文档库 最新最全的文档下载
当前位置:文档库 › 电池片电性能参数介绍

电池片电性能参数介绍

电性能参数介绍

电参数介绍

Uoc:开路电压

Isc:短路电流

Rs:串联电阻

Rsh:并联电阻

FF:填充因子

Pmpp:最大功率

Umpp:最大功率点电压 Impp:最大功率点电流 Irev1:反向电流1(-10V)

Irev2:反向电流2(-12V) Ncell :转换效率

Pmpp

Impp

Pmax

△I

△V

Rs 是該段

線斜率

Rs = dU/(Isc1-Isc2)

各个参数之间的关系

在所有参数中,只有电压和电流是测量值,其他参数均是计算值。

Pmpp为在I-V曲线上找一点,使改点的电压乘以电流所得最大,该点对应的电压就是最大功率点电压Umpp,该点对应得电流就是最大功率点电流Impp

Rs为在光强为1000W/M2和500W/M2下所得最大功率点的电压差与电流差的比值,只是一个计算值,所以有时候会出现负值的情况

Rsh为暗电流曲线下接近电流为0时曲线的斜率

Irev1为电压为-10V时的反向电流

Irev2为电压为-12V时的反向电流

Rs和Rsh决定FF

Rsh和Irev1、Irev2有对应的关系

计算公式:

Ncell= Pmpp/S(硅片面积)

Pmpp= Umpp*Impp= Uoc*Isc*FF

FF=(Umpp*Impp)/(Uoc*Isc)

转换效率的影响因素

测试外部参数影响

I/A

U/V

温度升高

温度??

正常光强为1000±50W/M 2,随着光强的降低,开路电压略微降低,短路电流急剧下降,整体转换效率降低

U/V

光强

I/A 光强降低

串阻RS组成

测试中的串联电阻主要由以下几个方面组成:

1.材料体电阻(可以认为电阻率为ρ的均匀掺杂半导体)

2.正面电极金属栅线体电阻

3.正面扩散层电阻

4.背面电极金属层电阻

5.正背面金属半导体接触电阻

6.外部因素影响,如探针和片子的接触等

烧结的关键就是欧姆接触电阻,也就是金属浆料与半导体材料接触处的电阻。可以这样考虑,上述1.2.3.4项电阻属于固定电阻,也就是基本电阻;

5则是变量电阻烧结效果的好坏直接影响Rs的最终值;

6属于外部测试因素,也会导致Rs变化

RS影响因素

RS偏大

检查测试机探针是否正好压到

主栅线上检查网印第三道

虚印情况

检查扩散方块电阻

是否存在偏大现象

看探针是否变脏

探针寿命是否到期擦拭探针

更换探针

核对原始硅片电阻率

是否偏大

通知设备进行调整,

但同时需注意调整前后

栅线是否有变粗现象

通知张永伟进行调整,

稳定方阻在正常范围内

做好记录,对电阻率

偏大的单独追踪

印刷烧结问题

烧结炉设备问题工艺问题

烧结炉进出水

温度压力是否变化

烧结炉排风以及

冷却风扇是否有异常

浆料是否有异常

如新批次、型号混用、

沾染铝浆等

烧结炉功率以及

温度波动是否有异常

烧结炉灯管是否

有问题

放片的均匀性

工艺过程中的污染

如网带、传送带、

工作台等

探针脏

探针寿命到期

是是是是

并阻RSH组成

测试中并联电阻Rsh主要主要是由暗电流曲线推算出,主要由边缘漏电和体内漏电决定

边缘漏电主要由以下几个方面决定:

①边缘刻蚀不彻底

②硅片边缘污染

③边缘过刻

体内漏电主要几个方面决定

①方阻和烧结的不匹配导致的烧穿

②由于铝粉的沾污导致的烧穿

③片源本身金属杂质含量过高导致的体内漏电

④工艺过程中的其他污染,如工作台板污染、网带污染、炉管污染、DI水质不合格等

并联电阻

原材料因素工艺因素

工艺过程污染

刻蚀工艺PE 工艺扩散烧结工艺设备环境因素硅片中金属杂质

含量过高缺陷密度过大

工艺时间过短气体比例不合适边缘PN 结未完全去除边缘刻蚀过宽

PE 膜的致密性较差导致烧结易烧穿

烧结温度太高方阻太高

烧结和方阻不匹配

扩散炉炉管污染网印机工作台磨损

DI 水污染人为因素

操作过程中使用工具的污染操作中污染擦拭片等

检查并测试刻蚀机

刻蚀效果椭偏移到厂后定量测试膜厚折射率

烧结炉工艺稳定性外围设备稳定性监控

方阻均匀性方阻范围控制

卫生环境污染

开路电压

材料本体工艺因素

硅片电阻率高硅片质量较差

少子寿命低

硅片厚度厚

制绒表面

损伤层未完全

去除

扩散PN结

质量较差

扩散炉管

洁净度差

PE钝化效果

较差

扩散钝化效果

较差

网印背电场

效果较差

Rsh小

暗电流大

Isc低

原材料因素工艺因素

原材料杂质含量高少子寿命低

制绒绒面不好,未完

全出绒,影响光的

吸收

电阻率低

PN结太深

方阻太低

PE减反射膜效果

钝化效果不好并联电阻小漏电大印刷栅线高宽比小

网印区工艺过程常见问题处理

一、翘曲:

1.硅片太薄——控制原始硅片厚度

2.印刷铝浆太厚——控制铝浆重量

3.烧结温度过高——调整烧结炉4、5、6、7区温度

4.烧结炉冷却区冷却效果不好——查看风扇状况、进出水温度压力等

二、铝包:

1.烧结温度太高——调整烧结炉4、5、6、7区温度

2.印刷铝浆太薄——印刷铝浆重量加重

3.使用前浆料搅拌不充分——搅拌时间必须达到规定时间

4.铝浆印刷后烘干时间不够——增加烘干时间或提高烘干温度

5.烧结排风太小——增大烧结炉排风

6.烧结炉冷却区冷却效果不好——查看风扇状况、进出水温度压力等

三、虚印:

1.印刷压力太小——增大印刷压力

2.印刷板间距太大——减小板间距

3.印刷刮刀条不平——更换刮刀条

4.工作台板不平,磨损严重——更换工作台板

四、粗线:

1.网版使用次数太多,张力不够——更换网版

2.网版参数不合格——核对该批网版参数,更换网版

3.浆料太稀,浆料搅拌时间太长——严格执行浆料搅拌时间规定

4.网印机参数不合适——调整网印机参数

The End,Thanks! Where there is a will, there is a way.

(完整版)磷酸铁锂动力电池特性及应用(精)

磷酸铁锂动力电池特性及应用 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。 一般锂离子电池的电解质是液体的,后来开发出固态及凝胶型聚合物电解质,则称这种锂离子电池为锂聚合物电池,其性能优于液体电解质的锂离子电池。 磷酸铁锂电池的全名应是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。 采用LiFePO4材料作正极的意义 目前用作锂离子电池的正极材料主要有:LiCoO2、LiMn2O4、LiNiO2及LiFePO4。这些组成电池正极材料的金属元素中,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用 LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。 作为可充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 LiFePO4电池的结构与工作原理 LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电

太阳能电池片的相关参数

硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~ 0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为 0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。

⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw/㎡=100mw/cm2。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

介绍动力电池的类型、关键性能指标

新能源汽车发展得如火如荼的今天,相信大家都对纯电动汽车的商家如数家珍,比如国外品牌比较出名的有特斯拉电动汽车、宝马i3等、国内新能源汽车有号称电动汽车领头羊的比亚迪纯电动汽车、还有吉利纯电动汽车及奇瑞电动汽车等。但是,电动汽车最为关键的核心部件——动力电池,大家又了解多少呢? 关于动力电池,由于内容比较多,我们这里先介绍动力电池的类型、关键性能指标以及三种典型动力电池。 1、动力电池的类型 从系统的角度来说,电池分为化学电池、物理电池和生物电池三大类。 对于我们比较熟悉的化学电池,则是按正负极材料分为锌锰电池系列、镍镉镍氢系列、铅酸系列、锂电池系列等,也就是铅酸电池、镍氢电池、锂离子电池等目前车辆比较常用的动力电池。 另外,物理电池是利用光、热、物理吸附等物理能量发电的电池,如太阳能电池、超级电容器、飞轮电池等。生物电池是利用生物化学反应发电的电池,如微生物电池、酶电池、生物太阳电池等。 2、动力电池的关键性能指标 电池的性能指标主要有电压、容量、内阻、能量、功率、输出效率、自放电率、使用寿命等,根据电池种类不同,其性能指标也有差异。 这么多个性能指标,我们这里暂且介绍一下电压、容量、能量以及功率。 电压

首先,我们介绍一下电池的电压,因为可以电池的电压的大小,判断我们的电池的电量状态。所以电池电压是非常关键的一个性能指标,那么电压分为端电压、开路电压、额定电压、充电终止电压和放电终止电压。这么多电压我们看一下是什么意思。 那么工作电压与开路电压的关系又是什么呢?在电池放电工作状态下,当电流流过电池内部时,需要克服电池的内阻所造成阻力,故工作电压总是低于开路电压,充电时则与之相反。锂离子电池的放电工作电压在3.6V左右。 容量 电池在一定的放电条件下所能放出的电量称为电池的容量。常用单位为安培小时,它等于放电电流与放电时间的乘积。可以分为理论容量、实际容量、标称容量和额定容量等。 例如,锂离子电池规定在常温、恒流(1C)、恒压(4.2V)控制的充电条件下,充电3h、再以0.2C放电至2.75V时,所放出的电量为其额定容量。 能量

心电图机标准及各类产品性能参数对比模板

心电图机检定规程 JJG 543- JJG 543- 规程等效采用OIML R90《心电图机》国际建议所提出的计量性能、检定方法和设备, 并根据中国实际情况, 对个别检定项目略作修改。 适用: 单通道、多通道模拟心电图机 不适用: 数字心电图机、向量心电图机、心电监护仪 美国FDA认证, 欧盟需要CE认证 5.1定标电压( 内部幅度校准器) : 最大允许相对偏差为±5% 心电图机内部均有1mV标准信号发生器, 作为衡量人体心电信号电压大小( 心电图波形幅度) 的标准, 即所谓”定标”。定标电压准确与否决定了心电图机能否准确描记心电波形幅度。 5.2电压测量: 最大允许相对误差按±10(1+U1/Uin)%计算 ( 式中U1为电压测量范围的最小值, 即0.1mV) 考察放大器工作的线性情况, 线性是指输出信号应与输入信号成正比变化, 较宽的线性工作范围可使心电信号波形失真小。理想情况下, 如灵敏度为10mm/mV时, 输入0.2mV、1mV、2mV不同的幅度信号时, 描记幅度应为2mm、10mm、20mm。

5.3 时间间隔: 最大允许相对误差按±10(1+T1/Tin)%计算 ( 式中T1为时间间隔测量范围的最小值, 等于0.06s) 5.4 时标: 最大允许相对偏差为±5% 近些年, 有些心电图机中将时标与定标电压信号做在一起, 用幅度1mV,时间1s的信号, 分别校准幅度和时间。中国习惯于称定标电压, 故当前继续这样称谓。在R90国际建议中称校准器, 校准器产生标准的幅度为1mV,周期为1s的信号, 供校准心电图用。因此, 可将规程中的时标理解为这个校准信号周期的时间间隔。 5.5 幅频特性: ( 1~60) Hz, 最大允许相对偏差+5%~-10% 5.6 耐极化电压: 加±300mV的直流极化电压, 幅度最大允许相对偏差±5% 尽管心电图机电极已经采用了特殊材料, 可是由于温度的变化以及电场和磁场的影响, 电极会产生极化电压, 一般不高于300mV。心电图机的正常功能应不受极化电压的影响, 该指标就是用于考察心电图机隔直流电压能力。

锂电池各个体系性能参数

钴酸锂 1.钴酸锂的概述 1992年SONY公司商品化锂电池问世,由于其具有工作电压高、能流密度高、循环压寿命长、自放电低、无污染、安全性能好等独特的优势,现已广泛用作移动电话、便携式计算机、摄像机、照相机等的电源。并已在航天、航海、人造卫星、小型医疗仪及军用通讯设备中逐步发展成为主流应用的能源电池。Sony公司推出的第一块锂电池中,正极材料是钴酸锂,负极材料为碳。其中,决定电池的可充电最大容量及开路电压的主要是正极材料。因此我国现有的生产正极材料公司,产品几乎全部是钴酸锂。与钴酸锂同属4伏正极材料的候选体系有镍酸锂和锰酸锂两大系列,这两个系列材料在性能上各有长短,锰酸锂在原料价格上优势明显。但在容量和循环寿命上存在不足。钴酸锂的实际使用比容量为130mAh/g,循环次数可达到300至500次以上:而锰酸锂的实际比容量在100mAh /g左右,循环次数为100至200次。另外,磷酸铁锂电池有安全性高。稳定性好、环保和价格便宜优势,但是导电性较差,而且振实密度较低。因此其在小型电池应用上没有优势。国内钴酸锂市场需求变化呈现典型的中国市场特征,历史较短,但发展较快,多数企业在很短时间进入,但生产企业规模不大,产品主要集中在中低档。 2002年,国内钴酸锂材料市场需求量为2400吨,大多数产品依靠进口,但随着国内主要生产企业的投产,产能和需求量得到了极大的提升,2006年需求量达到6500吨,2008年需求量接近9000吨。 2001年全球主要生产高性能钴酸锂、氧化钴材料的生产企业是比利时Umicore 公司,美国OMG和FMC公司,日本的SEIMEI和日本化学公司等国外企业。另外台湾地区的台湾锂科科技公司也是重要的生产企业。而国内的生产企业为北京当升科技、湖南瑞翔、中信国安盟固利、北大先行和西安荣华等。这些生产企业有些是从科研机构孵化而来,有些是具有上有资源优势的企业。 2.钴酸锂的材料构成 LiCoO2在目前商业化的锂离子电池中基本上选用层状结构的锂离子二次电池正极材料(钴酸锂)的液相合成工艺,它采用聚乙烯醇(PVA)或聚乙二醇(PEG)水溶液为溶剂,锂盐、钴盐分别溶解在PVA或PEG水溶液中,混合后的溶液经过加热,浓缩形成凝胶,生成的凝胶体再进行加热分解,然后在高温下煅烧,将烧成的粉体碾磨、过筛即得到钴酸锂粉。与现有技术相比,本发明具有合成温度低,得到的产品纯度高、化学组成均匀等优点。 3.钴酸锂的制备 1活性钴酸锂的制备方法,其特征是包括以下步骤:以原生钴矿石为原料,制取高纯钴盐溶

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

硅太阳能电池的主要性能参数

硅太阳能电池的主要性能参数 本信息来源于太阳能人才网|https://www.wendangku.net/doc/f43882791.html, 原文链接: 硅太阳能电池的性能参数主要有:短路电流、开路电压、峰值电流、峰值电压、峰值功率、填充因子和转换效率等。 ①短路电流(isc):当将太阳能电池的正负极短路、使u=0时,此时的电流就是电池片的短路电流,短路电流的单位是安培(a),短路电流随着光强的变化而变化。 ②开路电压(uoc):当将太阳能电池的正负极不接负载、使i=0时,此时太阳能电池正负极间的电压就是开路电压,开路电压的单位是伏特(v)。单片太阳能电池的开路电压不随电池片面积的增减而变化,一般为0.5~0.7v。 ③峰值电流(im):峰值电流也叫最大工作电流或最佳工作电流。峰值电流是指太阳能电池片输出最大功率时的工作电流,峰值电流的单位是安培(a)。 ④峰值电压(um):峰值电压也叫最大工作电压或最佳工作电压。峰值电压是指太阳能电池片输出最大功率时的工作电压,峰值电压的单位是v。峰值电压不随电池片面积的增减而变化,一般为0.45~0.5v,典型值为0.48v。 ⑤峰值功率(pm):峰值功率也叫最大输出功率或最佳输出功率。峰值功率是指太阳能电池片正常工作或测试条件下的最大输出功率,也就是峰值电流与峰值电压的乘积:pm===im ×um。峰值功率的单位是w(瓦)。太阳能电池的峰值功率取决于太阳辐照度、太阳光谱分布和电池片的工作温度,因此太阳能电池的测量要在标准条件下进行,测量标准为欧洲委员会的101号标准,其条件是:辐照度lkw/㎡、光谱aml.5、测试温度25℃。 ⑥填充因子(ff):填充因子也叫曲线因子,是指太阳能电池的最大输出功率与开路电压和短路电流乘积的比值。计算公式为ff=pm/(isc×uoc)。填充因子是评价太阳能电池输出特性好坏的一个重要参数,它的值越高,表明太阳能电池输出特性越趋于矩形,电池的光电转换效率越高。 串、并联电阻对填充因子有较大影响,太阳能电池的串联电阻越小,并联电阻越大,填充因子的系数越大。填充因子的系数一般在0.5~0.8之间,也可以用百分数表示。 ⑦转换效率(η):转换效率是指太阳能电池受光照时的最大输出功率与照射到电池上的太阳能量功率的比值。即: η=pm(电池片的峰值效率)/a(电池片的面积)×pin(单位面积的入射光功率),其中pin=lkw /㎡=100mw/cm2。 电池组件的板型设计 在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紧凑美观。 组件的板形设计一般从两个方向入手。一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。 电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。

太阳能电池片功率计算公式

太阳能电池片功率计算公式 电池片制造商在产品规格表中会给出标准测试条件下的太阳电池性能参数:一般包括有短路电流Isc;开路电压Voc;最大功率点电压Vap;最大功率点电 流Iap;最大功率Pmpp; 转换效率Eff等。标准测试条件下,最大功率Pmpp与转换效率之间有如下关系: Pmpp = 电池面积(m2)*1000(W/m2)*Eff 举例如下: 产品类型转化效率(%)功率(W) 单晶125*125 15 2.22855 单晶156*156 15 3.58425 多晶125*125 15 2.34375 多晶156*156 15 3.6504 注1:测试条件符合AM1.5太阳光谱的辐照强度1000W/m2,电池温度25℃,测试方法 符合IEC904-1,容许偏差Efficiency ±5% REL。 注2:AM1.5 AM是air mass的简称,意思是大气质量。 AM1.5是一种条件,它描述太阳光入射于地表之平均照度,其太阳总辐照度为1000W/m2;太阳电池的标定温度为25±1℃。 注3:IEC904-1 IEC:国际电工委员会,international electrotechnical commission。 IEC904等同于GB/T6495。 注4:REL:rate of energy loss 能量损耗率

太阳能电池功率 一:首先计算出电流: 如:12V蓄电池系统;30W的灯2只,共60瓦。 电流= 60W÷12V= 5 A 二:计算出蓄电池容量需求: 如:路灯每夜照明时间9.5小时,实际满负载照明为 7小时(h); 例一:1 路 LED 灯 (如晚上7:30开启100%功率,夜11:00降至50%功率,凌晨4:00后再100%功率,凌晨5:00 关闭) 例二:2 路非LED灯(低压钠灯、无极灯、节能灯、等) (如晚上7:30两路开启,夜11:00关闭1路,凌晨4:00开启2路,凌晨5:00关闭) 需要满足连续阴雨天5天的照明需求。(5天另加阴雨天前一夜的照明,计6天)蓄电池= 5A× 7h×( 5+1)天= 5A× 42h =210 AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留5%-20%左右。 所以210AH也只是应用中真正标准的70%-85%左右。另外还要根据负载的不同,测出实际的损耗,实际的工作电流受恒流源、镇流器、线损等影响,可能会在5A的基础上增加15%-25%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为 7小时(h); ★:电池板平均每天接受有效光照时间为4.5小时(h); 最少放宽对电池板需求20%的预留额。 WP÷17.4V=(5A× 7h× 120%)÷ 4.5h WP÷17.4V= 9.33 WP = 162(W) ★:4.5h每天光照时间为长江中下游附近地区日照系数。 另外在太阳能路灯组件中,线损、控制器的损耗、及镇流器或恒流源的功耗各有不同,实际应用中可能在15%-25%左右。所以162W也只是理论值,根据实际情况需要有所增加。

太阳能电池探究亮特性光照强度关系

扬州大学物理科学与技术学院 大学物理综合实验训练论文实验名称:太阳能电池探究亮特性光照强度关系 班级:物教1201班 姓名:郑清华 学号:120801117 指导老师:李俊来

太阳能电池探究亮特性光照强度关系 物教1201 郑清华指导老师:李俊来 摘要:本文介绍了太阳能电池研究背景、实验原理等。在不同光强条件对单晶硅太阳电尺进行了测试.研究发现,当光强为3433.56—10617.33W/2 m时,开路电压随着光强的增加呈对数关系增加,短路电流几乎呈线性变化。效率随着光强的增加先增加后减小,最大效率值1、21%。填充因子随着光强的增加减小。 关键词:太阳能电池;输出特性;光强特性。 一、研究背景 随着经济社会的不断发展,能量与能源问题的重要性日益凸显。人类对能源的需求,随着社会经济而急剧膨胀,专家估计目前每年能源总消耗量为200亿吨标准煤,并且其中90%左右为不可再生的化石能源来维持。就目前情况,全球化石能源储备只能维持100年左右。太阳能以其清洁、长久、无害等优点自然而然成为人类可持续发展不得不考虑的能源方式。太阳每年通过大气向地球输送的能量高达3×1024焦耳,而地球上人类一年的能源总需求达到约4.363×1020焦耳,也就是说,如果我们可以收集其中的万分之一到万分之二就足够我们的需求。太阳能是最为清洁的能源,并且不受任何地域限制,随处可取。此外,将太阳能转换为电能后,电能又是应用范围最广,输送最方便的一种能源。 太阳能一般指太阳光的辐射能量。我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应,反应过程中伴随着巨大的能量释放到宇宙空间。太阳释放到宇宙空间的所有能量都属于太阳能的范畴。太阳能电池是目前太阳能利用的关键环节,核心概念是pn结和光生伏特效应 晶体硅太阳电池在如今的光伏市场中占据了绝对主导的地位,而且这一地位在今后很长一段时间内不会改变,因此提高晶体硅太阳电池效率,降低生产成本, 使晶体硅太阳电池能与常规能源进行竞争成为现今光伏时代的主题.太阳能是最具发展潜力的新能源。光伏发电是解决能源危机,实现能源可持续发展的重要途径之一。硅太阳能电池是当今市场的主流产品,其最高效率是24.7%,由新南威尔士大学马丁·格林教授研制的PERL单晶硅电池取得单并保持至今。继续提高转换效率十分困难,但电池的效率会随温度和光强变化而变化。因此,研究温度和光强对太阳能电池的影响是必要的。 二、太阳能光伏电池实验 (一)实验目的 1.了解pn结的基本结构与工作原理。 2.了解太阳能电池组件的基本结构,理解其工作原理。

光电传感器性能参数分析

课程小论文 题目:光电传感器性能参数分析 院 (部) 专业 学生姓名 学生学号 指导教师 课程名称 课程代码 课程学分 起始日期

光电传感器性能参数分析 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应、光电元件、光电特性、传感器分类、传感器应用

目录 目录 (3) 1、引言 (4) 2、光电传感器 (4) 3、光电效应 (6) 4、光电传感器的前景 (6) 5、总结 (7) 参考文献 (8)

一、引言 随着工业生产技术的发展,对生产过程中的过程控制要求越来越高,而作为控制系统的核心之一,传感器越来越受工业技术人员的重视。人们对高性能检测技术的发展需求与日俱增。其中非电量测量的受欢迎程度最为广泛,可将距离、位移、振动等信号转换为电信号,并通过这些方法获得被测物体的状态。非电量检测技术分为接触式与非接触式检测。在工业生产环境中,有些场合不适用接触式检测,因为传感器与被测物体的接触,在工业现场环境中会造成被测体损伤、传感器磨损等问题。因此,需要性能良好的非接触式传感器以满足工业需求,相关技术的研究也成为传感器检测技术的发展方向。 光电检测技术作为目前检测技术之一,目前国内对于光电检测的研究已有一些成果,但目前产品还存在着一些问题,例如线性测量范围过短、对现场装配条件要求较高等,距离满足工业现场的要求还存在一定距离。所以,为了解决这些问题,光电效应对传感器性能的影响是很重要的研究方向之一,可以使光电传感器应用在更多的领域,推动光电检测技术的发展。 二、光电传感器 光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如下图,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源,光学通路和光电元件三部分组成.光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。 图1光电传感器原理图 光电传感器一般由三部分构成,它们分为:发送器、接收器和检测电路,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。 光电传感器是一种依靠被测物与光电元件和光源之间的关系,来达到测量目的

电池片参数表格

2.340电气参数 单晶硅太阳电池 125mm*125mm*150mm(对角)型号 Efficiency Power Vmp Imp Voc Isc Eff(%)Ppm(W)Vmp(V)Imp(A)Voc(V)Isc(A)>18.50>2.7480.540 5.1000.625 5.400JSC5M18518.50 2.7480.540 5.100 0.625 5.400 JSC5M18218.25 2.711JSC5M18018.00 2.674JSC5M17717.75 2.637JSC5M17517.50 2.600JSC5M17217.25 2.563JSC5M17017.00 2.526JSC5M16716.75 2.488JSC5M16516.50 2.451JSC5M16216.25 2.414JSC5M16016.00 2.377JSC5M15715.75JSC5M15515.50 2.303JSC5M15015.00 2.228JSC5M14514.50 2.154JSC5M140 14.00 2.080<14.00 <2.080 电气参数 单晶硅太阳电池 125mm*125mm*165mm(对角)型号 Efficiency Power Vmp Imp Voc Isc Eff(%)Ppm(W)Vmp(V)Imp(A)Voc(V)Isc(A)>18.50>2.8630.540 5.3400.625 5.750JSC5M18518.50 2.8630.540 5.340 0.625 5.750 JSC5M18218.25 2.825JSC5M18018.00 2.786JSC5M17717.75 2.747JSC5M17517.50 2.709JSC5M17217.25 2.670JSC5M170 17.00 2.631

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板详细参数(精)

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板详细参数:单晶硅太阳能板100W 尺寸:963x805x35MM 净重:11KGS 工作电压:33.5V 工作电流:2.99A 开路电压:41.5V 短路电流:3.57A 蓄电池:24v 二、产品特点: 采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合 IEC61215 和电气保护 II 级标准。太阳能电池转换效率高。 而且太阳能电池板阵列一次性性能佳。太阳能电池板阵列的表面 采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。 阳极氧化铝边框:机械强 度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。太阳能电池板在制造时, 先进行化学处理, 表面做成了一个象金字塔一样的绒面, 能减少反射,更好地吸收光能。采用双栅线,使组件的封装的可靠性更高。 太阳能电池板阵列抗冲击性能佳, 符合 IEC 国际标准。 太阳能电池板阵列层之间采用双层 EVA 材料以及 TPT 复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。直流接线盒:采 用密封防水、高可靠性多功能 ABS 塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头, 使用安全、方便、可靠。带有旁路二极管能减少局部阴影而引起的损害。 工作温度:-40℃~+90℃使用寿命可达 20 年以上,衰减小于 20%。三、 问题集锦:1、什么是太阳能电池 答:太阳能电池是基于半导体的光伏效应将太阳辐射 直接转换为电能的半导体器件。 现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳 能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。 晶体硅(单晶、多晶太阳能电池需要高纯度的硅原料,一般要求纯度至少是 99. 99998%,也就是一千万个硅原子中最多允许 2 个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子作为原料, 将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片, 涉及多个生

动力电池性能参数

动力电池性能参数 一、电性能 (1) 电动势 电池的电动势,又称电池标准电压或理论电压,为电池断路时正负两极间的电位差。电池的电动势可以从电池体系热力学函数自由能的变化计算而得。 (2) 额定电压 额定电压(或公称电压),系指该电化学体系的电池工作时公认的标准电压。例如,锌锰干电池为 1.5V ,镍镉电池为1.2V ,铅酸蓄电池为2V ,锂离子电池为 (3) 开路电压 电池的开路电压是无负荷情况下的电池电压。开路电压不等于电池的电动势。必须指出,电池的电动势是从热力学函数计算而得到的,而电池的开路电压则是实际测量出来的。 (4) 工作电压 系指电池在某负载下实际的放电电压,通常是指一个电压范围。例如,铅酸蓄电池的工作电压在2V ?1.8V ;镍氢电池的工作电压在 1.5V?1.1V ;锂离子电池的工作电压在 3.6V?2.75V。 (5) 终止电压 系指放电终止时的电压值,视负载和使用要求不同而异。以铅酸蓄电池为例:电动势为2.1V,额定电压为2V,开路电压接近2.15V,工作电压为2V?1.8V,放电终止电压为1.8V?1.5V( 放电终止电压根据放电率的不同,其终止电压也不同)。 (6) 充电电压

系指外电路直流电压对电池充电的电压。般的充电电压要大于电池的开路电压,通常 在一定的范围内。例如,镍镉电池的充电压在1.45V?1.5V ;锂离子电池的充电压在4.1V?4.2V ;铅酸蓄电池的充电压在2.25V?2.5V。 (7) 内阻 蓄电池的内阻包括:正负极板的电阻,电解液的电阻,隔板的电阻和连接体的电阻等。 a. 正负极板电阻 目前普遍使用的铅酸蓄电池正、负极板为涂膏式,由铅锑合金或铅钙合金板栅架和活性物质两部分构成。因此,极板电阻也由板栅电阻和活性物质电阻组成。板栅在活性物质内层,充放电时,不会发生化学变化,所以它的电阻是板栅的固有电阻。活性物质的电阻是随着电池充放电状态的不同而变化的。 当电池放电时,极板的活性物质转变为硫酸铅(PbSO4) ,硫酸铅含量越大,其电阻越大。而电池充电时将硫酸铅还原为铅(Pb) ,硫酸铅含量越小,其电阻越小。 b. 电解液电阻 电解液的电阻视其浓度不同而异。在规定的浓度范围内一旦选定某一浓度后,电解液电 阻将随充放电程度而变。电池充电时,在极板活性物质还原的同时电解液浓度增加,其电阻下降;电池放电时,在极板活性物质硫酸化的同时电解液浓度下降,其电阻增加。 c. 隔板电阻 隔板的电阻视其孔率而异,新电池的隔板电阻是趋于一个固定值,但随电池运行时间的延长,其电阻有所增加。因为,电池在运行过程中有些铅渣和其他沉积物在隔板上,使得隔板孔率有所下降而增加了电阻。

太阳能电池性能参数

太阳能电池性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于AM1.5光谱条件、100 mW/cm2的光源强度照射下,在输出端短路时,流过太阳能电池两端的电流值。 3、最大输出功率 太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最大输出功率,用符号Pm表示。此时的工作电压和工作电流称为最佳工作电压和最佳工作电流,分别用符号Um和Im表示。 4、填充因子 太阳能电池的另一个重要参数是填充因子FF(fill factor),它是最大输出功率与开路电压和短路电流乘积之比。 FF:是衡量太阳能电池输出特性的重要指标,是代表太阳能电池在带最佳负载时,能输出的最大功率的特性,其值越大表示太阳能电池的输出功率越大。FF 的值始终小于1。串、并联电阻对填充因子有较大影响。串联电阻越大,短路电流下降越多,填充因子也随之减少的越多;并联电阻越小,其分电流就越大,导致开路电压就下降的越多,填充因子随之也下降的越多。 5、转换效率 太阳能电池的转换效率指在外部回路上连接最佳负载电阻时的最大能量转换效率,等于太阳能电池的输出功率与入射到太阳能电池表面的能量之比。太阳能电池的光电转换效率是衡量电池质量和技术水平的重要参数,它与电池的结构、结特性、材料性质、工作温度、放射性粒子辐射损伤和环境变化等有关。

图2.4.1 太阳能电池输出特性曲线

动力电池重要全参数定义及测量计算方法

动力电池重要参数定义及测量计算方法 1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态SOC及估算方法 2.1 电池荷电状态SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus)定义SOC如下: SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为: Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。 事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

(整理)太阳能电池各电性能参数-草稿.

太阳能电池各电性能参数的本质及工艺意义 ?武宇涛 ? 电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,… 电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。 从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。 当然我们最关心的是效率Eff。而Eff则是以上所有参数的综合表现。 太阳能电池的理论基础建立在以下几个经典公式之上: Voc=(KT/q)×ln(Isc/Io+1) Voc=(KT/q)×ln(N aNd/ni2) 1 2 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 3 4

Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5 图-1太阳能电池的I-V曲线 图-2太阳能电池等效电路 从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。 为了更好地说明各参数间的联系,这里先录用几组数据如下:

表-1 线别Uoc Isc FF Rs Rsh EFF Irev>6>16%Isc>8.2Voc>620FF>78 P156(71)0.6188.2177.20.00381816.11%0.17%78.73%56.2%33.1% 1.3% P156(62)0.6168.2176.60.00413315.92%0.53%56.06%55.2%18.1%0.4% E-CELL(LY)0.6277.2978.10.00312914.68% 1.23%40.03%20.3%69.8%65.8% 以上P156均系LDK片源。 1,Voc 由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。 由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。另一方面,高参杂又会引入更多的复合中心,使复合电流增加,同样也降低了Voc。所以在没有引起复合电流增加或者其增量比较小的前提下,参杂浓度的提高对Voc总是有益的。 在上表所示的三种成品电池片中,P156的片子与E-CELL 片子Voc有着显著的不同,这显然是由于冶金级硅的杂质浓度过大导致的。而对于62栅线和71栅线的电池片,由于其总体参杂浓度并没有显著的改变,所以其开压并没有显著差别。从上表还可以看出,E-CELL电池的Isc已经比比另两者有显著降低,我们可以认为对于P156的正常多晶硅电池片其Voc在620mv左右达

动力电池重要参数定义及测量计算方法总结模板计划模板.doc

1.概述 本文档的编写主要是为了方便公司内部研发人员更加快速清楚 地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态 SOC,电池健康状态SOH,内阻 R等。 此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。 2.电池荷电状态 SOC及估算方 法电池荷电状态 SOC的定义 电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。 美国先进电池联合会(USABC)的《电动汽车电池实验手册》中 将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件 下额定容量的比值。 SOC=Q O/Q N 日本本田公司的电动汽车(EV Plus )定义 SOC如下: SOC=剩余容量/(额定容量-容量衰减因子) 其中剩余容量 =额定容量 - 净放电量 - 自放电量 - 温度补偿 动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的 主要因素,准确的 SOC估算可以提高电池的能量效率,延长电池的使 用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放电控制和电池均衡的重要依据。 实际应用中,我们需要根据电池的可测量值如电压电流结合电池

内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要 实现良好的 SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路 电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外 界影响因素缺乏考虑而导致适应性差,难以满足 BMS对估算精度不断提高的要求。所以在考虑 SOC受到多种因素影响后,一些较为复杂的算法被提出 , 例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。 2.2几种SOC估算算法简介 (1)安时法 安时法又被称为电流积分法,也是计算电池 SOC的基础。假设当前电池 SOC初始值为 SOC0,在经过 t 时间的充电或放电后 SOC为: Q0是电池的额定容量, i(t)是电池充放电电流(放电为正)。 事实上, SOC定义为电池的荷电状态,而电池荷电状态就是电池 电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下: 在电池实际工作中使用安时法计算SOC,受到测量误差和噪声干

太阳能电池的基本特性与性能参数

1、太阳能电池的基本特性 太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电池的伏安特性三个基本特性。具体解释如下 1、太阳能电池的极性 硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。 2、太阳电池的性能参数 太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。 3 太阳能电池的伏安特性 P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,大于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。 2、有关太阳电池的性能参数 1、开路电压 开路电压UOC:即将太阳能电池置于100 mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。 2、短路电流 短路电流ISC:就是将太阳能电池置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流。 3、大输出功率

太阳能电池的工作电压和电流是随负载电阻而变化的,将不同阻值所对应的工作电压和电流值做成曲线就得到太阳能电池的伏安特性曲线。如果选择的负载电阻值能使输出电压和电流的乘积最大,即可获得最

相关文档
相关文档 最新文档