文档库 最新最全的文档下载
当前位置:文档库 › 和差问题的公式

和差问题的公式

和差问题的公式
和差问题的公式

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

1 每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2 1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3 速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4 单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6 加数+加数=和

和-一个加数=另一个加数

7 被减数-减数=差

被减数-差=减数

差+减数=被减数

8 因数×因数=积

积÷一个因数=另一个因数

9 被除数÷除数=商

被除数÷商=除数

商×除数=被除数

小学数学图形计算公式

1 正方形

C周长S面积a边长

周长=边长×4

C=4a

面积=边长×边长

2 正方体

V:体积a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3 长方形

C周长S面积a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 长方体

V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积a底h高

面积=底×高÷2

s=ah÷2

三角形高=面积×2÷底

三角形底=面积×2÷高

6 平行四边形

s面积a底h高

面积=底×高

s=ah

7 梯形

s面积a上底b下底h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

v:体积h:高s;底面积r:底面半径c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数+1)=小数

小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数+1)=小数

小数×倍数=大数

(或小数+差=大数)小学奥数公式

和差问题的公式

(和+差)÷2=大数(和-差)÷2=小数

和倍问题的公式

和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式

差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题的公式

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题的公式

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题的公式

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题的公式

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题的公式

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题的公式

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

两角和与差的正弦公式的有趣证明

两角和与差的正弦公式的有趣证明 江苏省泰州市朱庄中学曹开清 225300 一、勾股定理的一个证明与两角和的正弦公式 如图1(a),在一个边长为a+b的大正方形中,放置了4个两直角边长分别为a、b,斜边长为c的直角三角形,显然图中小正方形的面积等于c2.现在我们将图1(a)中的 4 个直角三角形移位,拼成图1(b),显然图1(b)中两个较小的正方形的面积之和等于a2+b2.因为图1(a)与图1(b)中空白部分的面积相等,所以有a2+b2=c2,亦即证明了勾股定理. 我觉得这是勾股定理众多证明方法之中,最简单的一个证明了.不仅如此,它其实还有着另外一个用途,并不是每一个人都能发现的.现在将上面两个图“压扁”,成为图2: 如图2(a),原来的正方形变成了一个平行四边形,它的面积是mnsin(α+β),其中m 、n 分别是相邻两个直角三角形斜边的长度.如图2(b),原来的两个正方形变成了两个矩形,其

面积之和是msin α·ncos β+mcos α·nsin β.与上面一样,图2(a)与图2(b)中空白部分的面积相等,所以有mnsin(α+β)=msin α·ncos β+mcos α·nsin β,化简得sin(α+β)=sin αcos β+sin αcos β,这就是三角学中最重要的两角和的正弦公式.在这里,勾股定理和两角和的正弦公式竟来自相同的证明方法! 二、无意中导出两角差的正弦公式 邻居有个小孩,一次拿了他的作业本来问我.题目是这样的:如图,AD ⊥BD ,∠ACD =α,∠ABD =β,BC =a ,则AD =___________. 他的答案是)sin(sin sin βαβ α-?a ,但他的老师给他打了个“×”.我问他是怎么做的?他马上写了起来: 在ΔABC 中,BC =a ,∠ABC =β,∠BAC =α―β,根据正弦定理,得 )sin(sin βαβ-=a AC , 即)sin(sin βαβ-=a AC . 在RtΔACD 中,) sin(sin sin sin βαβαα-=?=a AC AD . 我说对啊!他却说老师的正确答案是:αβcot cot -= a AD .解题过程如下: 在RtΔABD 中,βcot ?=AD BD ;在RtΔACD 中,αcot ?=AD CD , 所以a CD BD AD =-=-)cot (cot αβ, 即α βcot cot -=a AD .

七年级完全平方公式、平方差公式经典习题

平方差公式经典习题 教师:焦建锋 授课时间:2013.3.17 一、选择题 1.下列各式能用平方差公式计算的是:( ) A .)23)(32(a b b a -- B .)32)(32(b a b a --+- C .)23)(32(a b b a +-- D .)23)(32(b a b a +- 2.下列式子中,不成立的是:( ) A. 2 2 )())((z y x z y x z y x --=--+- B . 2 2) ())((z y x z y x z y x --=---+ C . 2 2)())((y z x z y x z y x --=-+-- D . 2 2 ) ())((z y x z y x z y x +-=++-- 3.()4422916)43(x y y x -=-- ,括号内应填入下式中的( ). A .)43(22y x - B .2234x y - C .2243y x -- D .2243y x + 4.对于任意整数n ,能整除代数式)2)(2()3)(3(-+--+n n n n 的整数是( ). A .4 B .3 C .5 D .2 5.在))((b a y x b a y x ++--++ 的计算中,第一步正确的是( ). A .22)()(a y b x --+ B .))((2222b a y x -- C .22)()(b y a x --+ D .22)()(a y b x +-- 6.计算)1)(1)(1)(1(24-+++x x x x 的结果是( ). A .18+x B .14+x C .8)1(+x D .18-x 7.)1)(1)(1(222++-+c b a abc abc 的结果是( ). A .1444-c b a B .4441c b a - C .4441c b a -- D .4441c b a + 二、填空题 1.()()22)4)(4(-= +-x x . 2.=-+++)1)(1(b a b a ( )2 -( )2 . 3.=-+)68)(68(n m n m ______________. 4.=- - - )3 4 )(3 4 ( b a b a _______________ . 5.=+-+))()((2 2b a b a b a _______________ .6.=-+++)2)(2(y x y x _______________ .

两角和与差的正切公式

第4课时 两角和与差的正切公式 【教学目标】 1、掌握用同角三角函数关系式推导出两角和与差的正切公式. 2、会用两角和与差的正切公式求非特殊角的正切值. 3、应用两角和与差的正切公式进行计算、化简、证明. 【教学重点与难点】 重点:两角和与差的正切公式的推导;两角和、差公式的灵活应用. 难点:两角和与差的正切公式的逆向使用;实际问题抽象为数学问题,恰当寻找解题思维的起点. 【教学过程】 导入 我们已经学习了正弦公式,余弦公式,本节课我们一起学习正切公式.这样对于一些非特殊角的正切,我们也能计算,如tan75?. 在推导正切公式之前,能否用已学知识来计算tan75?的值. 问题引入 两角和、差的正弦公式: =+)sin(βα________________________,=-)sin(βα_________________________ 两角和、差的余弦公式: =+)cos(βα_______________________,=-)cos(βα_______________________ 构建新知 推导过程 sin() tan()cos() αβαβαβ++= + sin cos cos sin cos cos sin sin αβαβ αβαβ += - 分子分母同时除以cos cos αβ,得 t a n t a n t a n ()1t a n t a n αβαβαβ++=-

两角和、差的正切公式: =+)tan(βα________ tan tan 1tan tan αβ αβ +-________________________ 用β-代替β,就可得到 =-)tan(βα___________ tan tan 1tan tan αβ αβ -+_____________________ 例题分析 例1 求值 (1)0 75tan ;(2)0 00043 tan 17tan 143tan 17tan -+ ;(3) 00 75tan 175tan 1-+ 解 (1)0 tan 75tan(4530)=?+? tan 45tan 301tan 45tan 30?+? = -?? = (2)00 00 tan17tan 43tan(1743)1tan17tan 43+=?+?= - (3)00 1tan 75tan 45tan 75tan(4575)1tan 751tan 45tan 75+?+?==?+?=--?? 特殊角的三角函数值 例2 已知7 tan ,5)tan(== -ββα,求αtan . 解 []t a n t a n ()ααββ=-+ tan()tan 1tan()tan αββ αββ -+= -- 1=

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

平方差公式练习题精选(含答案) 2

平方差公式练习题精选(含答案) 一、基础训练 1.下列运算中,正确的是() A.(a+3)(a-3)=a2-3 B.(3b+2)(3b-2)=3b2-4 C.(3m-2n)(-2n-3m)=4n2-9m2 D.(x+2)(x-3)=x2-6 2.在下列多项式的乘法中,可以用平方差公式计算的是() A.(x+1)(1+x)B.(1 2 a+b)(b- 1 2 a) C.(-a+b)(a-b)D.(x2-y)(x+y2) 3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是() A.3 B.6 C.10 D.9 4.若(x-5)2=x2+kx+25,则k=() A.5 B.-5 C.10 D.-10 5.9.8×10.2=________; 6.a2+b2=(a+b)2+______=(a-b)2+________. 7.(x-y+z)(x+y+z)=________; 8.(a+b+c)2=_______. 9.(1 2 x+3)2-( 1 2 x-3)2=________. 10.(1)(2a-3b)(2a+3b);(2)(-p2+q)(-p2-q); (3)(x-2y)2;(4)(-2x-1 2 y)2. 11.(1)(2a-b)(2a+b)(4a2+b2); (2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z). 二、能力训练 13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()

A.4 B.2 C.-2 D.±2 14.已知a+1 a =3,则a2+ 2 1 a ,则a+的值是() A.1 B.7 C.9 D.11 15.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为() A.10 B.9 C.2 D.1 16.│5x-2y│·│2y-5x│的结果是() A.25x2-4y2B.25x2-20xy+4y2C.25x2+20xy+4y2 D.-25x2+20xy-4y2 17.若a2+2a=1,则(a+1)2=_________. 三、综合训练 18.(1)已知a+b=3,ab=2,求a2+b2; (2)若已知a+b=10,a2+b2=4,ab的值呢?

(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形 1.两角和与差的正弦、余弦、正切公式 (1)公式 ①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β 1+tan αtan β(T (α-β)) ⑥tan(α+β)=tan α+tan β 1-tan αtan β(T (α+β)) (2)公式变形 ①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式 ①sin 2α=2sin_αcos_α, ②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α= 2tan α 1-tan 2α . (2)公式变形 ①cos 2 α=1+cos 2α2,sin 2 α=1-cos 2α2 ; ②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(π α±. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×) (4)公式tan(α+β)=tan α+tan β 1-tan αtan β 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意

平方差公式的运用(20210127064349)

11.3公式法 【学习目标】 1 ?知道平方差公式的特点,; 2?知道分解因式的一般步骤,会分解较为复杂的多项式. 【学习重点】 会用平方差公式分解因式 【学习难点】 会分解较为复杂的多项式 【预习自测】 用平方差公式分解因式,并总结出分解因式的一般步骤. 复习完全平方数,为用平方差公式分解因式做准备. 2 ?请用平方差公式计算: (1) (x+1) (x-1 ) ; (2) ( 3x+2) ( 3x-2 ) 【合作探究】 1. (a b)(a -b) = _______________________________ 把这个公式反过来,就得到: ____________________________________________ 把它当做公式,就可以把某些多项式进行因式分解,这种因式分解的方法叫做公式法 2. 请同学们看下 面多项式应如何分解?请说明理由. 2 2 (1) X-1 ; ( 2) 9x-4 ; 【解难答疑】 1. 多项式a 2-b 2如何分解? 2. a 2-b 2= (a+b ) ( a-b )叫做因式分解的平方差公式. 观察公式的左边有什么特点? 注意:1.公式的左边是两部分的 ______________ 的形式; 2. 公式的右边是两个因式的 _____ 的形式,是这两部分的和与差的乘积; 3. 公式中的左边的两部分的符号一定是 _______ 的. 3. 请指出下面各式中的 a , b : 2 X 4 -丁+ 81y (1) 25-x 2; (2) 6x 2-121y 2; (3) 4 ; (4) - ( a+b ) 2+x 6 1.请完成下面填空: 2 121 =() 144 = ()2 169 = ( )2 196 = :( z 、2 z 、2 、2 256 =() 289 = =() 324 = =( ) 361 = = 2 2 )225=()

最经典-平方差公式

用乘法公式计算 一、填空题 1.(a+b)(a-b)=_____,公式的条件是_____,结论是_____. 2.(x+1)(x-1)=_____ 3.(x+4)(-x+4)=_____,(x+3y)(_____)=9y2-x2,(-m-n)(_____)=m2-n2 4.98×102=(_____)(_____)=()2-( )2=_____. 5.-(2x2+3y)(3y-2x2)=_____. 6.(a-b)(a+b)(a2+b2)=_____. 7.(__________4b)(_____+4b)=9a2-16b2,(_____-2x)(_____-2x)=4x2-25y2 8(xy+z)(z-xy)=_____ 9.(-3x+2y)(-3x-2y)=_____ 10.观察下列各式: (x-1)(x+1)=x2-1 (x-1)(x2+x+1)=x3-1 (x-1)(x3+x2+x+1)=x4-1 根据前面各式的规律可得 (x-1)(x n+x n-1+…+x+1)=_____. 二、选择题 11.下列多项式乘法,能用平方差公式进行计算的是( ) A.(x+y)(-x-y) B.(2x+3y)(2x-3z) C.(-a-b)(a-b) D.(m-n)(n-m) 12.下列计算正确的是( )

A.(2x+3)(2x-3)=2x2-9 B.(x+4)(x-4)=x2-4 C.(5+x)(x-6)=x2-30 D.(-1+4b)(-1-4b)=1-16b2 13.下列多项式乘法,不能用平方差公式计算的是( ) A.(-a-b)(-b+a) B.(xy+z)(xy-z) C.(-2a-b)(2a+b) D.(0.5x-y)(-y-0.5x) 14.(4x2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算 ( ) A.-4x2-5y B.-4x2+5y C.(4x2-5y)2 D.(4x+5y)2 15.a4+(1-a)(1+a)(1+a2)的计算结果是( ) A.-1 B.1 C.2a4-1 D.1-2a4 16.下列各式运算结果是x2-25y2的是( ) A.(x+5y)(-x+5y) B.(-x-5y)(-x+5y) C.(x-y)(x+25y) D.(x-5y)(5y-x) 三、解答题 17.1.03×0.97 18.(-2x2+5)(-2x2-5) 19.a(a-5)-(a+6)(a-6) 20.9982-4 21. 3(2x+1)(2x-1)-2(3x+2)(2-3x) 22.(x+y)(x-y)-x(x+y)

两角和与差的正弦公式教案(高教版拓展模块)

1.1.2 两角和与差的正弦公式 一、教学目标 ⒈掌握两角和与差的正弦公式的推导过程; ⒉培养学生利用公式求值、化简的分析、转化、推理能力; ⒊发展学生的正、逆向思维能力,构建良好的思维品质。 二、教学重、难点 1. 教学重点:两角和与差的正弦公式的应用; 2. 教学难点:公式的的推导及逆用 三、教学设想: (一)复习式导入: 大家首先回顾一下两角和与差的余弦公式: ()cos cos cos sin sin αβαβαβ+=-; ()cos cos cos sin sin αβαβαβ-=+. 这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? (二)探讨过程: 我们根据两角差的余弦公式可以得到: cos()cos cos sin sin sin 222π π π αααα-=+= 提示:我们可以利用上式实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗? 让学生动手完成两角和与差正弦公式的推导. ()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ??????????+=-+=-+=-+- ? ? ??????????????? sin cos cos sin αβαβ=+. ()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ -=+-=-+-=-???? 由此得到两角和与差的正弦公式: ()sin sin cos cos sin αβαβαβ+=+ ()sin sin cos cos sin αβαβαβ-=- 让学生观察并记忆两角和与差正弦公式,并思考与两角和与差的余弦公式的联系与区别。 (三)例题讲解 例1、利用和、差角正弦公式求sin 75,sin15的值. 解:分析:把75,15构造成两个特殊角的和、差. 12sin 75sin(3045)sin 30cos 45cos30sin 452=+=+=?+=

平方差公式的运用技巧

平方差公式的运用技巧 平方差公式(a+b)(a -b)=a 2-b 2是恒等式,是初中数学中的重要公式,公式中的字母可以表示数字, 也可以表示单项式、多项式等代数式.在多项式的乘法计算过程中,只要算式符合公式的结构特征,就可以运用平方差公式.在灵活运用平方差公式解答有关问题时,应注意以下三种技巧: 一.正用技巧: 1.直接运用平方差公式 例1 计算:(-3a+2b)( -2b -3a) . 分析:直接套用是学习了平方差公式后最基本的模仿运用,通过模仿可以培养类比的思维能力,从而 达到熟悉掌握平方差公式的目的. 解: 原式= (-3a)2 -(2b)2=9a 2-4b 2. 2.连续运用平方差公式 例2 计算:(x+2)(x 2+4)(x -2) . 分析:此题若从左向右依次运算计算很繁,若根据题目的特点,先将两个一次式相乘,则发现连续两 次运用平方差公式,就可以求到结果. 解: 原式=(x 2-4) (x 2+4)=x 4-16. 3.综合运用乘法公式 例3计算:(2a+b -c+6)(2a -b+c+6). 分析:此题是两个四项式相乘,按照多项式的乘法法则计算会得到十六项,然后再合并同类项,但是若能把(2a+6)、(b -c)看作整体,则可以先运用平方差公式再运用完全平方公式求解,避免合并同类项的运算. 解:原式=[(2a+6) +(b -c)][(2a+6)-(b -c)]=(2a+6)2 -(b -c)2=4a 2+24a+36-b 2+2bc -c 2. 二.逆用技巧:灵活正确掌握好平方差公式的逆用,对于计算和化简带来很大的简便性,可以起到事 半功倍的作用. 1.直接逆用平方差公式 例4 计算: (a+2)2-(a -2)2. 分析:此题可以直接先运用完全平方公式,然后再进行整式的加减,运算比较繁,若根据题目的特点,直接逆用平方差公式,便可化繁为简,迅速求解. 解:原式=[(a+2)+(a -2)][ (a+2)-(a -2)]=2a×4=8a. 例5 计算:(1-221 )(1-231)(1-241)…(1-220081). 分析:此题若直接先算出括号内的结果,将会出现2007个分数相乘的运算,但如果每个括号内都先逆用平方差公式,那么除了首尾两数以外,其余每相邻两数均互为倒数,正好约分,可以减少运算量. 解:解:原式=(1-21)(1+21)(1-31)(1+31)(1-41)(1+41)·…·?? ? ??+??? ??-200811200811 =200820092008200745 4334322321???????? =20082009200820072007200854454334322321??????????)()()()( =2008 200921?

两角和差的正切公式

§3.1.2 两角和与差的正弦、正切公式(1) 一、教学目标 理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用. 二、教学重、难点 1. 教学重点:两角和、差正弦和正切公式的推导过程及运用; 2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用. 三、学法与教学用具 学法:研讨式教学 四、教学设想: (一)复习式导入:大家首先回顾一下两角和与差的余弦公式: ()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+. 这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗? 让学生动手完成两角和与差正弦和正切公式. ()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ??????????+=-+=-+=-+- ? ? ??????????????? sin cos cos sin αβαβ=+. ()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-????让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手) (二)例题讲解 例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα??????-+- ? ? ?????? ?的值.

平方差公式与完全平方差公式综合运用

平方差公式与完全平方差公式综合运用 平方差公式专项 1、热身练习 一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示() A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是() A.(a+b)(b+a) B.(-a+b)(a-b) C.(1 3 a+b)(b- 1 3 a) D.(a2-b)(b2+a) 3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个 4.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4. 7.(a+b-1)(a-b+1)=(_____)2-(_____)2. 8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.培优讲解: 例1、添项拆项: (1)(2+1)(22+1)(24+1).(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)..(32008+1)- 4016 3 2 例2、运用平方差公式简算 (1)2009×2007-20082.(2) 22007 200720082006 -?.(3) 2 2007 200820061 ?+ . 过关练习:1.利用平方差公式计算:202 3 ×21 1 3 . 2.计算:(a+2)(a2+4)(a4+16)(a-2). 例3、解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3). 例4、阅读题型 已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(?1+x+x2+x3)=1-x4.

平方差和完全平方公式经典例题

典例剖析 专题一:平方差公式 例1:计算下列各整式乘法。 ①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n --- ③数字变化98102? ④系数变化(4)(2)24n n m m +- 》 ⑤项数变化(32)(32)x y z x y z ++-+ ⑥公式变化2(2)(2)(4)m m m +-+ ◆变式拓展训练◆ … 【变式1】2244()()()()y x x y x y x y ---+++ 【变式2】22 (2)(4)33b b a a --- 【变式3】22222210099989721-+-++-…

、 专题二:平方差公式的应用 例2:计算 22004200420052003-?的值为多少 , ◆变式拓展训练◆ 【变式1】22()()x y z x y z -+-+- 【变式2】2301(3021)(3021)?+?+ 【变式3】(25)(25)x y z x y z +-+-++ 【变式4】已知a 、b 为自然数,且40a b +=, (1)求22 a b +的最大值;(2)求ab 的最大值。 ( 专题三:完全平方公式

例3:计算下列各整式乘法。 ①位置变化:22()()x y y x --+ ②符号变化:2 (32)a b -- & ③数字变化:2197 ④方向变化:2(32)a -+ ⑤项数变化:2(1)x y +- ⑥公式变化22 (23)(46)(23)(23)x y x y x y x y -+-+++ \ ◆变式拓展训练◆ 【变式1】224,2a b a ab b +=++则的值为( ) 【变式2】已知221() 4.,()_____2 a b ab a b -==+=则 【变式3】已知225.6,x y xy x y +=-=+则的值为( ) 【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值 / 专题四:完全平方公式的运用

两角和与差的正切公式

第4课时两角和与差的正切公式 【教学目标】 1、掌握用同角三角函数关系式推导岀两角和与差的正切公式 2、会用两角和与差的正切公式求非特殊角的正切值 3、应用两角和与差的正切公式进行计算、化简、证明 【教学重点与难点】 重点:两角和与差的正切公式的推导;两角和、差公式的灵活应用 难点:两角和与差的正切公式的逆向使用;实际问题抽象为数学问题,恰当寻找解题思维的起点.【教学过程】 导入 我们已经学习了正弦公式,余弦公式,本节课我们一起学习正切公式.这样对于一些非特殊角的正切,我们也能计算,如tan75 . 在推导正切公式之前,能否用已学知识来计算tan75的值. 问题引入 两角和、差的正弦公式: sin( ) ______________________ ,sin( ) _____________________ 两角和、差的余弦公式: cos( ) __________________ ,cos( ) ___________________ 构建新知 推导过程 分子分母同时除以cos cos ,得 两角和、差的正切公式: tan tan tan() 1 tan tan 用代替,就可得到 tan tan tan() 1 tan tan

例题分析

例1 求值 (1) tan 750 ; ( 2) tan 17 0 1 tan 17 tan 43 0 0tan 43° 1 tan 75 0 1 tan 75 0 (1) tan 750 tan (45 30 ) (2) tan17 0 (3) tan 43 0 tan17 0 tan 430 tan (17 43 tan 75 0 1 tan 75 0 tan 45 tan 75 1 tan 45 tan 75 tan (45 75 ) 例2 已知tan( ) -,tan 3 ,求 5 7 解 tan tan ( ) 随堂训练 1 ?填空: 0 1 3 (1) tan 105 1 「 5 tan tan 12 12 tan tan 12 12 1 tan 15° 1 tan 150 tan 30 (4) tan150 1 tan15 0 1门 tan 15 1 1 tan15 2.已知tan 3, tan( )3 , 求tan 2 5 特殊角的三角函数值 (3) 3 解 tan tan ( )

平方差公式经典练习题

平方差公式经典练习题 二、课后练习 一、选择题 1.下列各式能用平方差公式计算的是:(?? ) A .)23)(32(a b b a -- ? B .)32)(32(b a b a --+- C .)23)(32(a b b a +-- ? D .)23)(32(b a b a +- 2.下列式子中,不成立的是:(?? ) A.22)())((z y x z y x z y x --=--+- B .2 2)())((z y x z y x z y x --=---+ C .22)())((y z x z y x z y x --=-+-- D .22)())((z y x z y x z y x +-=++-- 3.( )4422916)43(x y y x -=-- ,括号内应填入下式中的(?? ) . A .)43(2 2 y x - ? B .2 2 34x y - ? C .2 2 43y x -- ? D .2 2 43y x + 4.对于任意整数n ,能整除代数式)2)(2()3)(3(-+--+n n n n 的整数是(?? ). A .4? B .3? C .5? D .2 5.在))((b a y x b a y x ++--++ 的计算中,第一步正确的是(?? ). A .2 2 )()(a y b x --+ B .))((2 2 2 2 b a y x -- C .22)()(b y a x --+ D .2 2)()(a y b x +-- 6.计算)1)(1)(1)(1(2 4-+++x x x x 的结果是( ). A .18 +x ? B .14 +x ? C .8 )1(+x ?? D .18 -x 7.)1)(1)(1(2 22++-+c b a abc abc 的结果是( ).

两角和与差的正切公式

两角和与差的正切公式 时间:2017年12月7日授课班级:高一(16)班授课教师:叶桂芬一、教学目标 知识与技能 1.会有两角和与差的正弦、余弦公式推导其正切公式 2.会用两角和与差的正切公式求非特殊角的正切值. 3.应用两角和与差的正切公式进行计算、对1的灵活运用. 过程与方法: 1.通过公式的推导,提高学生恒等变形能力和逻辑推理能力; 2.通过公式的灵活运用,培养学生的数学思想方法. 情感、态度、价值观 1.使学生体会“联想转化、数形结合、分类讨论”的数学思想; 2.培养学生大胆猜想、敢于探索、勇于置疑、严谨、求实的科学态度. 二、教学重点、难点 1.重点:两角和与差的正切公式推导及其运用 2.难点:两角和与差的正切公式的运用。 三、课时安排 1课时 四、教学流程 1、复习回顾: β α αsin β β α C + = cos(- sin cos ) cos α+ β β αsin α α β β C cos(+ = - ) cos cos sin β α-

βαβαβαsin cos cos sin )sin(+=+ βα+S βαβαβαsin cos cos sin )sin(-=- βα-S 2、探究新知(推导过程) (1) 在两角和与差的正弦,余弦公式的基础上,你能用αtan ,βtan 表示出 )tan(βα+和)tan(βα-吗? (2) 利用所学的两角和与差的正弦,余弦公式,对比分析公式 βα+C ,βα-C ,βα+S ,βα-S ,能否推导出)t an( βα+和)tan(βα-?其中βα,应该满足什么条件? 师生讨论: 当0)cos(≠+βα时,β αβαβ αβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin()tan( -+=++=+ 若0cos cos ≠βα,即0cos ≠α且0cos ≠β时,分子分母同除以βαcos cos 得β αβ αβαtan tan 1tan tan )tan( -+=+ 根据角α,β的任意性,在上面的式子中,用-β代替β,则有 β αβ αβαβαβαtan tan 1tan tan )tan(tan 1)tan(tan )tan(+-=---+= - 由此推得两角和与差的正切公式。简记为“βα+T ,βα-T ” βαβαβαtan tan 1tan tan )tan(-+= + β αβ αβαtan tan 1tan tan )tan(+-=- 其中βα,应该满足什么条件?还依然是任意角吗? 由推导过程可以知道:) (2 ) (2 ) (2Z k k Z k k Z k k ∈+ ≠±∈+≠∈+ ≠π πβαπ πβπ πα

平方差公式的运用

浅谈平方差公式在初中数学中的运用 提要:平方差公式22))((b a b a b a -=-+是初中阶段的一个重要的公式,应用也十分广泛,必须引起教师的高度重视。 关键词:平方差 整式乘法 因式分解 无理数 平方差公式在初中数学上占据了重要位置,在近几年的中考和期末测试中经常出现,所以要求学生掌握并运用好平方差公式。 一、平方差公式乘法中的运用 平方差公式:22))((b a b a b a -=-+,其形式是:两项之和与这两项的差的乘积等于这个项的平方差,其中的a 、b 可以是具体数,也可以是单项式、多项式。可用公式的都有两个共同特点:前一个因式与后一个因式中各有一项是相同,剩下的两项是互为相反数。有些形式上不符合公式,但只要符合这个特点,可以根据公式的特点,应用加法加换律、结合律进行灵活变形,或者用提负号的方法把题转化成平方差公式。 (一)、整式乘法中的运用 例1. )32)(32(-+x x 分析:本题是整式乘法中的最简单的,是这两个项的和与这两个项的差的积等于这两项的平方差,可直接用公式进行计算。 9 43)2()32)(32(222-=-=-+x x x x 例2.)23)(23(b a b a --- 分析:本类题是属于两个多项项式的乘积,这类题形首先要观察是否符合公式特点,看出前一个因式中与后一个因式中都是-2b ,剩下的一个是-3a ,一个3a ,它们互为相反数,可以用公式。计算本题有两种方法(1)是利用加法加换律调整位置,把它转化为一般式;(2)提一个负号转化成一般式,再用公式计算。 解法1、加法加换律进行调整其位置 解法2、提取负号 )23)(23(b a b a --- )23)(23(b a b a --- ())32(32a b a b +---= )23)(23(b a b a -+-= =()()2 2 32a b -- )49(22b a --= 2294a b -= 2 2 49b a +-= 例3、()()z y x z y x -+++22 分析:本类题每一个因式中都是三个或三个以上的项,所以先利用加法结合律,

两角和与差的正弦余弦正切公式练习题(答案)

两角和差的正弦余弦正切公式练习题 知 识 梳 理 1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(α?β)=cos_αcos_β±sin_αsin_β. tan(α±β)= tan α±tan β 1?tan αtan β . 2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α= 2tan α 1-tan 2α . 3.有关公式的逆用、变形等 (1)tan α±tan β=tan(α±β)(1?tan_αtan_β). (2)cos 2 α=1+cos 2α2,sin 2α=1-cos 2α2 . (3)1+sin 2α=(sin α+cos α)2 ,1-sin 2α=(sin α-cos α)2 ,sin α±cos α=2sin ? ?? ?? α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a 一、选择题 1.给出如下四个命题 ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan( βαβ αβαtan tan 1tan ?-+an 成立的条件是)(2 Z k k ∈+≠ππα且)(2 Z k k ∈+ ≠π πβ; ④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ( ) A .①② B .②③ C .③④ D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( ) A .21+ B .12- C .2 D . 2

两角和与差公式的应用

两角和与差公式的应用 【导航练习】 1.已知A 、B 均锐角,且满足tan A ·tan B=tan A +tan B +1 ,则cos (A +B )= . 2. sin x =2 2是tan x =1成立的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 3.在(0,2π)内,使0<sin x +cos x <1成立的x 的取值范畴是 ( ) A .(0,π2 ) B .(π4 ,3π4 ) C .(π2 ,3π4 )∪(7π4 ,2π) D .(3π4 ,π)∪(3π2 ,7π4 ) 4.已知α+β=π4 +2k π (k ∈Z ),求证:(1+tan α)(1+tan β)= 2 5.已知cos x +cos y = 12 ,sin x -sin y = 14 ,求cos (x +y )的值. 【巩固练习】 1.已知θ是锐角,那么下列各值中,sin θ+cos θ能取到的值是 ( ) A .43 B .34 C .53 D .12 2.已知tan x = - 2 ,π

5.求 42 sin 18cos 318sin 的值。 6. 化简:sin (x +17°)cos (x -28°)+cos (x +17°)sin (28°-x ) 7.求证:在△ABC 中,sin A cos B cos C +sin B cos C cos A +sin C cos B cos A = sin A sin B sin C 8. 在△ABC 中,tan B +tan C + 3 tan B tan C = 3 ,又 3 tan A + 3 tan B +1 = tan A tan B ,试 判定△ABC 的形状。 9.已知π2 <β<α<3π4 ,cos (α-β)= 1213 ,sin (α+β)= - 35 ,求sin2α的值。 10.已知tan α、tan β是关于x 的方程mx 2+(2m -3)x +m -2 = 0的两个根,求tan (α +β)的取值范畴。 11. 在△ABC 中,若tan A , tan B , tan C 成等差数列,且tan A +tan B +tan C = 3 3 。求证A 、 B 、 C 也成等差数列。

相关文档
相关文档 最新文档