文档库 最新最全的文档下载
当前位置:文档库 › 重排反应

重排反应

重排反应
重排反应

7 重排

反应

重排反应指同一分子内,某一原子或基团从一个原子迁移到另一个原子形成新的分子的反应。利用重排常常可以合成用其它方法难以合成的物质。

其反应机理不外乎亲核、亲电和自由基几种。按其迁移的方式大致可分为从碳原子到碳原子的重排、从碳原子到杂原子的重排以及从杂原子到碳原子的重排等几种。

7.1从碳原子到碳原子的重排

从碳原子到碳原子的重排使碳骨架发生变化。其中典型的重排包括亲核1,2-重排和亲电1,2-重排。

前者包括Wagner-Meerwein重排和Pinacol重排;后者包括Wolf和Arndt-Eistert重排等。

7.1.1Wagner-Meerwein重排

在质子酸或Lewis酸催化下形成的碳正离子中,烷基、芳基或氢从正离子相邻的碳原子上迁移到正离子上的反应,称为Wagner-Meerwein重排。

生成更稳定的碳正离子或产物成为重排的动力。

反应示例:双环二烯酮重排为四氢萘酚。

用质子酸处理某些环外烯烃可致重排。

7.1.2 Pinacol重排

酸催化下,邻二醇脱水重排为醛或酮的反应称为Pinacol重排。

(1)四取代邻二醇的重排

如果四个取代基相同,得单一产物。

如果是对称的邻二醇,产物分配主要取决于迁移基团的迁移能力。

迁移能力可能与亲核能力正相关。一般而言,芳基>烷基>氢。对位供电子基取代的芳基>未取代的芳基>邻位取代的芳基(空间障碍)。

如果是不对称的邻二醇,产物分配主要取决于形成的碳正离子的稳定性,与迁移基团的迁移能力关系不大。

不对称Pinacol重排的选择性不是太好,常常得到混合物,在药物合成上的意义不太大。(2)三取代邻二醇的重排

对于三取代的邻二醇,其中的叔碳上形成的碳正离子较稳定,所以一般是仲碳上的基团(或氢原子)迁移。

如果需要叔碳上的基团迁移,可采用衍生物法在碱性条件下重排。

(3)脂环上的邻二醇重排

羟基位于脂环上的邻二醇的重排常导致脂环结构的变化。

螺环的形成:

羟基共环的情形:

如上,对于羟基共环的情形,总是处在离去的羟基反式的基团迁移,这在一定程度上说明Pinacol重排可按分子内SN2机理进行。

(4)准Pinacol重排

能在羟基的邻位形成碳正离子非邻二醇化合物,进行类似Pinacol重排的反应称为准Pinacol 重排。

其中能形成碳正离子的前体可以是卤化物、重氮化物以及烯烃等。

前体为卤化物:

前体为重氮基:

前体为双键:

7.1.3Benzil-benzilic Acid重排

用强碱处理alpha-二酮,重排得到alpha-羟乙酸盐的反应。其中以二苯基乙二酮重排为二苯基乙醇酸最具代表性。

脂肪族alpha-二酮重排示例:某甾体的转化。

7.1.4Favorsky重排

alpha-卤代酮在碱的作用下,重排为羧酸或其衍生物的反应称为Favorsky重排。

直链的Favorsky重排:

合成张力较大的脂环:

有杂原子参与的Favorsky重排:

酰胺氮原子上的氢具酸性,同样可以在碱性条件下去质子。

立方烷二甲酸的合成:

7.1.5Wolff重排

alpha-重氮酮经加热、光照或金属催化脱氮生成烯酮的反应,称为Wolff重排。所得烯酮可分别与水、醇和胺加成生成羧酸、酯和酰胺。其反应机理一般被认为是碳烯历程。

研究表明氮的放出与重排同时进行,而且没有发现碳烯存在的证据,所以这一过程也被认为是协同反应(分子内SN2反应)。

脂环alpha-重氮酮重排可得缩环产物:

7.2从碳原子到杂原子的重排

迁移基团带着一对电子从碳原子迁移到杂原子(氮、氧和硫等)上,形成新的碳杂键得反应。这类反应以碳-氮迁移最为重要。

典型得反应机理是分子内SN2历程及碳烯机理。

7.2.1Beckmann重排

醛肟或酮肟在酸催化下重排为酰胺的反应称为Beckmann重排。

反应机理被认为是分子内SN2历程。

(1)底物的影响

手性迁移基团在重排过程中构型保持。

肟有顺反异构,酮肟重排时,处在离去的羟基反位的基团优先迁移。环酮重排可得到内酰胺。醛肟有时可发生消除反应,得到腈。

醛肟消除为腈的另一实例。

Veratronitrile, Organic Syntheses, Coll. Vol. 2, p.622; Vol. 15, p.85.

在重排条件下,酮肟也可发生裂解(消除)的副反应(异常Beckmann重排),得到腈。

(2)催化剂的影响

催化剂不限于质子酸(硫酸、盐酸、多聚磷酸和三氟甲磺酸等)和Lewis酸(三氯化铝、四氯化钛和三氟化硼等),实际上,凡是能与肟羟基反应,并使其成为更好的离去基团的物质,都可能成为Beckmann重排的催化剂,如氯化亚砜、五氯化磷、三氯氧磷和甲磺酰氯等酸酐或酰氯。

其中质子酸作催化剂在极性溶剂中重排时,经常得到不同基团迁移的混合物,其原因就在于上述条件下,反应体系中可能存在碳氮双键质子化形成的碳正离子。极性溶剂可帮助稳定碳正离子。由于形成了碳正离子,使得顺反异构的肟得以快速转化并达成平衡。

用Lewis酸或酰氯可以避免上述副反应。

(3)溶剂的影响

质子酸催化时,极性溶剂的存在使基团迁移的选择性降低,所以溶剂以非极性为主。基团迁移后,形成一个碳正离子,所以使用亲核性溶剂时,往往得不到期望的酰胺,而是生成该溶剂的相应反应产物,如醇中的Beckmann重排。

7.2.2Hofmann重排(降解)

用卤素(氯或溴)和碱处理氮上未取代的酰胺,得到少一个碳的胺,称为Hoffmann重排(降解)。重排可能是协同反应(分子内SN2过程),也可能经过氮烯中间体(氮烯存在的证据很难找到)。迁移基团所含的手性中心构型得以保持。

Hofmann重排的协同反应机理:

Hofmann重排的氮烯机理:

反应的中间体异氰酸酯已经分离得到。该中间体也可与其它亲核试剂加成,该亲核试剂可以是外来的,也可来自分子内。

alpha-碳上连有羟基、卤素和烯键的酰胺重排得到的胺或烯胺不稳定,可水解为醛或酮。

Hofmann重排的应用:环丙胺(环丙沙星中间体)的合成。

类似地,用碱处理异羟肟酸及其衍生物也可经由异氰酸酯中间体得到少一个碳的胺,称为Lossen重排。

7.2.3Curtius重排

酰基叠氮化合物热解为异氰酸酯的反应称为Curtius重排。

重排可能是协同反应(分子内SN2过程),也可能经过氮烯中间体(氮烯存在的证据很难找到)。

该反应不限于酰氯,也可以是羧酸、酯和酐等。得到的异氰酸酯也可与其它亲核试剂加成。与Hofmann重排一样,迁移基团若含有手性中心,其构型将得以保持。

7.2.4Schmidt重排

醛或酮与叠氮化物在酸催化下生成酰胺的反应,称为Schmidt重排。

反应结果是在羰基邻位插入-NH-。一般情况下,芳基优先迁移。环酮为原料时产物是内酰胺。

7.2.5Baeyer-Villiger重排

醛或酮与过氧酸在酸催化下生成酯的反应,称为Baeyer-Villiger重排。

迁移基团的迁移能力顺序为叔烷基>环烷基≈仲烷基≈苄基≈苯基>伯烷基>甲基;二芳酮重排是迁移顺序取决于芳基的亲核能力;氢的迁移能力大于烷基,所以醛与过氧乙酸反应生成酸。但间氯过氧化苯甲酸在室温下可将某些醛氧化为甲酸酯。

酰基有时也可以成为迁移基团:不能形成烯醇式的alpha-二酮氧化重排为酸酐。

7.3从杂原子到碳原子的重排

含杂原子(氧、氮或硫)的化合物,在强碱的作用下,在其与杂原子相邻的碳原子上去质子,形成碳负离子,之后杂原子上的烷基迁移到该碳负离子上,通式如下:

这类重排的典型代表是Wittig重排、Stevens重排和Sommelet-Hauser重排。

7.3.1Wittig重排

醚类化合物经强碱(烷基锂或氨基钠等)处理,分子中的一个烷基迁移生成醇的反应称为Wittig重排,有[1,2]-Wittig重排和[2,3]-Wittig重排之分。[1,2]-Wittig重排的反应机理:

由于曾检测到自由基的存在,以下自由基机理也得到支持(March’s Advanced Organic Chemistry, 5th ed., p1422):

基团迁移能力顺序为烯炳基>苄基>乙基>甲基>苯基,这与自由基的稳定性顺序相同,也在一定程度上支持了自由基机理。

[2,3]-Wittig重排是烯丙醚的重排,反应机理为:

7.3.2Stevens重排

a-位上含吸电子基的季铵盐,在强碱的作用下,发生分子内烷基的[1,2]-迁移,生成叔胺的反应,称为Stevens重排。

吸电子基Z主要为酰基、酯基、芳基乙烯基和乙炔基等。迁移基团可以是烯炳基、苄基和

烷基等。

7.3.3Sommelet-Hauser重排

苄基季铵盐在强碱作用下,重排生成邻位烷基取代的苄基叔胺的反应称为Sommelet-Hauser

重排。

环状季铵盐也可发生重排:

锍盐也可发生Sommelet-Hauser重排。

7.4sigma键迁移重排

邻近共轭体系的一个原子或基团的sigma键迁移到新的位置,同时共轭体系发生转移,这种分子内非催化的协同异构化反应称为sigma键迁移重排。

常见的,在有机合成上较为重要的是Claisen重排和Cope重排。

7.4.1Claisen重排

加热烯醇或酚的烯丙醚,可通过[3,3]-s迁移使烯炳基自氧原子迁移到碳原子上,此为Claisen 重排。其反应机理为协同反应历程。

此类反应在天然化合物的合成上有广泛的应用,如某些羟基醌的合成:

酚的烯丙醚重排时以邻位产物为主,但邻位产物也可经Cope重排部分转化为对位产物。

邻对位都被占据时甚至可以重排到间位:

硫杂Claisen重排:

氨基Claisen重排,常用Lewis酸作催化剂。

既然要Lewis酸作催化剂,是不是离子机理

呢?

7.4.2Cope重排

1,5-二烯(联二烯炳基)经[3,3]-s迁移重排为另一双烯炳基衍生物的反应称为Cope重排。其反应机理亦为协同反应历程。

基础有机化学反应总结

基础有机化学反应总结 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH -

【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 2 C H 33H 32 3H 32 CH CH 2C H 3 2 CH CH=CH (CH 3CH 2CH 2)3 - H 3CH 2CH 2C 22CH 3 CH 2O CH 2CH 2CH 3 3CH 2CH 2C 2CH 2CH 3 + O H - O H B - OCH 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2B OCH 2CH 2CH 3 CH 2CH 2CH 32CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH3NaOH 3HOCH 2CH 2CH 33 + Na 3BO 3 2 【例】 CH 3 1)BH 32)H 2O 2/OH -CH 3 H H OH 3、X 2加成 C C Br /CCl C C Br Br 【机理】

有机重排反应总结

Claisen 重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。 反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。 从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变 异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen

重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。 Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: 反应实例

有机化学重排反应 总结

有机化学重排反应总结 1、Claisen克莱森重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚得两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排就是分子内得重排。采用 g—碳 14C 标记得烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代得芳基烯丙基酚,重排后则仍就是a—碳原子与苯环相连。反应机理 Claisen 重排就是个协同反应,中间经过一个环状过渡态,所以芳环上取代基得电子效应对重排无影响. 从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移与一次由酮式到烯醇式得互变异构;两个邻位都被取代基占据得烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代得烯丙基芳基醚重排时,无论原来得烯丙基双键就是Z—构型还就是E-构型,重排后得新双键得构型都就是E -型,这就是因为重排反应所经过得六员环状过渡态具有稳定椅式构象得缘故. 反应实例 Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连得结构,就有可能发生Claisen重排。 2、Beckmann贝克曼重排 肟在酸如硫酸、多聚磷酸以及能产生强酸得五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应得取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位得基团迁移到缺电子得氮原子上,所形成得碳正离子与水反应得到酰胺. 迁移基团如果就是手性碳原子,则在迁移前后其构型不变,例如:

有机化学重排反应_总结

有机化学重排反应总结 1.Claisen克莱森重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。 反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。 从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

反应实例 Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。 2.Beckmann贝克曼重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

羟亚胺的Semipinacol重排反应与改进探究演示教学

羟亚胺的 S e m i p i n a c o l重排反应与改进探究

一:羟亚胺下游产品合成方法的简介:当前由干燥结晶的物理方法提取转向用化学法合成。前几年,国内羟亚胺下游注射液非法流失问题一度非常突出。究其原因,就是犯罪分子将羟亚胺下游注射液经过干燥结晶的简单方法提取羟亚胺下游,随着此类案件的增多,国家有关部门加大了羟亚胺下游注射液的管理力度,犯罪分子非法获取羟亚胺下游注射液变得困难后,继而转向用化学法合成羟亚胺下游。近两年,采用化学法制造羟亚胺下游犯罪活动频繁发生,需要引起高度重视。 目前,生产邻氯苯基环戊酮的基本方法有十多种,原料易获得的制造方法相对麻烦一些。比如以邻氯苯甲酸,邻氯苯甲酰氯,溴代环戊烷,环戊醇,环戊烷,环戊酮等等都可以作为主要原料,但其中最简单的,也是目前比较常见的有两种方法的主要原料就是邻氯苯甲酰氯,溴代环戊烷格式试剂法。技术含量并不高,原料很容易找到,化学合成只需要在实验室就能完成,方便易行、易分散、易隐蔽,成本低

廉而售价较高。利润丰厚。“具有初中化学水平的人,如果拥有制做配方,在家就能够生产成品。”对于文化程度不高的高中文化,初中文化,小学文化人员来说,这些技术也是容易学会的。生产出来的产品成色也挺好好,量也大。但现在盐酸羟亚胺,邻酮管控严格,不容易买到。因此就要得我们自己生产了。从生产角度来讲,氯胺酮技术相对简单,从盐酸羟亚胺到氯胺酮只需要重排既可以,反应加结晶一天就可以出来。从邻酮做也不算太难。氯胺酮的整个技术路线:包括需要的设备,原料、配料比、反应时间、反应温度、操作要点细节、注意事项等,内容具体详细通俗易懂。 两种常用的制作方法:制造邻氯苯基环戊酮的第一种方法是:现代工厂都以邻氯苯甲酰氯作为主要原料,以无水三氯化铝作为催化剂、环己烷与二氯乙烷作为溶剂、戊烷和苯作为基团转换剂,与环戊烯发生加成反应,然后经蒸馏提纯而得到邻氯苯基环戊酮。后面就可以再溴化胺化、中

有机化学重排反应总结

1.Claisen克莱森重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。 反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。 从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。 2.Beckmann贝克曼重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

大学有机化学反应方程式总结(较全)

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3+H + CH 2 +C 3X + C H 3X 主 次 快 慢 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3HBr Br H + CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】

CH 2C H 3CH CH 3C H 3BH 2 H CH CH 3C H 3BH 2 H CH CH 2C H 3H BH 2 CH CH=CH (CH 3CH 2CH 2)3O OH B - H 3CH 2CH 2C 22CH 3 CH 223 O CH 2CH 2CH 3 H 3CH 2CH 2C 2CH 2CH 3 + O H - O H - B - OC H 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2C OH B OC H 2CH 2CH 3 CH 2CH 2CH 3H 2CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH 3NaOH 3HOC H 2CH 2CH 33 + Na 3BO 3 2 【例】 CH 3 1)BH 32)H 2O 2/OH -CH 3 H H OH 3、X 2加成 C C Br /CCl C C Br Br 【机理】 C C Br Br C + C Br C C Br +Br - C C Br Br C C Br +O H 2C C Br O H 2+ -H + C C Br O H

大学有机化学1要点及反应总结最新版本

Chap 1绪论 一、构造、构型、构象 二、共价键 轨道杂化:C:sp、sp2、sp3杂化方式、空间构型(键角)、未参与杂化p轨道与杂化轨道位置、电负性比较 基本属性:键长:越短键越牢固键能:越大键越牢固σ键能大于п键能 键角:取代基越大键角越大极性和极化性:偶极矩(会判断偶极矩大小:矢 量和) 键断裂方式和反应类型:自由基反应、离子型(亲电、亲核)、周环反应 Lewis酸、碱 氢键、电负性 三、官能团、优先次序(ppt) Chap 2饱和烃——烷烃 一、烃分类 烃:开链烃和环状烃 开链烃:饱和烃和不饱和烃环状烃:脂环烃和芳香烃 二、烷烃通式和构造异构、构象异构(乙烷和丁烷构象) 烷烃通式:C n H2n+2 构造异构体:分子内原子链接顺序不同 σ键形成及特性:电子云重叠程度大,键能大,不易断;可绕轴自由旋转;两核间不能有两个或以上σ键。 乙烷构象:Newman投影式、重叠式(不稳定,因为非键张力大)、交叉式(稳定,各个氢距离远,非键张力小) 丁烷构象:Newman投影式;稳定性(大到小):对位交叉式、邻位交叉式、部分重叠式、全部重叠式 甲烷结构和sp3杂化构型:正四面体型 三、命名 普通命名法(简单化合物):正、异、新 衍生物命名法:以甲烷为母体,选取取代基最多的C为母体C。 系统命名法:①选取最长碳链为主链,主链C标号从距离取代基最近的一端开始标。 ②多取代基时,合并相同取代基,尽量使取代基位次和最小。书写时按照 官能团大小(小在前)命名 ③含多个相同长度碳链时,选取取代基最多的为主链 四、物理性质 沸点(b.p.):直链烷烃随分子量增大而增大(分子间色散力与分子中原子大小和数目成正比,分子量增大,色散力增大,沸点增大) 支链越多,沸点越低(支链多,烷烃体积松散,分子间距离大,色散力小)熔点(m.p.):总趋势:分子量增大,m.p.增大 m.p.曲线(书P48) 相对密度:分子量增大,相对密度增大,接近于0.8 溶解度:不溶于水,易溶于有机溶剂(相似相溶,烷烃极性小)

碳正离子重排规律

有机化学中重排反应 有机化学中重排反应很早就被人们发现,研究并加以利用。第一次被Wohler发现的,由无机化合物合成有机化合物,从而掀开有机化学神秘面纱的反应—加热氰酸铵而得到尿素,今天也被化学家归入重排反应的范畴。一般地,在进攻试剂作用或者介质的影响下,有机分子发生原子或原子团的转移和电子云密度重新分布,或者重键位置改变,环的扩大或缩小,碳架发生了改变,等等,这样的反应称为是重排反应。 按照反应的机理,重排反应通常可分为亲核反应、亲电反应、自由基反应和周环反应四大类。也有按照不同的标准,分成分子内重排和分子间重排,光学活性改变和不改变的重排反应,等等。 一、亲核重排 重排反应中以亲核重排为最多,而亲核重排中又以1,2重排为最常见。 (一)亲核1,2重排的一般规律 1.亲核1,2重排的三个步骤:离去基团离去,1,2基团迁移,亲核试剂进攻 2.发生亲核1,2重排的条件 (1)转变成更稳定的正离子(在非环系统中,有时也从较稳定的离子重排成较不稳定的离子) (2)转变成稳定的中性化合物 (3)减小基团间的拥挤程度,减小环的张力等立体因素。 (4)进行重排的立体化学条件:带正电荷碳的空p轨道和相邻的C-Z键以及α碳和β碳应共平面或接近共平面 (5)重排产物在产物中所占的比例不仅和正电荷的结果有关,而且和反应介质中存在的亲核试剂的亲核能力有关 3.迁移基团的迁移能力 (1)多由试验方法来确定基团的固有迁移能力 (2)与迁移后正离子的稳定性有关 (3)邻位协助作用 (4)立体因素 4.亲核1,2重排的立体化学: (1)迁移基:构象基本保持,没有发现过构型反转,有时有部分消旋 (2)迁移终点:取决于离去及离去和迁移基进行迁移的相对时机 5.记忆效应:后一次重排好像和第一次重排有关,中间体似乎记住了前一次重排过程 (二) 亲核重排主要包括基团向碳正离子迁移,基团向羰基碳原子迁移,基团向碳烯碳原子迁移,基团向缺电子氮原子转移,基团向缺电氧原子的迁移,芳香族亲核重排,下面就这六种迁移作简要介绍: 1.基团向碳正离子迁移: (1)Wagner-Meerwein重排:烃基或氢的1,2移位,于是醇重排成烯 (2)片那醇重排:邻二醇在酸催化下会重排成醛和酮

大学有机方程式总结有机反应总结

基本有机反应: 烷烃的化学反应: ⒈卤代(F 2,I 2不可作卤化剂)CH 4+Cl 2?→? γ h CH 3Cl+CH 2Cl 2+CHCl 3+CCl 4+HCl CH 3CH 2CH 3+Cl 2 ???→??) 25(h C γCH 3CHClCH 3(57%)+CH 3CH 2CH 2Cl(43%) ⒉硝化,磺化,氧化(略) 烯烃的化学反应: ⒈加卤素:CH 3CH=CH 2+Br 2??→?4 CCl CH 3CHBr -CH 2Br ⒉加氢卤酸:CH 3CH=CH 2+HBr →CH 3CHBr -CH 3 有区域选择,符合马氏规则 ⒊与无机酸:CH 3CH=CH 2+H 2SO 4→CH 3CH(OSO 3H)-CH 3 CH 3CH=CH 2+HOCl →CH 3CH(OH)-CH 2Cl ⒋与水加成:CH 3CH=CH 2??→?42SO H CH 3CH(OSO 3H)-CH 3??→?O H 2 CH 3CH(OH)CH 3 ⒌与硼烷加成:CH 3CH=CH 2??→?6 2H B (CH 3CH 2CH 2)3B ???→?) O(OH H -2CH 3CH 2CH 2OH 顺式加成,反马氏取向生成1?醇 ⒍过氧化物存在下,反马氏取向:CH 3CH=CH 2+HBr →?? ?→?过氧化物 CH 3CH 2CH 3Br HCl 无此反应 ⒎催化加氢成烷烃:用Pt,Pd,Ni 等 ⒏高锰酸钾氧化: 酸性:CH 3CH=CH 2+KMnO 4??→ ?- OH CH 3CH(OH)CH 2OH+MnO 2+KOH 碱性:CH 3CH=CH 2+KMnO 4?? →?? +/H CH 3COOH+CO 2↑ ⒐臭氧化: R O RRC=CHR’?→?3 O C CHR’→ 可根据产物推断反应物结构 R O -O 故多用于双键位置判定 ???→?O 璈O H 222RCOR+R’COOH ??→?O H -Zn 2RCOR+R’CHO ??→?4LiAlH RRCHO H+R’CH 2OH ⒑催化氧化:CH 2=CH 2+O 2?? ??→??C 300-Ag/200CH 2-CH 2 O CH 2=CH 2+O 2??? ?→?2 2CuCl ~PdCl CH 3CHO 多用于工业生产 ⒒α-取代反应: 氯代:CH 2=CHCH 3???? →??C 600-/400Cl 2 CH 2=CH -CH 2Cl 溴代:CH 2=CHCH 3??→ ?NBS CH 2=CH -CH 2Br 两个反应均为自由基取代反应,NBS 即N-溴代琥珀酰亚胺 ⒓重排:(CH 3)3CCH=CH 2??→ ?HCl (CH 3)2CClCH(CH 3)2(主)+(CH 3)3CCHClCH 3(次) 这一重排是由于分步加成和第一步中,由H +对双键的加成生成碳正离子,其稳定性3?>2?>1?,故在可能的情况下,它将以重排的方式趋于更稳定的状态。 ⒔聚合反应:含二聚和多聚(略) 共轭双烯的反应: ⒈1,2-加成和1,4-加成: CH=CH -CH=CH ?→?2 Br BrCH 2CH=CHCH 2Br+BrCH 2-CHBr -CH=CH 2

有机化学重排反应 总结

有机化学重排反应总结1.Claisen克莱森重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 C 标记的烯丙基醚进行重排,重排后 g-交叉反应实验证明:Claisen重排是分子 14碳原子与碳 内的重排。采用 g- 苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s ,由于邻位已被取代基占据,无法发生)占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排重排)到对位,然后经互变异构得到对位烯丙基酚。(Cope 互变异构,接着又发生一次[3,3]s 迁移

型,这E-E-Z-取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是构型还是构型,重排后的新双键的构型都是是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

反应实例 重排。重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen Claisen 贝克曼重排2.Beckmann肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排 生成己内酰胺:

有机重排反应总结教学文稿

有机重排反应总结

Claisen 重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。 反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。

从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后 的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。 Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:

反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: 反应实例

有机化学重排反应 总结

有机化学重排反应总结 1、Claisen克莱森重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排就是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍就是a-碳原子与苯环相连。 反应机理 Claisen 重排就是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。 从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移与一次由酮式到烯醇式的互变异构;两个邻位都被取代基 占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键就是Z-构型还就是E-构型,重排后的新双键的构型都就是E-型,这就是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。 反应实例 Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。 2、Beckmann贝克曼重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成 的碳正离子与水反应得到酰胺。 迁移基团如果就是手性碳原子,则在迁移前后其构型不变,例如:

有机化学重排反应总结

有机化学重排反应总结 克莱森重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排是分子内的重排。采用 g-碳 14C 标记的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。 反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。 从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。 贝克曼重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

有机重排反应总结

Claisen 重排 烯丙基芳基醚在咼温(200 C )下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时, 重排主要得到邻位产物, 两个邻位均被取 代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明: Claisen 重排是分子内的重排。采用 g-碳14 C 标记的烯丙基醚进行 重排,重排后g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚, 重排后则仍是a-碳原子与苯环相连。 反应机理 Claise n 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对 重排无影响。 从烯丙基芳基醚重排为邻烯丙基酚经过一次 [3,3]s 迁移和一次由酮式到烯醇式的互变 异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次 烯两至茉基战 坏状理履态 [3,3]s 迁移到邻位(Claisen OCH 2-CH=CH2

重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次 然后经互变异构得到对位烯丙基酚。 新双键的构型都是 E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。 Beckmann 重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰 成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 环己酮肪 己內酸脸 + 国3]门迁格尺 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是 Z-构型还是E-构型,重排后的 [3,3]s 迁移()至U 对位 , 氯等作用下发生重排,生 E"型 坏决过廈蛊

反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如: CH3CH2 t笃y CH3H3SO4_ CH?CH\ 0 乍EtQ a NHCC比 N TT X OH 反应实例 OHj OH R P-N=C-R O II R'-NHC-R

傅克反应总结材料

傅克反应总结材料1.傅克反应的发现: 在这些反应中,以制备芳烃和芳酮是主要的。 2.傅克反应的反应机理

注意以下三种情形下的反应: A.烷基正离子的重排(稳定性:叔>仲>伯) 因此反应中都有异构体产物的出现。如: B.烷基取代不会停留在一取代阶段 由于烷基是供电子基团,已取代后芳环上电子云密度增大,使得亲电取代反应更容易进行,所以取代还会继续进行下去,最后可以全部取代。如: 但是有些基团由于位阻关系,只能得到已取代的产物。 如果取代基团是酰基,由于酰基是吸电子基团,使得芳环电子云密度减小,使得亲电取代反应比较困难,反应一步后会停下来,所以傅克酰化合成芳酮更为有用。 C.定文问题:

下面的例子将让我们更好的去理解定位问题: 3.傅克反应的催化剂 路易氏酸,强酸,酸酐,酰氯和一些中性化合物和元素等。 特别需要注意以下及点: A.不同催化剂产生不桶产物: B.不同催化剂产率有很大的差别:

C. 氯化物作为催化剂要无水,但是绝对无水活性反而不大,甚至不能进行。有些反应还需要把催化剂暴露在空气中吸水几分钟后,才能催化反应的进行。 4.傅克反应所用的烷基化剂 A.常用的是氯化物,活泼性次序RCl>RBr>RI B.烯类也是很好的烷基化剂,催化剂用BF3和HF效果很好。 C.醇类也可作为烷基化剂,但是催化剂用BF3和HF效果最好。 5.酰基取代剂 A. 酰卤 活性顺序为: B. 酸酐也是很好的酰化剂,但是它需要比酰卤多50%的氯化铝。 C. 羧酸也可以直接用作酰化剂,但催化剂不宜用氯化铝,而要用硫酸,磷酸,最好是 氟化氢。 6.芳环 芳环和杂环化合物都能参加F-C反应,其中并环和稠环更易发生反应,杂环中,呋喃类,吡咯类等虽对酸敏感,但在适当情况下也可发生F-C反应。

大学有机方程式总结有机反应总结

基本有 机 反应 : 烷烃的化学反应: ⒈卤代(F 2,I 2不可作卤化剂)CH 4+Cl 2?→?γ h CH 3Cl+CH 2Cl 2+CHCl 3+CCl 4+HCl CH 3CH 2CH 3+Cl 2 ???→??) 25(h C γCH 3CHClCH 3(57%)+CH 3CH 2CH 2Cl(43%) ⒉硝化,磺化,氧化(略) 烯烃的化学反应: ⒈加卤素:CH 3CH=CH 2+Br 2??→?4CCl CH 3CHBr -CH 2Br ⒉加氢卤酸:CH 3CH=CH 2+HBr →CH 3CHBr -CH 3 有区域选择,符合马氏规则 ⒊与无机酸:CH 3CH=CH 2+H 2SO 4→CH 3CH(OSO 3H)-CH 3 CH 3CH=CH 2+HOCl →CH 3CH(OH)-CH 2Cl ⒋与水加成:CH 3CH=CH 2?? →?42SO H CH 3CH(OSO 3H)-CH 3??→?O H 2CH 3CH(OH)CH 3 ⒌与硼烷加成:CH 3CH=CH 2?? →?6 2H B (CH 3CH 2CH 2)3B ???→?) O(OH H -2CH 3CH 2CH 2OH 顺式加成,反马氏取向生成1?醇 ⒍过氧化物存在下,反马氏取向:CH 3CH=CH 2+HBr →?? ?→?过氧化物 CH 3CH 2CH 3Br HCl 无此反应 ⒎催化加氢成烷烃:用Pt,Pd,Ni 等 ⒏高锰酸钾氧化: 碱性:CH 3CH=CH 2+KMnO 4??→ ?- OH CH 3CH(OH)CH 2OH+MnO 2+KOH 酸性:CH 3CH=CH 2+KMnO 4?? →?? +/H CH 3COOH+CO 2↑ ⒐臭氧化: R O RRC=CHR’?→?3 O C CHR’→ 可根据产物推断 反应物结构 R O -O 故多用于双键位置判定 ???→?O 璈O H 222RCOR+R’COOH ??→?O H -Zn 2RCOR+R’CHO ??→?4LiAlH RRCHOH+R’CH 2OH ⒑催化氧化:CH 2=CH 2+O 2?? ??→??C 300-Ag/200CH 2-CH 2 O CH 2=CH 2+O 2??? ?→?22CuCl ~PdCl CH 3CHO 多用于工业生产 ⒒α-取代反应: 氯代:CH 2=CHCH 3???? →??C 600-/400Cl 2 CH 2=CH -CH 2Cl 溴代:CH 2=CHCH 3??→ ?NBS CH 2=CH -CH 2Br 两个反应均为自由基取代反应,NBS 即N-溴代琥珀酰亚胺 ⒓重排:(CH 3)3CCH=CH 2??→ ?HCl (CH 3)2CClCH(CH 3)2(主)+(CH 3)3CCHClCH 3(次) 这一重排是由于分步加成和第一步中,由H +对双键的加成生成碳正离子,其稳定性3?>2?>1?,故在可能的情况下,它将以重排的方式趋于更稳定的状态。

有机化学重排反应总结

. . .. . . 1.Claisen克莱森重排 烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。 当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。对位、邻位均被占满时不发生此类重排反应。 交叉反应实验证明:Claisen重排是分子内的重排。采用g-碳14C 标记的烯丙基醚进行重排,重排后g-碳原子与苯环相连,碳碳双键发生位移。两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连。 反应机理 Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。 从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。 取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。

反应实例 Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。 2.Beckmann贝克曼重排 肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺: 反应机理 在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:

酮肟Beckmann重排反应研究

研究报告 酮肟Beckmann重排反应在酰胺类化合物 合成中的应用研究

目录 第一章酮肟重排反应最优化条件研究的实验方案 ................................................. - 2 - 1.1课题背景、意义及介绍 ....................................................................................... - 2 - 1.2实验方案设计 .......................................................................................................... - 2 - 1.2.1制备底物肟................................................................................................... - 2 - 1.2.2最优离子溶剂的筛选................................................................................ - 3 - 1.2.3最优催化剂的筛选 .................................................................................... - 3 - 1.2.4最优条件下底物取代基对反应的影响 .............................................. - 3 - 1.2.5最优条件下的循环反应........................................................................... - 4 - 1.2.6产物的表征测试 ......................................................................................... - 4 -第二章酮肟重排反应最优化条件研究的实验方法与步骤................................... - 5 - 2.1实验原料与设备...................................................................................................... - 5 - 2.1.1实验原料(如表1)................................................................................. - 5 - 2.1.2实验仪器(如表2)................................................................................. - 6 - 2.2实验方法与步骤...................................................................................................... - 6 - 2.2.1制备底物肟................................................................................................... - 6 - 2.2.2最优离子溶剂筛选 .................................................................................... - 8 - 2.2.3最优催化剂筛选 ......................................................................................... - 8 - 2.2.4最优条件下底物取代基对反应的影响 .............................................. - 8 - 2.2.5最优条件下的循环反应........................................................................... - 8 - 2.2.6产物的表征测试 ......................................................................................... - 8 -第三章酮肟重排反应最优化条件研究的结果与讨论 ......................................... - 10 - 3.1制备底物肟 ............................................................................................................ - 10 - 3.2最优离子溶剂筛选.............................................................................................. - 14 - 3.3最优催化剂的筛选.............................................................................................. - 15 - 3.4 3.4 最优条件下底物取代基对反应的影响 ............................................... - 16 - 3.5最优条件下的循环反应 .................................................................................... - 20 - 3.6实验结果总结 ....................................................................................................... - 21 - 3.7参考文献................................................................................................................. - 22 -第四章附图:...................................................................................................................... - 23 - 4.1肟 ............................................................................................................................... - 23 - 4.1.1 ............................................................................................................................ - 23 - 4.1.2 ............................................................................................................................ - 24 - 4.2酰胺 .......................................................................................................................... - 26 - 4.2.1 ............................................................................................................................ - 26 - 4.2.2 ............................................................................................................................ - 27 - 4.2.3 ............................................................................................................................ - 28 - 4.2.4 ............................................................................................................................ - 28 - 4.2.5 ............................................................................................................................ - 29 -

相关文档