文档库 最新最全的文档下载
当前位置:文档库 › 用向前差分格式计算初边值问题

用向前差分格式计算初边值问题

用向前差分格式计算初边值问题
用向前差分格式计算初边值问题

一、题目

用向前差分格式计算如下热传导方程的初边值问题

222122,01,01(,0),01

(0,),(1,),01x

t t u u

x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤???

已知其精确解为

2(,)x t u x t e +=

二、考虑的问题

作为模型,考虑一维热传导方程:

22(),0u u

a f x t T t x

??=+<≤??…………(1.1) 其中a 是正常数,()f x 是给定的连续函数。 现在考虑第二类初边值问题的差分逼近:

初始条件:(,0)(),0u x x x l ?=<<…………(1.2)

边值条件:(0,)()u t t η=,(,)()u l t t γ=,0t T ≤≤………(1.3)

假设()f x 和()x ?在相应区域光滑,并且在0,x l =满足相容条件,使上述问题有惟一充分光滑的解。

三、网格剖分

取空间步长l

h N

=和时间步长T

M τ=,其中

,N M 都是正整数。用两族平行直线

(0,1,,)j x x jh j N ===L 和(0,1,,)k t t k k M τ===L 将矩形域{}

0;0G x l t T =≤≤≤≤分割成矩形网格,网格节点为(,)j k x t 。以h G 表示网格内点集合,即位于开矩形的网点集合;

h G 表示所有位于闭矩形G 的网点集合;h h h G G -=Γ是网格界点集合。

其次,用k

j u 表示定义在网点(,)j k x t 的函数,M k N j ≤≤≤≤0,0

四、建立差分格式

将方程在节点(,)j k x t 离散化,

2

2()k

k

j j j

u u a f x t x ??????

=+??????????,1,2,,1j N =-L 1,2,,1k M =-L …………(1.4) 对充分光滑的解u ,由Taylor 展式:

22312

(,)(,)

(,)(,)()2j k j k j k j k u x t u x t u x t u x t O t t

τττ+??=+++??…………(1.5) 234

23451234

(,)(,)(,)(,)(,)(,)()23!4!j k j k j k j k j k j k u x t u x t u x t u x t h h h u x t u x t h

O h x

x x x

+????=+++++????…………(1.6)

234

23451234

(,)(,)(,)(,)(,)(,)()23!4!j k j k j k j k j k j k u x t u x t u x t u x t h h h u x t u x t h

O h x

x x x

-????=-+-++????…………(1.7)

(1.5)移项得:

2122

(,)(,)(,)(,)

()2j k j k j k j k u x t u x t u x t u x t O t

t

τττ+?-?=-+??…………(1.8) (1.6)(1.7)相加得:

24

21132

2

4(,)(,)2(,)(,)

(,)()12j k j k j k j k j k u x t x t u x t u x t u x t h O h x

h x

+-?-+?=

-+??…………(1.9) 将(1.8)(1.9)代入(1.4)得:

1112

(,)(,)

(,)2(,)(,)

()()j k j k j k j k j k k j j u x t u x t x t u x t u x t a

f x R u h

τ

++---+=++…………(1.10)

其中,

24

2232

4

(,)(,)

()()()2

12

j k j k k

j

u x t u x t h R u O O h t x ττ??=

-

++??

舍去()k

j R u ,得到逼近(1.1)的向前格式差分方程:

111

2

2k k k k k

j j

j j j j u u u u u a

f h

τ

++---+=+,1,2,,1j N =-L 1,2,,1k M =-L ……(1.11)

其中,(,)k

j j k u u x t =,()j j f f x = 记

22u u Lu a t t

??=-??

1

11

2

2k k k k k

j j

j j j k h j u u u u u L u a

h τ

++---+=

-

则由(1.4) []()k

j j Lu f x = 由(1.11) (,)()()k h j k j j L u x t f x R u =+

五、截断误差

[]()(,)k

k j h j k j R u L u x t Lu =-

(3).边界条件

0()

(),()

j j j k

k

k N k u x u t u t ??ηγ?==??==?? 在本题中,2a =,()0f x =,()x x e ?=,2()t t e η=,12()t

t e γ+=

六、稳定性分析

用傅里叶方法对差分格式进行稳定性分析

以2

r a h τ=表示网比,将(1.11)改写成便于计算的形式:

111(12)k k k k j j j j u ru r u ru ++-=+-+ (本题中()0f x =)

以exp()k k

j u v i jh α=代入,得

()()()1exp()exp (1)(12)exp()exp (1)k k v i jh r i j h r i jh r i j h v αααα+=++-+-

消去()jh i αexp ,则知增长因子

()()()()()h i h i r r x G p αατ-++-=exp exp 21,

()h r αcos 121--= 2

sin 412h

r α-=

由()

τατM h

r x G p +≤-=12

sin

41,2

,得

τατM h

r M +≤-≤--12

sin 4112

即 2214sin 12

114sin 2

h r M h M r ατατ?-≤+????--≤-??恒成立

只需 2

4sin 2M 2

h

r ατ≤+

4r 2≤

解得 1

2

r ≤

所以向前差分格式的稳定性条件是2

1

≤r

七、结论

抛物型方程的有限差分法的步骤大致可以归纳如下: 1.对区域进行网格剖分

2.在离散结点建立相应的差分格式

3.处理初边值条件

4.进行稳定性分析

由本题可以总结出,抛物型方程的有限差分法所得的数值解能够较好地逼近方程的精确 解,且区域剖分得越细,即步长越小,数值解与精确解的误差就越小,数值解越逼近精确解。

附录

MATLAB 程序:

2a =

取110h =

,1

400

τ=,则212a r h τ==,满足稳定性条件

另取1

20

h =,11600τ=,则212a r h τ==,亦满足稳定性条件

另取1

40

h =,16400τ=,则212a r h τ==,亦满足稳定性条件

format long a=2; l=1; T=1; N=10; M=400; h=l/N; to=T/M;

r=(a*to)/h^2; for j=1:N+1

x(j)=(j-1)*h;

for k=1:M+1

t(k)=(k-1)*to;

u(j,k)=exp(x(j)+2*t(k));

end

end

u %求解精确解

for j=1:N+1

x(j)=(j-1)*h;

us(j,1)=exp(x(j));

end

for k=1:M+1

t(k)=(k-1)*to;

us(1,k)=exp(2*t(k));

us(N+1,k)=exp(1+2*t(k));

end

for k=2:M+1

for j=2:N

us(j,k)=r*us(j-1,k-1)+(1-2*r)*u(j,k-1)+r*us(j+1,k-1);

end

end

us %求解数值解

for k=1:M+1

for j=1:N+1

R(j,k)=abs(u(j,k)-us(j,k));

end

end

R %计算误差

Rmax=max(max(R)) %求误差的最大值

精确解与数值解的比较:

x=0:0.1:1;

hold on

plot(x,u(:,M+1),'b');

plot(x,us(:,M+1),'y');

title('t=1,h=1/10,τ=1/400时精确解和数值解的比较')

text(0.05,21,'蓝:精确解');

text(0.05,20,'黄:数值解');

hold off

取不同步长时的误差比较:

x=0:1/10:1;

y=0:1/20:1;

z=0:1/40:1;

hold on

plot(x,R(:,M+1),'b');

hold off

M分别取10,20,40

结论

抛物型方程的有限差分法的步骤大致可以归纳如下:

1.对区域进行网格剖分

2.在离散结点建立相应的差分格式

3.处理初边值条件

4.进行稳定性分析

由本题可以总结出,抛物型方程的有限差分法所得的数值解能够较好地逼近方程的精确解,且区域剖分得越细,即步长越小,数值解与精确解的误差就越小,数值解越逼近精确解。

班级:信计1 班

名字:周晓虹

学号:20083710

Nevanlinna理论在差分多项式中的应用

Nevanlinna理论在差分多项式中的应用 在1922年至1925年,芬兰数学家R.Nevanlinna在做了一些简短的注记之后,发表了他关于亚纯函数理论的文章,也就是后来的重要的数学理论Nevanlinna 理论,即复平面C上的亚纯函数值分布理论,10余年后L.Ahlfors建立了此理论 的几何形式.Nevanlinna理论,与后来的一些推广是函数论的重要组成部分,是 研究亚纯函数性质方面最重要的理论。该理论不断自我完善和发展,同时广泛的应用到其他的复分析领域,如势理论,复微分及差分方程理论,多复变量理论,极 小曲面理论等。 复差分方程的基础建立于20世纪的早期,Batchelder[2],N(?)rlund[52]和Whittaker[57]在这个方面做了重要的贡献。后来,Shimomura[55]和Yanagihara[59,60,61]利用Nevanlinna理论来研究了非线性的复差分方程的解。 由于亚纯函数有穷级解的存在性是考察差分方程可解性的一个好的性质,所以最近在这个方面的领域得到了广范的研究兴趣。从这个角度出发,Nevanlinna 理论在处理复差分方程方面是一个很有用的工具。 复差分方面的Nevanlinna理论是最近才确立的。其中,最关键的结果是差分对数导数引理,Halburd-Korhonen[20]和Chiang-Feng[8]给出了这个引理的两 种表达形式。 Halburd和Korhonen[21]在差分算子的基础上建立了Nevanlinna理论。Ishizaki和Yanagihara[33]研究了差分方程慢增长的解的性质,并且给出了在 微分方程中著名的Wiman-Valiron理论的差分定理.Bergweiler和Langley[4,38]研究了慢增长的亚纯函数的差分算子的值分布论。 本论文利用Nevanlinna理论去研究差分多项式的值分布。论文的结构安排

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

高二竞赛讲义 多项式的插值与差分3

高二数学竞赛班二试讲义 第3讲 多项式的插值与差分 班级 姓名 一、知识点金 1.拉格朗日插值公式:存在唯一的一个次数不超过1n -的多项式()f x 满足 (),1,2,,i i f x y i n ==???(()f x 的图象经过n 个不同点(,)i i x y ) ;并且()f x 可表示为 2313121213121232()()()()()() ()()()()()()()()()n n n n x x x x x x x x x x x x f x f x f x x x x x x x x x x x x x --???---???-=++???--???---???- 12121111121121()()()()()() ()() ()()()()()() n n n n n n n n n n n n n n n n x x x x x x x x x x x x f x f x x x x x x x x x x x x x -----------???---???--++-???---???-- 2.对于函数()f x 及固定的0h ≠,()()f x h f x +-称为()f x 的步长为h 的一阶差分,记作1()h f x ?。 11 ()()(2)2()()h h f x h f x f x h f x h f x ?+-?=+-++,称为()f x 的步长为h 的二阶差分。记作211 ()()()h h h f x f x h f x ?=?+-?。 一般地,()f x 的步长为h 的n 阶差分定义为11()(())n n h h h f x f x -?=??。 3.对于函数()f x ,有0 ()(1) ()n n n i i h n i f x C f x ih -=?= -+∑ 数学归纳法证明:1n =时结论显然成立。假设0 ()(1) ()n n n i i h n i f x C f x ih -=?=-+∑, 则1 ()(1)()(1)()n n n n i i n i i h n n i i f x C f x h ih C f x ih +--==? =-++--+∑∑ 1 1 1 1 (1) ()(1)()n n n i i n i i n n i i C f x ih C f x ih +-+--===-+--+∑∑(1i -代替上式0 n i =∑中i 的位置) 1 110 (1)()()n n i i i n n i C C f x ih +-+-==-++∑ (注意:定义10n C -=,1 0n n C +=) 1110(1)()n n i i n i C f x ih +-++==-+∑ 因此0 ()(1) ()n n n i i h n i f x C f x ih -=?= -+∑对一切正整数n 成立。 4.设1110()m m m m f x a x a x a x a --=++???++,当n m ≤时,()n h f x ?是一个m n -次多项式;而对于n m >,()n h f x ?恒为零。 证明:由定义可知,1 00()()()[()][]m m h m m f x f x h f x a x h a a x a ?=+-=++???+-+???+ 1m m mha x -=+低次项,这是一个1m -次多项式,首项为1m m mha x -,依此类推, 11()!m m h m f x m h a x --?=+常数项,()!m m h m f x m h a ?=,从而当n m >时,()0n h f x ?=。 5.综合第3、4条,取步长1h =,可得出 (1)设()f x 是m 次多项式,首项系数为m a ,则00, ,(1)()!,, n n i i n i m m n C f x i m a m n -=

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。 (1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法; (2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格; (3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

数学实验“微分方程组边值问题数值算法(打靶法,有限差分法)”实验报告(内含matlab程序)

西京学数学软件实验任务书

实验二十七实验报告 一、实验名称:微分方程组边值问题数值算法(打靶法,有限差分法)。 二、实验目的:进一步熟悉微分方程组边值问题数值算法(打靶法,有限差分法)。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.打靶法: 对于线性边值问题 ?? ?==∈=+'+''β α)(,)(] ,[) ()()(b y a y b a x x f y x q y x p y (1) 假设L 是一个微分算子使:()()Ly y p x y q x y '''=++ 则可得到两个微分方程: )(1x f Ly =,α=)(1a y ,0)(1 ='a y ?)()()(111 x f y x q y x p y =+'+'',α=)(1a y ,0)(1='a y (2) 02=Ly ,0)(2=a y ,1)(2 ='a y ?0)()(222 =+'+''y x q y x p y ,0)(2=a y ,1)(2='a y (3) 方程(2),(3)是两个二阶初值问题.假设1y 是问题(2)

的解,2y 是问题(3)的解,且2()0y b ≠,则线性边值问题(1)的解为:1122() ()()()() y b y x y x y x y b β-=+ 。 2.有限差分法: 基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 五、实验内容: %线性打靶法 function [k,X,Y,wucha,P]=xxdb(dydx1,dydx2,a,b,alpha,beta,h) n=fix((b-a)/h); X=zeros(n+1,1); CT1=[alpha,0]; Y=zeros(n+1,length(CT1)); Y1=zeros(n+1,length(CT1)); Y2=zeros(n+1,length(CT1)); X=a:h:b; Y1(1,:)= CT1; CT2=[0,1];Y2(1,:)= CT2; for k=1:n k1=feval(dydx1,X(k),Y1(k,:)) x2=X(k)+h/2;y2=Y1(k,:)'+k1*h/2;

两点边值问题的有限差分法

学生实验报告 实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计2班学生姓名学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年月日

[]0max N i i c i N e u u <<=-,[]1 2 1 N N i i i e h u u -== -∑及收敛阶 ( )2ln ln 2 N N e e ,将计算结果填入 第五部分的表格,并对表格中的结果进行解释? 4. 将数值解和精确解画图显示,每种网格上的解画在一张图。 三.实验原理、方法(算法)、步骤 1. 差分格式: =-1/h^2(-( ) + )+ ( )/2h+ = A, 2. 局部阶段误差: (u)=O(h^2) 3.程序 clear all N=10; a=0;b=1; p=@(x) 1; r=@(x) 2; q=@(x) 3; alpha=0;beta=1; f=@(x) (4*x^2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); H(i,i+1)=-(2*p(a+(i+1/2)*h)/h-r(a+i*h)); g(i)=2*h*f(a+i*h)+(2*p(a+(i-1/2)*h)/h+r(a+i*h))*alpha; end

五.实验结果及实例分析 N N c e 收敛阶 N e 收敛阶 10 0.00104256 …… 0.00073524 …… 20 0.00026168 1.9341 0.00018348 1.4530 40 0.00006541 2.0001 0.00004585 2.0000 80 0.00001636 1.9993 0.00001146 2.0000 160 0.00000409 2.0000 0.00000287 2.0000 N 越大 只会使绝对误差变小,方法没变,所以收敛阶一致。 图示为:(绿线为解析解,蓝线为计算解) N=10 N=20

波动方程的变步长有限差分数值模拟

收稿日期:2007-03-23;修订日期:2007-04-27 作者简介:李胜军,男,在读硕士研究生,研究方向为地震波传播理论。联系电话:(0546)8392055,E-mail:hdpulis@126.com,通讯地址:(257061)中国石油大学(华东)地球资信与信息学院。 *中国石油大学(华东)研究生创新基金资助,编号:S2006—06。 油气地球物理 2007年7月 PETROLEUMGEOPHYSICS 第5卷第3期 在地震资料采集、处理和解释中通常需要进行地震波场数值模拟:假设已知地下的地质情况,应用地震波运动学和动力学的基本原理,计算给定地质模型的地震响应。这种做法对正确认识地震波的运动学和动力学特征,以及准确分析油气藏的反射波场特征有着重要的指导意义。声波在介质中的正演模拟研究为我们精确模拟地震波在复杂介质中的传播提供了理论基础[1]。 傅立叶变换法和高阶有限差分法(FD)已成为计算声波方程空间导数的标准技术[2,3]。虽然常网格步长差分算法比较容易实现,但是它们对大部分模型都增大了不必要的计算量。例如,对存在浅层低速带的沉积盆地模型地面地震记录进行模拟时,由于低速地层阻抗小,地震波传入其中会引起较大的振幅和较长的延续时间(这与深层的高速层完全不同)。由于这些浅层低速层中地震波的波长较短、地层厚度较小,模拟时需要用小网格进行。这样,常网格步长算法就必须用小网格离散整个模型,从而增加了不必要的代价,如内存、计算量的增大。 因而,采用变网格算法将能改进有上覆低速层情况模拟结果的有效性(对地层中间有超薄夹层的情形,必须用精细网格覆盖才能精确的对地层进行模拟)。应用这种变网格算法既能实现对夹层的模拟,又能保障计算量不增加。因此这种通过函数实现在任意深度上网格步长变化的有限差分方法被 推广[4]。为了计算空间导数,在X方向用傅立叶变换法或有限差分算法,在Z方向使用高阶有限差分方法。通过时间积分快速展开法(REM)来保障差分方法的计算精度[6]。这种差分技巧比二阶时间差分有较高的精确度且计算用时短。 1时间积分 均匀介质中的二维声波方程可用下式表示[2] 式中:P=P(x,z,t),代表压力项;c=c(x,z),代表速度;s=s(s,z),代表震源函数;L2为差分算子。在密度!=!(x,z)变化的情况下,常用的是Vidale给出的公式[5] 波动方程的变步长有限差分数值模拟* 李胜军1,2) 孙成禹1) 张玉华1) 倪长宽1) 1)中国石油大学地球资源与信息学院;2)中石油勘探开发研究院西北分院 摘要:有限差分算法是常用的正演模拟方法之一,其包含的地震信息丰富,且实现简单。传统的有限差分方法通常都采用均匀网格步长,在对含低速/高速介质、 薄层/厚层介质的模型进行波场模拟时往往缺乏稳定性。文章介绍了一种可以有效解决上述问题的变网格算法,对常规有限差分法与变网格差分算法在内存需求、计算速率等方面的差别进行了比较,对变网格差分算法中的边界条件、 时间积分的快速展开算法作了阐述,进而总结了变网格算法的优点。关键词:变步长;边界条件;计算时间;快速展开法;数值模拟 !2 P!t2=-L2P+s (1) (2) -L2 =c 2 !2!x2+!2 !z 2" # (3) (4) !2 P!t 2=-L2P!"$ -1!L2P+PL21!+s -L2 =!c 2 2 !2!x2+!2 !z 2% $

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

有限差分法解微分方程两点边值问题

使用有限差分方法解边值问题: 由两点边值问题的一般形式: 根据差分方程: 当网格划分均匀,即有,化简差分方程: 代入再次化简: 用方程组展开写成矩阵形式: MATLAB编程:

运行后算出的结果:0 0.00376645934479969 0.00752341210586145 0.0112613555020809 0.0149707943560995 0.0186422448923756 0.0222662385306948 0.0258333256736017 0.0293340794862392 0.0327590996670822 0.0360990162080584 0.0393444931425513 0.0424862322797872 0.0455149769241112 0.0484215155776656 0.0511966856249889 0.0538313769980622 0.0563165358203363 0.0586431680282822 0.0608023429690169

0.0627851969725639 0.0645829368973219 0.0661868436473210 0.0675882756598612 0.0687786723621374 0.0697495575954688 0.0704925430057619 0.0709993313988528 0.0712617200593841 0.0712716040318917 0.0710209793627865 0.0705019463019362 0.0697067124625652 0.0686275959382091 0.0672570283754778 0.0655875580013963 0.0636118526041142 0.0613227024657904 0.0587130232464804 0.0557758588178718 0.0525043840457360 0.0488919075199819 0.0449318742312199 0.0406178681927653 0.0359436150070336 0.0309029843752992 0.0254899925498146 0.0196988047273101 0.0135237373829146 0.00695926054356603 0 与精确解比较:

两点边值问题的有限差分法

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 学生实验报告 实验课程名称偏微分方程数值解 _________________ 开课实验室___________ 数统学院 ____________________ 学院数统年级2013专业班信计2班 学生姓名_________ 学号________ 开课时间2015至2016学年第2 学期

数学与统计学院制 .实验内容 考虑如下的初值问题: 定常数。 部分。 0, b 1 , p 3,r 1,q 2 , 0 , 1,问题(1)的精确解 ux x 2e x 1 , 及p 1,r 2,q 3带入方程(1)可得f x 。分别取 并能通过计算机语言编程实现。 .实验目的 通过该实验,要求学生掌握求解两点问题的有限差分法, 开课学院、实验室: 数统学院 实验时间:2016年 月 日 Lu d du x —p x ------------ dx dx du x dx q f x , x a, b (1) 其中 p x C 1 a,b , x ,q a,b P min 0 , q x 0 ,,是给 将区间N 等分, 网点x 1.在第三部分写出问题( 1)和 (2)的差分格式,并给出该格式的局部截断 2.根据你写出的差分格式, 编写一个有限差分法程序。将所写程序放到第四 3.给定参数a 其中将u x

N 10,20,40,80,160 ,用所编写的程序计算问题 (1)和⑵。将数值解记为 5 , i 1,...,N 1,网点处精确解记为i 1,…,N 1。然后计算相应的误差 1 l N /I 2 Nil h u i U i 2及收敛阶 n e : e 11,将计算结果填入 I i In 2 第五部分的表格,并对表格中的结果进行解释? 4.将数值解和精确解画图显示,每种网格上的解画在一张图。 三?实验原理、方法(算法)、步骤 1. 差分格式: L L .i=-1/h A 2O |] (% 曲汀—):i.「)/2h+w = 応=A,匕 2. 局部阶段误差: n (u)=O(hA2) 3. 程序 clear all N=10; a=0;b=1; P=@(x) 1; r=@(x) 2; q=@(x) 3; aIpha=0;beta=1; f=@(x) (4*xA2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); max u i c 0 i N i i U i N e

有限元、有限差分法

有限元法原理 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 运用步骤 步骤1:剖分: 将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点). 步骤2:单元分析: 进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数 步骤3:求解近似变分方程 用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

有限差分法the Finite Difference Method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。有限差分法求解偏微分方程的步骤如下: 1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格; 2、近似替代,即采用有限差分公式替代每一个格点的导数; 3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程(Leon,Lapidus,George F.Pinder,1985)

实验一用有限差分法解静电场边值问题

用有限差分法解静电场边值问题 一、目的 1.掌握有限差分法的原理与计算步骤; 2.理解并掌握求解差分方程组的超松弛迭代法,分析加速收敛因子α的作用; 3.学会用有限差分法解简单的二维静电场边值问题,并编制计算程序。 二、方法原理 有限差分法是数值计算中应用得最早而又相当简单、直观的一种方法。应用有限差分法通常所采取的步骤是: ⑴ 采用一定的网格分割方式离散化场域。 ⑵ 进行差分离散化处理。用离散的、只含有限个未知数的差分方程组,来近似代替场域内具有连续变量的偏微分方程以及边界上的边界条件(也包括场域内不同媒质分界面上的衔接条件)。 ⑶ 结合选定的代数方程组的解法,编制计算机程序,求解由上面所得对应于待求边值问题的差分方程组,所得解答即为该边值问题的数值解。 现在,以静电场边值问题 ??? ??==??+??) 2( )()1(02222s f D y x L ?? ?中 在 为例,说明有限差分法的应用。f (s )为边界点s 的点函数,二位场域D 和边界L 示于图5.1-1中。 x 图5.1-1 有限差分的网格分割 1. 离散化场域 应用有限差分法时,首先需从网格划分着手决定离散点的分布方式。通常采用完全有规律的方式,这样在每个离散点上可得出相同形式的差分方程,有效地提高解题速度。如图5.1-1所示,现采用分别与x ,y 轴平行的等距(步距为h )网格线把场域D 分割成足够多的正方形网格。各个正方形的顶点(也即网格线的交点)称为网格的结点。这样,对于场域内典型的内结点0,它与周围相邻的结点1、2、3和4构成一个所谓对称的星形。 2.差分格式 造好网格后,需把上述静电场边值问题中的拉普拉斯方程(1)式离散化。设结点0上的电位值为?0。结点1、2、3和4上的电位值相应为?1、?2、?3和?4,则基于差分原理的应用,拉普拉斯方程(1)式在结点0处可近似表达为

金融工程期末复习题知识讲解

金融工程期末复习题

一、简述题(30分) 1.金融工程包括哪些主要内容? 答:产品与解决方案设计,准确定价与风险管理是金融工程的主要内容 P3 2.金融工程的工具都有哪些? 答:基础证券(主要包括股票和债券)和金融衍生产品(远期,期货,互换和期权)P4 3.无套利定价方法有哪些主要特征? 答:a.套利活动在无风险的状态下进行 b.无套利的关键技术是“复制”技术 c.无风险的套利活动从初始现金流看是零投资组合,即开始时套利者不需要 任何资金的投入,在投资期间也不需要任何的维持成本。P16 4.衍生证券定价的基本假设为何? 答:(1)市场不存在摩擦 (2)市场参与者不承担对手风险 (3)市场是完全竞争的 (4)市场参与者厌恶风险,且希望财富越多越好 (5)市场不存在无风险套利机会 P20 5.请解释远期与期货的基本区别。 答:a.交易场所不同 b.标准化程度不同 c.违约风险不同 d.合约双方关系不同 e.价格确定方式不同 f.结算方式不同 g.结清方式不同 P44 6.金融互换的主要有哪些种类? 答:利率互换与货币互换和其它互换(交叉货币利率互换、基点互换、零息互换、后期确定互换、差额互换、远期互换、股票互换等等)P104 7.二叉树定价方法的基本原理是什么? 答:二叉树图方法用离散的模型模拟资产价格的连续运动,利用均值和方差匹配来确定相关参数,然后从二叉树图的末端开始倒推可以计算出期权价格。P214 8.简要说明股票期权与权证的差别。 答:股本权证与备兑权证的差别主要在于: (1)有无发行环节; (2)有无数量限制; (3)是否影响总股本。 股票期权与股本权证的区别主要在于: (1)有无发行环节 (2)有无数量限制。P162 9.影响期权价格的因素主要有哪些?它们对欧式看涨期权有何影响? 答: 1)标的资产的市场价格(+) 2)期权的协议价格(—) 3)期权的有效期(?) 4)标的资产价格的波动率(+) 5)无风险利率(+) 6)标的资产收益(—)

五点差分格式求解泊松方程的第一边值问题(可编辑)

五点差分格式求解泊松方程的第一边值问题(可编辑)五点差分格式求解泊松方程的第一边值问题 摘要:给出了二维泊松方程在单位正方形上的五点差分格式。并运用线性方程组的古典迭代解法??Jacobi迭代求解出在区域上的数值解。最终绘制数值解的图形。 关键字:泊松方程五点差分格式 Jacobi迭代 有限差分法的介绍 有限差分法是求解偏微分方程的主要数值解法之一;其基本思想是把连续问题离散化,即对求解区域做网格剖分,用有限个网格点代替连续区域;其次将微分算子离散化,从而把微分方程组的问题化为线性方程组的求解问题,解方程组就可以得到原问题在离散点上的近似解。 差分法的步骤:1 对求解域做网格剖分 2 插值函数的选择 3 方程组的建立 4 方程组的求解 五点差分格式的构造 二维泊松方程: 在单位正方形上,在正方形边界上的边界条件.在正方形网格上,就是在上离散化,.对于N3如图1所示: 图1 沿方向分别用二阶中心差商代替 2.1 2.2

1、2式相加可得差分方程: 2.3 利用Taylor展式 可得差分算子的截断误差 其中是方程2.3的光滑解。 由于差分方程2.3中只出现在及其四个邻点上的值见图1的中间的粗的点,所以称为五点差分格式。 由边界条件知道,因而2.3式确定了一组具有个未知量的个线性方程。对应的系数矩阵为对称、不可约对角占优,且对角元为正,因而系数矩阵非奇异,且为对称正定阵。 三、方程组的求解 我们已经知道,利用差分方法解椭圆型方程边值问题归结为解大型线性代数方程组的问题。因为差分格式产生的大型线性代数方程组的系数矩阵中非零元素占的比例小,分布很有规律性。而且通过数值线性代数的学习,我们知道对于大型的稀疏矩阵来说,迭代法是比较好的选择,其程序实现比较简单,迭代过程能自动校正计算过程中的偶然误差,要求计算机的存储相对较少。 本文采用了线性方程组古典迭代解法??Jacobi迭代求解由五点差分格式得到的线性方程组。以下对Jacobi迭代作简要的介绍: 给定3.1 令3.2 其中 3.3 那么3.1可以写成,3.4 其中.若给定初始向量,并代入3.4的右端,就可以计算出一个新的向量,即,

FLAC3D基础知识介绍解析

FLAC 3D基础知识介绍 一、概述 FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。因此,大大发护展了计算规模。FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。 FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。 FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。调整三维网格中的多面体单元来拟合实际的结构。单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围

的三维问题。 三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。 FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形。它包含10种弹塑性材料本构模型,有静力、动力、蠕变、渗流、温度五种计算模式,各种模式间可以互相藕合,可以模拟多种结构形式,如岩体、土体或其他材料实体,梁、锚元、桩、壳以及人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩、界面单元等,可以模拟复杂的岩土工程或力学问题。 FLAC3D采用ANSI C++语言编写的。 二、FLAC3D的优点与不足

相关文档
相关文档 最新文档