent with similar values report-ed in the literature that were obtained using often more labori-ous techniques.The method described in this paper offers a convenient means for studying isothermal crystallization kinet-ics for glass melts.

References

1

W.A.Johnson and R.F.Mehl,‘‘Reaction Kinetics in Processes of Nucleation and Growth,’’Trans.Am.Inst.Min.Metall.Pet.Eng.,135,416(1939).2

M.Avrami,‘‘Kinetics of Phase Change:I,General Theory,’’J.Chem.Phys.,7[12]1103–12(1939).3

M.Avrami,‘‘Kinetics of Phase Change:II,Transformation-Time Relations for Random Distribution for Nuclei,’’J.Chem.Phys.,8[2]212–24(1940).4

M.Avrami,‘‘Kinetics of Phase Change:III,Granulation,Phase Change,and Microstructure,’’J.Chem.Phys.,9[2]177–84(1941).5

A.N.Kolmogorov,‘‘A Statistical Theory for the Recrystallization of Metals,’’Izv.Akad.Nauk USSR,Ser.Mathem.,1,355(1937),in Russian.6

V.Kompa,‘‘The Crystallization Kinetics of Li 2O–SiO 2Glasses by Amorphous X-Ray Scattering,’’Phys.Chem.Glasses ,20[4]85–90(1979).7

M.T.Baker,T.H.Wang,and P.F.James,‘‘Nucleation and Growth Kinetics of Lithium Disilicate and Lithium Metasilicate in Lithia–Silica Glasses,’’Phys.Chem.Glasses ,29,240(1988).8

V.M.Fokin,O.V.Potapov,E.D.Zanotto,F.M.Spiandorello,V.L.Ug-olkov,and B.Z.Pevzner,‘‘Mutant Crystals in Na 2O á2CaO á3SiO 2Glasses,’’J.Non-Cryst.Solids ,331,240–53(2003).9

C.-T.Cheng,https://www.wendangku.net/doc/f33549195.html,nagan,B.Jones,J.-T.Lin,and M.-J.Pan,‘‘Crystallization Kinetics and Phase Development of PbO–BaO–SrO–Nb 2O 5–B 2O 3–SiO 2-Based Glass–Ceramics,’’J.Am.Ceram.Soc.,88[11]3037–42(2005).10

P.Hautojarvi,A.Vehanen,V.Kompa,and E.Pajanne,‘‘Crystallization and Phase Separation of Li 2O–SiO 2Glasses,’’J.Non-Cryst.Solids ,29,365–81(1978).11

N.P.Bansal,R.H.Doremus,A.J.Bruce,and C.T.Moynihan,‘‘Kinetics of Crystallization of ZrF 4–BaF 2–LaF 3Glass by Differential Scanning Calorimetry,’’J.Am.Ceram.Soc.,66[4]233–8(1983).12

S.Mahadevan,A.Giridhar,and A.K.Singh,‘‘Calorimetric Measurements on As–Sb–Se Glasses,’’J.Non-Cryst.Solids ,88[1]11–34(1986).13

C.S.Ray,W.Huang,and

D.

E.Day,‘‘Crystallization Kinetics of Lithia silica Glass:Effect of Sample Characteristics and Measurement Techniques,’’J.Am.Ceram.Soc.,74[1]60–6(1991).14

H. E.Kissinger,‘‘Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis,’’J.Res.Bur.Stand.,57[4]217–21(1956)(U.S.).15

H.E.Kissinger,‘‘Reaction Kinetics in Differential Thermal Analysis,’’Anal.Chem.,29[11]1702–6(1957).16

T.Ozawa,‘‘Kinetics of Non-Isothermal Crystallization,’’Polymer ,12,150–8(1971).17

J.Sestak,‘‘The Applicability of DTA to the Study of Crystallization Kinetics of Glasses,’’Phys.Chem.Glasses ,15[6]137–40(1974).

18

M.D.Baro,N.Clavaguera,S.Bordas,M.T.Cavaguera-Mora,and J.Casa-Vazquez,‘‘Evaluation of Crystallization Kinetics by Means of DTA,’’J.Therm.Anal.,11[2]271–6(1977).19

J.A.Augis and J.E.Bennett,‘‘Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modi?cation of the Kissinger Meth-od,’’J.Therm.Anal.,13[2]283–92(1978).20

D.W.Henderson,‘‘Thermal Analysis of Non-Isothermal Crystallization Kinetics in Glass Forming Liquids,’’J.Non-Cryst.Solids ,30,301–15(1979).21

K.Matusita and S.Sakka,‘‘Kinetic Study of Crystallization of Glasses by Differential Thermal Analysis—Criterion on Application of Kissinger Plot,’’J.Non-Cryst.Solids ,38–39,741–6(1980).22

C.S.Ray and

D.

E.Day,‘‘Crystallization of Calcia–Gallia–Silica Glasses,’’J.Am.Ceram.Soc.,67[12]806–9(1984).23

W.F.Hammetter and R.E.Loehman,‘‘Crystallization Kinetics of a Complex Lithium-Silicate Glass–Ceramic,’’J.Am.Ceram.Soc.,70[8]577–82(1987).24

C.S.Ray,W.Huang,and

D.

E.Day,‘‘Crystallization Kinetics of a Lithis–Silica Glass:Effect of Composition and Nucleating Agent,’’J.Am.Ceram.Soc.,70[8]599–603(1987).25

C.S.Ray,

D.

E.Day,W.Huang,https://www.wendangku.net/doc/f33549195.html,kshmi Narayan,T.S.Cull,and K.

F.Kelton,‘‘Non-Isothermal Calorimetric Studies of the Crystallization of Lithium Disilicate Glass,’’J.Non-Cryst Solids ,204,1–12(1996).26

H.Yinnon and D.R.Uhlmann,‘‘Applications of Thermoanalytical Tech-niques to the Study of Crystallization Kinetics in Glass Forming Liquids,Part I:Theory,’’J.Non-Cryst.Solids ,54,253–75(1983).27

M.C.Weinberg,‘‘On the Analysis of Nonisothermal Thermoanalytic Crys-tallization Experiments,’’J.Non-Cryst.Solids ,127,151–8(1991).28

K.F.Kelton,‘‘Numerical Model for Isothermal and Non-Isothermal Crys-tallization of Liquids and Glasses,’’J.Non-Cryst.Solids ,163,283(1993).29

P.F.James,‘‘Kinetics of Crystal Nucleation in Lithium Silicate Glasses,’’Phys.Chem.Glasses ,15[4]95–105(1974).30

C.S.Ray and

D.

E.Day,‘‘Determining the Nucleation Rate Curve for Lith-ium Disilicate Glass by Differential Thermal Analysis,’’J.Am.Ceram.Soc.,73[2]439–42(1990).31

C.S.Ray,S.T.Reis,R.K.Brow,W.Ho land,and V.Rheinberger,‘‘A New DTA Method for Measuring Critical Cooling Rate for Glass Formation,’’J.Non-Cryst.Solids ,351,1350–8(2005).32

C.S.Ray and

D.

E.day,‘‘Identifying Internal and Surface Crystallization by Differential Thermal Analysis for the Glass-to-Crystal Transformations,’’Ther-mochim.Acta ,280/281,163–74(1996).33

C.S.Ray,Q.Yang,W.Huang,and

D.

E.Day,‘‘Surface and Internal Crys-tallization in Glasses as Determined by Differential Thermal Analysis,’’J.Am.Ceram.Soc.,79[12]3155–60(1996).34

O.Kanert,R.Ku chler,D.Suter,G.N.Shannon,and H.Jain,‘‘Effect of Devitri?cation on the ionic Diffusion of Li-Disilicate,’’J.Non-Cryst.Solids ,274,202–7(2000).35

A.Marotta,A.Buri,F.Branda,and S.Saiello,‘‘Nucleation and Crystalliza-tion of Li 2O á2SiO 2Glass—A DTA Study’’;pp.146–152in Advances in Ceramic,Vol.4,Nucleation and Crystallization in Glasses ,Edited by J.H.Simmons,D.R.Uhlmann,and G.H.Beall.The American Ceramic Society,Columbus,OH,1982.36

A.Marotta,S.Saiello,F.Branda,and A.Buri,‘‘Activation Energy for the Crystallization of Glass from DDTA Curves,’’J.Mater.Sci.,17[1]105–8(1982).37

C.S.Ray and

D.

E.Day,‘‘Nucleation and Crystallization as Determined by DTA,’’Ceramic Transactions:Nucleation and Crystallization in Glasses and Liquids ,30,207–21(1993).38

V.M.Fokin, E. D.Zanotto,N.S.Yuritsyn,and J.W.P.Schmelzer,‘‘Homogeneous Crystal Nucleation in Silicate Glasses:A 40Years Perspective,’’J.Non-Cryst.Solids ,352,2681–714(2006).39

L.L.Burgner and M.C.Weinberg,‘‘An Assessment of Crystal Growth Behavior in Lithium Disilicate Glass,’’J.Non-Cryst.Solids ,279,28–43(2001).40

C.S.Ray,X.Fang,and

D.

E.Day,‘‘New Method for Determining the Nu-cleation and Crystal Growth Rates in Glasses,’’J.Am.Ceram.Soc.,83[4]865–72(2000).&

March 2007Determining Kinetic Parameters for Isothermal Crystallization of Glasses

773

《一曲新词酒一杯、轻舟短棹西湖好、金陵城上西楼、如梦令》理解性默写、简答题及答案【部编版八上】

期末课外古诗词习题及答案【部编版八年级上册】 题型:【理解性默写】【简答题】 课外古诗词诵读 1、浣溪沙(一曲新词酒一杯)/晏殊 2、采桑子(轻舟短棹西湖好)/欧阳修 3、相见欢(金陵城上西楼)/朱敦儒 4、如梦令(常记溪亭日暮)/李清照 1、《浣溪沙一曲新词酒一杯》晏殊 【原诗】 一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回?无可奈何花落去,似曾相识燕归来,小园香径独徘徊。 一、理解性默写: 1、晏殊的《浣溪沙·一曲新词酒一杯》:词人由景触情,由自然规律的变迁更替,透露出对美好景物及难以忘怀情事的流连,流露出对光阴流逝的无限惆怅的句子是:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 2、诗中着重写今日的感伤、被誉为“千古奇偶”的诗句是:无可奈何花落去,似曾相识燕归来。 3、晏殊《浣溪沙》词上片“一曲新词酒一杯,去年天气旧亭台”两句构成“新”“旧”的对比,下片构成“来”“去”对比的词句是:无可奈何花落去,似曾相识燕归来。 二、赏析简答题: 1、“无可奈何花落去,似曾相识燕归来。”一向为词评家赞赏,请简要赏析。答:任选一个角度.言之成理即可。可以从“意象”角度赏析,如“落花”这个意象写出了暮春之景表达了惜春之意,“归燕”这个意象表达旧燕归来.时光已逝,物是人非之感.可以修辞角度赏析,如对仗的工稳,音调谐婉,具有音乐美。

2、“小园香径独徘徊”中的“独”字用得极妙,请加以赏析。 答:①对比②“独字写出了词人独处时的寂寞,伴着萧条的春色和眼前时光的流逝,生出无限的悲凉,突出了词人的凄凉寂寞之感。 3、赏析“一曲新词酒一杯,去年天气旧亭台”的妙处。 答:只身一人,新词“一曲”,清酒“一杯”,孤单冷寂,引起对往事的回忆。新——唱新词,旧——唱词喝酒的环境(旧亭台),新词旧景对比,抒发了今是昨非的惆怅情思。 2、《采桑子》欧阳修 【原诗】 轻舟短棹西湖好,绿水逶迤,芳草长堤,隐隐笙歌处处随。无风水面琉璃滑,不觉船移,微动涟漪,惊起沙禽掠岸飞。 一、理解性默写: 1、从视觉和听觉两方面描绘西湖清丽、恬静、淡远的春景的句子是:绿水逶迤,芳草长堤,隐隐笙歌处处随。 2、词中写船动惊禽,划破了湖面的平静,为这一趟悠闲之旅平添了一个兴奋点的句子是:微动涟漪,惊起沙禽掠岸飞。 3、把水面比作明净平滑的琉璃,写出风平浪静的句子是:无风水面琉璃滑。 二、赏析简答题: 1、这首词的诗眼是西湖好这一短语。 2、词的第一句在整首词中的作用是什么?上阙描写了一幅什么样的图景? 答:上阙第一句总领全篇,点明题意,直抒赞美之情。 上阙从视觉和听觉两方面描写了轻舟、绿水、芳草、长堤、乐声、歌声等意境,描绘了西湖清丽、恬静、淡远的春景。 3、词的下阙主要用了哪种表现手法描写西湖春色?抒发了诗人什么感情? 答:动静结合的手法或以动衬静。一、二句风平浪静,更以船的缓慢移动写出了“静”。三、四句写水鸟掠过堤岸,写出了“动”,而西湖愈显其幽静。写出了西湖春色的多姿多彩。表达了诗人对西湖的喜爱、赞美之情,和流连山水的愉快

部编语文八上课外古诗词诵读(二)赏析题 中考知识点《浣溪沙》《采桑子》《相见欢》《如梦令》

部编语文八上课外古诗词诵读(二)赏析题中考知识点 《浣溪沙》《采桑子》《相见欢》《如梦令》 《浣溪沙》(宋)晏殊 一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回? 无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 1.这首词表达了作者怎样的思想感情? 含蓄地表达了词人对时光流逝、春色飘零的怅惘、物是人非之感和孤独寂寞之情。 2.请简要分析“小园香径独徘徊”中“独”字的含义。 “独”字写出词人因怀念友人而感到抑郁伤感,表现了孤寂、失意的情怀。 3.这首词中多处用到对比的写法,请找出其中的一个例子,并简要说说这样写的好处。 例子:“新”与“旧”的对比,或“去”与“来”的对比。好处:“新”是唱新词,“旧”是饮酒唱词时的环境——旧亭台,新词旧景对比,抒发了物是人非的怅惘情思。(或“去”是花落去,“来”是燕归来,来去对比,表现了对时光逝去的惋惜之情。) 4.“无可奈何花落去,似曾相识燕归来”是千古名句,简析这两句诗好在哪里。 两句话对仗工整,音调和谐;画面生动,通过对易逝的自然春光的描写,抒发了伤春惜时,以及对青春易逝的感慨,情感浓郁,寓意深刻,发人深省。

5. 请简要分析“无可奈何花落去,似曾相识燕归来”蕴含的哲理。 生活哲理:一切必然要消逝的美好事物都无法阻止其消逝,但消逝的同时仍然有美好事物的再现,生活不会因消逝而变得一片虚无。 采桑子[宋]欧阳修 轻舟短棹西湖好,绿水逶迤,芳草长堤,隐隐笙歌处处随。 无风水面琉璃滑,不觉船移,微动涟漪,惊起沙禽掠岸飞。 1.词的上阙第一句在整首词中的作用是什么?上片描写了一幅什么样的图景?(5分) 上阙第一句总摄全篇,点明题意,直抒赞美之情。(2分)上阙从视觉和听觉两方面描写了蜿蜒曲折的绿水、长满芳草的长堤、动听的乐声和歌声,描绘了西湖清丽、恬静、淡远的春景。(3分) 2.这首词上片出现了哪些意象?描绘了一幅怎样的图景?(4分) 轻舟(短棹)、绿水、芳草、长堤等意象。描绘了一幅湖水绵延,芳草满堤,清丽活泼的春日西湖美景。 3.词的下阙主要是用了哪种表现手法描写西湖春色的?抒发了诗人的什么感情?(6分) 动静结合的手法或以动衬静(2分)一、二句风平浪静,把水面比作明净平滑的琉璃,更以船的缓慢移动写出了“静”。三、四句写涟漪微起,惊动了沙洲上的水鸟,水鸟掠过堤岸飞去,写出了“动”,而西湖愈显其幽静。动静相衬,动静结合写出了西湖春色的多姿多彩。

《一曲新词酒一杯、轻舟短棹西湖好、金陵城上西楼、如梦令》理解性默写【部编版八上】

期末课外古诗词理解性默写及答案【部编版八年级上册】 课外古诗词诵读 1、浣溪沙(一曲新词酒一杯)/晏殊 2、采桑子(轻舟短棹西湖好)/欧阳修 3、相见欢(金陵城上西楼)/朱敦儒 4、如梦令(常记溪亭日暮)/李清照 1、《浣溪沙一曲新词酒一杯》晏殊 【原诗】 一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回?无可奈何花落去,似曾相识燕归来,小园香径独徘徊。 理解性默写: 1、晏殊的《浣溪沙·一曲新词酒一杯》:词人由景触情,由自然规律的变迁更替,透露出对美好景物及难以忘怀情事的流连,流露出对光阴流逝的无限惆怅的句子是:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 2、诗中着重写今日的感伤、被誉为“千古奇偶”的诗句是:无可奈何花落去,似曾相识燕归来。 3、晏殊《浣溪沙》词上片“一曲新词酒一杯,去年天气旧亭台”两句构成“新”“旧”的对比,下片构成“来”“去”对比的词句是:无可奈何花落去,似曾相识燕归来。 2、《采桑子》欧阳修 【原诗】 轻舟短棹西湖好,绿水逶迤,芳草长堤,隐隐笙歌处处随。无风水面琉璃滑,不觉船移,微动涟漪,惊起沙禽掠岸飞。 理解性默写: 1、从视觉和听觉两方面描绘西湖清丽、恬静、淡远的春景的句子是:绿水逶迤,芳草长堤,隐隐笙歌处处随。

2、词中写船动惊禽,划破了湖面的平静,为这一趟悠闲之旅平添了一个兴奋点的句子是:微动涟漪,惊起沙禽掠岸飞。 3、把水面比作明净平滑的琉璃,写出风平浪静的句子是:无风水面琉璃滑。 3、《相见欢》朱敦儒 【原诗】 金陵城上西楼,倚清秋。万里夕阳垂地大江流。中原乱,簪缨散,几时收?试倩悲风吹泪过扬州。 理解性默写: 1、象征南宋的国势日渐衰微,并为全词奠定苍凉感伤的情感基调的句子是:万里夕阳垂地大江流。 2、回忆中原沦陷,士族南逃往事,抒发了国土恐难收复的担忧、无奈、沉痛之情的句子是:中原乱,簪樱散,几时收? 3、朱敦儒的《相见欢》表现了作者渴望早日恢复中原,还于旧都的强烈愿望,同时也是对朝廷苟安旦夕,不图恢复的愤慨和抗议的诗句是:试倩悲风吹泪过扬州。 4、《如梦令》李清照 【原词】 常记溪亭日暮,沉醉不知归路。兴尽晚回舟,误入藕花深处。争渡,争渡,惊起一滩鸥鹭。 理解性默写: 1、李清照的《如梦令》:追忆郊游地点、时间及由于景色迷人而忘了归路的诗句是:常记溪亭日暮,沉醉不知归路。 2、翠绿的荷花和旭日中,嫣红的荷花,给人以凉爽幽静,清香扑鼻的感觉,诗人杨万里赞其是“接天莲叶无穷碧,映日荷花别样红”,而词人李清照却在《如梦令》中嗟叹:兴尽晚回舟,误入藕花深处。 3、写回舟迷路的句子是:兴尽晚回舟,误入藕花深处,争渡,争渡,惊起一滩鸥鹭。

《浣溪沙》等4首词的理解性默写

浣溪沙(晏殊) 1. 晏殊的《浣溪沙·一曲新词酒一杯》:词人由景触情,由自然规律的变迁更替,透露出对美好景物及难以忘怀情事的流连,流露出对光阴流逝的无限惆怅的句子是:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 2.诗中着重写今日的感伤、被誉为“千古奇偶”的诗句是:无可奈何花落去,似曾相识燕归来。 3.说明季节的变换,年华的交替不以人们意志为转移的客观规律的诗句是:无可奈何花落去,似曾相识燕归来。 4.抒发惜春伤时之情并给人以哲理性启迪的名句是:无可奈何花落去,似曾相识燕归来。 5.晏殊《浣溪沙》词上片“一曲新词酒一杯,去年天气旧亭台”两句构成“新”“旧”的对比,下片构成“来”“去”对比的词句是:无可奈何花落去,似曾相识燕归来。 6.追忆难忘欢聚,感叹流光易逝的句子是:一曲新词酒一杯,去年天气旧亭台。 7.表现诗人沉思形象的句子:小园香径独徘徊。 8.时光流逝,不能倒流,人们无力挽回,经常用晏殊的“无可奈何花落去,似曾相识燕归来。”这两句诗表示慨叹。 采桑子(轻舟短棹西湖好) (欧阳修) 1、从视觉和听觉两方面描绘西湖清丽、恬静、淡远的春景的句子是:绿水逶迤,芳草长堤,隐隐笙歌处处随。 2、词中写船动惊禽,划破了湖面的平静,为这一趟悠闲之旅平添了一个兴奋点的句子是:微动涟漪,惊起沙禽掠岸飞。 3、把水面比作明净平滑的琉璃,写出风平浪静的句子是:无风水面琉璃滑 相见欢(朱敦儒) 1、象征南宋的国势日渐衰微,并为全词奠定苍凉感伤的情感基调的句子是:万里夕阳垂地大江流。 2、回忆中原沦陷,士族南逃往事,抒发了国土恐难收复的担忧、无奈、沉痛之情的句子是:中原乱,簪缨散,几时收? 3、朱敦儒的《相见欢》表现了作者渴望早日恢复中原,还于旧都的强烈愿望,同时也是对朝廷苟安旦夕,不图恢复的愤慨和抗议的诗句是:试倩悲风吹泪过扬州。 如梦令(常记溪亭日暮)(李清照) 1、《如梦令》中景色迷人,乐不思“宿”的句子是:常记溪亭日暮,沉醉不知归路。 2、李清照的《如梦令》:追忆郊游地点、时间及由于景色迷人而忘了归路的诗句是:常记溪亭日暮,沉醉不知归路。 3、翠绿的荷花和旭日中,嫣红的荷花,给人以凉爽幽静,清香扑鼻的感觉,诗人杨万里赞其是“接天莲叶无穷碧,映日荷花别样红”,而词人李清照却在《如梦令》中嗟叹:兴尽晚回舟,误入藕花深处。 4、写回舟迷路的句子是:兴尽晚回舟,误入藕花深处,争渡,争渡,惊起一滩鸥鹭。

各系列专业职称资格分类一览表

附件2、《各系列专业职称资格分类一览表》 国家各系列(专业)职称资格分类一览表 各系列(专业)分类 高、中、初级专业技术资格名称 正高级 副高级 中级 初级 (助理级) 初级 (员级) 工 程 系 列 建设专业 研 究 员 级 高 级 工 程 师 高 级 工 程 师 工 程 师 助 理 工 程 师 技 术 员 机械专业 纺织专业 轻工专业 冶金专业 石油化工专业 交通水路运输 专业 交通公路运输 专业 质量技术监督 专业 水利专业 水产专业 林业专业 环境保护专业 广播电影电视 工程专业 电子信息专业 煤炭专业 地质矿产专业 水文(工程、环境)地质专业 探矿专业 物化探与遥感 专业 地质实验测试 (选矿)专业 测绘专业 采矿专业 土地专业 岩土工程专业

工艺美术专业研究员级高 级工艺美术 师 高级工艺美 术师 工艺美术 师 助理工艺 美术师 工艺美术 员 农业系列 农技专业 农业技术推 广研究员 高级农艺师农艺师 助理农艺 师 技术员畜牧(兽医) 专 业 农业技术推 广研究员 高级畜牧 (兽医)师 畜牧(兽 医)师 助理畜牧 (兽医)师 技术员农业经济专业高级农经师 农经师 (考试) 助理农经 师(考试) 农经员 (考试) 财经系列 国际商务专业 高级国际商 务师 国际商务 师(执业资 格) 助理国际商 务师 (从业资格) 外销员 (从业资 格) 经济专业 研究员级高 级经济师 高级经济师 经济师 (考试) 助理经济 师(考试) 经济员 (考试) 会计专业 研究员级高 级会计师 高级会计师 (考评结合) 会计师 (考试) 助理会计 师(考试) 会计员 (考试) 统计专业高级统计师 统计师 (考试) 助理统计 师(考试) 统计员 (考试) 审计专业 高级审计师 (考评结合) 审计师 (考试) 助理审计 师(考试) 审计员 (考试) 思想政治 工作专业 研究员级高 级政工师 高级政工师政工师 助理政工 师 教师系列高校教师(思想 政治教育专职 教师) 教授副教授讲师助教 高校教管研究 专业 研究员副研究员 助理研究 员 研究实习 员 高校实验专业高级实验师实验师 助理实验 师 实验员中专校教师高级讲师讲师助理讲师教员中专实验专业高级实验师实验师 助理实验 师 实验员技工学校教师 教授级高级 讲师 高级讲师讲师助理讲师教员技校实习指导 教师 高级实习指 导教师 一级实习 指导教师 二级实习 指导教师 三级实习 指导教师党校教师 (市级以上) 教授副教授讲师助教 党校教师(县 级) 高级讲师讲师助理讲师

最全的专业技术职称分类标准

专业技术职称分类 系 列 高 级中 级 初 级正高级副高级 高等学校 教师 教授副教授讲师助理讲师 中等专业 学校教师 高级讲师讲师助理讲师、教员 技工学校教师 高级讲师讲师助理讲师、教员高级实习指导教师 一级实习指导教 师 二级实习指导教 师、三级实习指 导教师 中学教师中学高级教师中学一级教师中学二级教师、中学三级教师 小学(幼儿园)教 师 小学高级教师 小学一级教师、 小学二级教师、 小学三级教师幼儿园高级教师 幼儿园一级教 师、幼儿园二级 教师、幼儿园三 级教师 自然科学研究人员研究员 (Z) 副研究员 (Z) 助理研究员(Z)研究实习员(Z) 社会科学研究人员研究员 (S) 副研究员 (S) 助理研究员(S)研究实习员(S) 工程技术人员教授级高 级工程师 高级工程 师 工程师 助理工程师、技 术员 实验技术人员教授级高 级实验师 高级实验 师 实验师 助理实验师、实 验员 教授级高 级农艺师 高级农艺 师 农艺师 助理农艺师、农 业技术员

农业技术人员教授级高 级兽医师 高级兽医 师 兽医师 助理兽医师、兽 医技术员 教授级高 级畜牧师 高级畜牧 师 畜牧师 助理畜牧师、畜 牧技术员 卫生技术 人员主任医师 副主任 医师 主治(主管) 医师 医师、医士主任药师 副主任 药师 主管药师药师、药士主任护师 副主任 护师 主管护师护师、护士主任技师 副主任 技师 主管技师技师、技士 经济专业人员教授级高 级经济师 高级经济 师 经济师 助理经济师、经 济员 会计专业人员教授级高 级会计师 高级会计 师 会计师 助理会计师、会 计员 审计专业人员教授级高 级审计师 高级审计 师 审计师 助理审计师、审 计员 统计专业人员教授级高 级统计师 高级统计 师 统计师 助理统计师、统 计员 新闻专业人员高级记者主任记者记者助理记者高级编辑主任编辑编辑(X)助理编辑(X) 出版专业人员编审副编审编辑(C)助理编辑(C) 技术编辑 助理技术编辑、 技术设计员 一级校对 二级校对、三级 校对 图书资料专业人员研究馆员 (T) 副研究馆 员(T) 馆员(T) 助理馆员、管理 员(T) 文物博物专业人员研究馆员 (W) 副研究馆 员(W) 馆员(W) 助理馆员、管理 员(W)

《浣溪沙》《采桑子》《相见欢》《如梦令》

“词”相关知识介绍 1. 词的兴起 词兴于隋唐,盛于宋代,是一种和乐歌唱、句式长短不齐的诗体,又名“长短句”、“诗余”等。 2. 词牌 “词有定格,句有定数,字有定声。”每首都有一个曲词名称,叫“词牌”。如“沁园春”、“满江红”、“西江月”等。有的作家在词牌下另标词题,如《沁园春长沙》。不同的词牌规定的各种词调和词体都有一定的字数、句数、格律。 3. 词的分类 词按字数分为小令、中调、长调。小令字数在58字以内,中调在59至90字,长调在91字以上。 词可以分上下两段,叫“片”或“阕”。不分段或者分段较多的很少。 一、赏析《浣溪沙》 1. 走近作者 晏殊(991-1055),字同叔,抚州临川城(今属江西)人,北宋政治家、文学家,是当时抚州籍第一个宰相。晏殊与其第七子晏几道,在当时北宋词坛上被称为“大晏”和“小晏”。 2. 了解背景 暮春时节,日落时分,物候的变化引发了词人对年华易逝的感伤。“无可奈何花落去,似曾相识燕归来”,词人将自然现象与人的感受巧妙结合,生发出值得玩味的情趣。 3. 鉴赏古诗 上阕:一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回? 释句:听一支新曲喝一杯美酒,还是去年的天气旧日的亭台,西落的夕阳何时再回来? 明确:怀旧,感伤年华易逝。起句“一曲新词酒一杯,去年天气旧亭台。”写对酒听歌的现境。从轻快流利的语调中可以体味出,词人面对现境时,开始是怀着轻松喜悦的感情。但边听边饮,这现境却又不期然地触发对“去年”所历类似境界的追忆。词人抒发的是对美好景物情事的流连,对时光流逝的怅惘,以及对美好事物重现的微茫的希望。 下阕:无可奈何花落去,似曾相识燕归来。小园香径独徘徊。 释句:那花儿落去我也无可奈何,那归来的燕子似曾相识,在小园的花径上独自徘徊。 明确:惜春,悼念春光难留。花落、燕归虽也是眼前景,但一经与“无可奈何”、“似曾相识”相联系,它们的内涵便变得非常广泛,意境非常深刻,带有美好事物的象征意味。惋惜与欣慰的交织中,蕴含着某种生活哲理:一切必然要消逝的美好事物都无法阻止其消逝,

专业技术职称等级分类

我国专业技术职称系列级别名称 序号系列 级别名称 高级 中级 初级 正高级副高级助理级员级 1 高级教师教授副教授讲师助教 2 自然科学研究研究员副研究员助理研究员研究实习员 3 社会科学研究研究员副研究员助理研究员研究实习员 4 卫生技术主任医师 主任药师 主任护师 主任技师 副主任医师 副主任药师 副主任护师 副主任技师 主治医师 主管药师 主管护师 主管技师 医师 药师 护师 技师 医士 药士 护士 技士 5 农业技术研究员高级农艺师 高级畜牧师 高级兽医师 农艺师 畜牧师 兽医师 助理农艺师 助理畜牧师 助理兽医师 技术员 6 工程技术高级工程师 (正高级) 高级工程师工程师助理工程师技术员 7 经济高级经济师经济师助理经济师经济员 8 会计 审计 高级会计师 高级审计师 会计师 审计师 助理会计师 助理审计师 会计员 审计员 9 统计高级统计师统计师助理统计师统计员 10 中专教师高级讲师讲师助理讲师教员 11 技校教师 高级讲师 高级实习指导教师 讲师 一级实习指导教 师 助理讲师 二级实习指导教 师 教员 三级实习指导教 师 12 中学教师中学高级教师中学一级教师中学二级教师中学三级教师 13 小学教师小学高级教师小学一级教师小学二级教师小学三级教师 14 档案研究馆员副研究馆员馆员助理馆员管理员 15 文物博物 群众文化 研究馆员副研究馆员馆员助理馆员管理员 16 图书资料研究馆员副研究馆员馆员助理馆员管理员 17 翻译译审副译审翻译助理翻译 18 律师一级律师二级律师三级律师四级律师律师助理 19 公证员一级公证员二级公证员三级公证员四级公证员公证员助理 20 新闻高级记者 高级编辑 主任记者 主任编辑 记者 编辑 助理记者 助理编辑 21 播音播音指导主任播音员一级播音员二级播音员三级播音员 22 出版编审副编审 编辑 技术编辑 一级校对 助理编辑 技术助理编辑 二级校对 技术设计员 三级校对 23 体育教练国家级教练高级教练一级教练二级教练三级教练 24 船舶 高级船长 高级轮机长 高级电机员 高级机务员 船长 大副 大管轮 电机员等 二副 二管轮 二级电机员等 三副 三管轮等 25 艺术一级演员等 二级演员 主任舞台技师 三级演员 舞台技师等 四级演员 舞台技术员等 26 工艺美术高级工艺美术师工艺美术师助理工艺美术师工艺美术员 27 试验高级试验师试验师助理试验师试验员 28 海关高级关务监督关务监督助理关务监督关务员 29 飞行一级飞行员二级飞行员三级飞行员四级飞行员

各系列专业技术职称一览表73628

各系列专业技术职称一览表 序号系列 专业技术职务 高级 中 级 初级正高 级 副高 级 助理 级 员 级 1高等学校教师教授副教授讲师助教 2中等专业学校教 师 高级讲师讲师助理讲师教员 3中小学(幼儿 园)教师 中学高级教师 中学一级教 师 中学二级教师中学三级教师小学中的中学高级教师 小学高级教 师 小学一级 教师 小学二级 教师 小学三级 教师 幼儿园高级 教师 幼儿园一级 教师 幼儿园二级 教师 幼儿园三级 教师 4技工学校教师 高级讲师讲师助理讲师教员 高级实习指导教师 一级实 习指导教师 二级实习指导教 师 三级实习指导 教师 5自然科学研究 人员研究员 副研究 员 助理研 究员 研究实习员 6社会科学研究 人员研究员 副研究 员 助理研 究员 研究实习员 7实验人员高级实验师实验师助理实验师实验员 8工程技术人员 教授级 高级工 程师 高级工 程师 工程师助理工程师技术员高级建筑师建筑师助理建筑师技术员高级城市规划师 城市规 划师 助理城市规划师技术员 9经济专业人员 高级经济师经济师助理经济师经济员高级农业经济师 农业经 济师 助理农业经济师农业经济员 1 0卫生技术人员主任医 师 副主任 医师 主治医 师 医师医士主任药 师 副主任 药师 主管药 师 药师药士主任护 师 副主任 护师 主管护 师 护师护士主任技 师 副主任 技师 主管技 师 技师技士 附 件4

2 3律师专业人员 一级律 师 二级律 师 三级律 师 四级律师律师助理 2 4公证专业人员 一级公 证员 二级公 证员 三级公 证员 四级公证员公证员助理 2 5群众文化系统 研究馆 员 副研究 馆员 馆员助理馆员管理员 2 6 职工教育系统高级讲师讲师助理讲师教员 2 7党校系统 教授副教授讲师助理讲师教员 高级讲师讲师助理讲师教员 2 8档案系列 研究馆 员 副研究 馆员 馆员助理馆员管理员 2 9文学创作系列 文学创作 一级 文学创作 二级 文学创作 三级 文学创作四级

词二首《相见欢》、《浣溪沙》教案

审核人:赵黎明 预习提示 1、让学生自主查阅资料或者上网,了解词人李煜、晏殊的生平; 2、让学生反复读,读出感情,初步感知内容; 3、试着体会内涵,尤其是名句的揣摩。 [教学目标] 1、了解词人李煜、晏殊的生平; 2、领会并赏析这两首词,达到熟读成诵。 [教学重点] 1、领略词的意境,体会词人的感情。 2、准确背诵这两首词。 [课时安排] 一课时 [教学过程] 《浣溪沙》晏殊 1、作者简介 晏殊(911-1055),北宋词人。字同叔,抚州临川(今属江西)人。景德中赐同进士出身。庆历中官至集贤殿大学士、同中书门下平章事兼淑密使。谥元献。 其词擅长小令,多表现诗酒生活和悠闲情致,语言婉丽,颇受南唐冯延已的影响。《浣溪沙》中“无可奉告花落去,似曾相似燕归来”二句,传诵颇广。原有集,已散佚,仅存《珠玉词》及清人所辑《晏元献遗文》。又编有类书《类要》,今存残本。(《辞海》1989年版) 2、朗读指导 教师范读,学生反复诵读,读第一句用轻松的语调,第二句用沉思的口吻,第三句用疑问的语把留恋企盼之情传达出来,第四句用降调把无可奈何的心情读出来,第五句用怀疑思考的语气来读,第六句用低沉缓慢的语调来读。

(教师范读,学生反复诵读,评论,示范,纠正,读到最好为止。) 3、诗词赏析 这首词蕴涵了哪些人生哲理?(学生分组讨论,体会,感悟) 讨论明确: (1)“一曲新词酒一杯,去年天气旧亭台。夕阳西下几时回?” 词人怀着喜悦、轻松的心情,带着潇洒安闲的意态对酒听歌,但在边听边饮时,不期而然地触发了对“去年”所历类似境界的追忆,于是产生一种岁月流逝、时光不再的感慨。“夕阳西下几时回?”这一问句就把作者的思考扩展到整个人生,对人生进行了哲理性的沉思。意蕴大体与“年年岁岁花相似,岁岁年年人不同”相似,但表达方式要委婉含蓄得多。 (2)“无可奈何花落去,似曾相识燕归来。” 对花的凋落,春的消逝,时光的流逝,虽惋惜留恋也无济于事,但翩翩归来的燕子象征着美好的事物,令人欣慰。 在惋惜与欣慰的交织中,蕴涵着某种生活哲理:一切必然要消逝的美好事物都无法阻止其消逝,但在消逝的同时,仍会有美好的事物出现,生活不会因消逝而变得一片虚无;只不过这种事物毕竟不等于美好事物原封不动的重现,它只是“似曾相识”罢了。因此,在有所慰藉的同时又不觉感到一丝惆怅。 这两句将景物和人事紧密联系在一起,景中寓情,赋中有比,更加委婉含蓄地书写了这种伤别怀旧之情。 (3)“小园香径独徘徊。” 在人生旅途中,在惋惜、欣慰,惆怅之余,我们是否应像词人一样独自沉思一番,反省一番,憧憬一番呢? 此词之所以脍炙人口,广为传诵,其根本的原因在于情中有思。词中似乎于无意间描写司空见惯的现象,却有哲理的意味,启迪人们从更高层次思索宇宙人 《相见欢》李煜 1、作者介绍:李煜(937-978),五代时南唐国主。字重光,初名从嘉,号钟隐,世称李后主。宋兵破金陵,出降,后被毒死。能诗文、音乐、书画。尤以词著名。前期作品大都描写宫廷享乐生活,风格清丽。后期则抒写对昔日生活的怀念,吟叹身世,表现了浓厚的感伤情绪;形象鲜明,语言生动,在题材与已经上也突破了晚唐五代词一些艳情为主的窠臼。

各专业技术职称等级表

专业技术职称等级表 系列 高级 中级初级正高级副高级 高等学校 教师 教授副教授讲师助理讲师 中等专业 学校教师 高级讲师讲师助理讲师、教员 技工学校教师 高级讲师讲师助理讲师、教员 高级实习指导教师 一级实习 指导教师 二级实习指导教师、三级 实习指导教师 中学教师中学高级教师 中学一级 教师中学二级教师、中学三级 教师 小学(幼儿园)教师小学高级 教师 小学一级教师、小学二级 教师、小学三级教师幼儿园高 级教师 幼儿园一级教师、幼儿园 二级教师、幼儿园三级教 师 自然科学 研究人员研究员(Z) 副研究员 (Z) 助理研究 员(Z) 研究实习员(Z) 社会科学 研究人员研究员(S) 副研究员 (S) 助理研究 员(S) 研究实习员(S) 工程技术人员教授级高 级工程师 高级工程 师 工程师助理工程师、技术员 实验技术人员教授级高 级实验师 高级实验 师 实验师助理实验师、实验员

农业技术人员教授级高 级农艺师 高级农艺 师 农艺师 助理农艺师、农业技术员 教授级高 级兽医师 高级兽医 师 兽医师 助理兽医师、兽医技术员 教授级高 级畜牧师 高级畜牧 师 畜牧师 助理畜牧师、畜牧技术员 卫生技术人员主任医师副主任医 师 主治(主 管)医师 医师、医士主任药师副主任药 师 主管药师药师、药士主任护师副主任护 师 主管护师护师、护士主任技师副主任技 师 主管技师技师、技士 经济专业人员教授级高 级经济师 高级经济 师 经济师助理经济师、经济员 会计专业人员教授级高 级会计师 高级会计 师 会计师助理会计师、会计员 审计专业人员教授级高 级审计师 高级审计 师 审计师助理审计师、审计员 统计专业人员教授级高 级统计师 高级统计 师 统计师助理统计师、统计员

部编版八年级语文课外古诗词诵读理解赏析题(浣溪沙四首)

部编版八年级语文上册课外古诗词诵读理解赏析题 浣溪沙 2018-12-21 一、理解默写。 1.全词思绪都围绕“独”字来抒写。词人精心选择了西坠的夕阳,飘落的花瓣、重归的燕子以及徘徊于小园的诗人,构成幅优美的画面,把自然的春光和人的青春年华很自然地结合在一起,表达了感时伤春的情怀,这是运用了以景传情、情景交融的表现手法。 2.词中构成“新”与“旧”对比的句子是: “一曲新词—杯,去年天气旧亭台。” 3.朱自清在散文《匆匆》中写道:“燕子去了,有再来的时候,杨柳枯了,有再青的时候;桃花谢了,有再开的时候”,《浣溪沙》中也有表达类似感慨的词句: 无可奈何花落去,似曾相识燕归来。 4.《浣溪沙》中,词人由景触情,由自然规律的变迁更替,透露出对美好被景物流连,流露出对光阴流逝的无限惆怅的句子是: 无可奈何花落去,似曾相识燕归来。 5.《浣溪沙》中表现作者怅然若失的句子是: 小园香径独徘徊 6.《院溪沙》中被后人传唱引用来表达思人之情的千古名句是: 夕阳西下几时回? 7.《浣溪沙)》中着重写今日的感伤、被誉为“千古奇偶”的诗句是: 无可奈何花落去,似曾相识燕归来。

8.《浣溪沙》中揭示季节的变换、年华的逝去不以人们意志为转移的客观规律的诗句是: 无可奈何落去,似曾相识燕归来。 二、阅读理解。 1.“无可奈何花落去,似曾相识燕归来”两句告诉我们什么样的生活哲理? 答:一切必然要消逝的美好事物都无法阻止其消逝,但在消逝的同时仍然有美好事物的出现。生活不会因消逝而变得一片虚无,只不过这种重现不等于事物原封不动地重现,它只是“似曾相识“罢了。 2.“一曲新词酒一杯,去年天气旧亭台”两句运用了对比手法。 3.“无可奈何花落去,似曾相识燕归来”两句历来为词家赞赏,请简要赏析。 示例一:这两句对仗工整,音调和谐、有音乐美,画面生动。 示例二:通过“落花”这个意象写出了暮春之景,表达了惜春之意:“归燕”这个意象表达旧燕归来,时光已逝、物是人非之感。 示例三:对仗工整,音调和谐,画面生动,通过对易逝的自然春光的描写,抒发了对青春易逝的感慨,感情浓郁,寓意深刻,发人深省,揭示了人生易逝,轮回无穷的人生哲理,因而成为千古传诵的名句(千古奇偶)。 4.“小园香径独排徊”中的“独”字用得妙,请加以赏析。 “独”字写出了词人独处时的寂寞、伴着萧条的春色和眼前的时光,生出无限的悲凉、突出了词人的凄凉寂寞之感。 5.“夕阳西下几时回?”一句寓情于景,试简要分析此句抒发了什么样的感情? 抒发了词人惜春伤时的惆怅和寂寞,叹惜年华将逝的情思。

相关文档
相关文档 最新文档