文档库 最新最全的文档下载
当前位置:文档库 › 实验一语音信号端点检测最终报告

实验一语音信号端点检测最终报告

实验一语音信号端点检测最终报告
实验一语音信号端点检测最终报告

实验一语音信号端点检测

一、实验目的

1.学会MATLAB 的使用,掌握MATLAB 的程序设计方法;

2.掌握语音处理的基本概念、基本理论和基本方法;

3.掌握基于MATLAB 编程实现带噪语音信号端点检测;

4.学会用MATLAB 对信号进行分析和处理。

5. 学会利用短时过零率和短时能量,对语音信号的端点进行检测。

二、实验仪器设备及软件

HP D538、MATLAB

三、实验原理

端点检测是语音信号处理过程中非常重要的一步,它的准确性直接影响到语音信号处理的速度和结果。本次实验利用短时过零率和短时能量相结合的语音端点检测算法利用短时过零率来检测清音,用短时能量来检测浊音,两者相配合便实现了信号信噪比较大情况下的端点检测。

算法对于输入信号的检测过程可分为短时能量检测和短时过零率检测两个部分。算法以短时能量检测为主,短时过零率检测为辅。根据语音的统计特性,可以把语音段分为清音、浊音以及静音(包括背景噪声)三种。在本算法中,短时能量检测可以较好地区分出浊音和静音。对于清音,由于其能量较小,在短时能量检测中会因为低于能量门限而被误判为静音;短时过零率则可以从语音中区分出静音和清音。将两种检测结合起来,就可以检测出语音段(清音和浊音)及静音段

1、短时能量计算

定义n 时刻某语言信号的短时平均能量En 为:

∑∑--=+∞∞--=

-=n

N n m m n w m x m n w m x En )1(2

2)]()([)]()([ 式中N 为窗长,可见短时平均能量为一帧样点值的平方和。特殊地,当窗函数为

矩形窗时,有∑--==

n

N n m m x En )

1(2)( 2、短时过零率 过零就是指信号通过零值。过零率就是每秒内信号值通过零值的次数。

对于离散时间序列,过零则是指序列取样值改变符号,过零率则是每个样本的改变

符号的次数。对于语音信号,则是指在一帧语音中语音信号波形穿过横轴(零电平)的次数。可以用相邻两个取样改变符号的次数来计算。

如果窗的起点是n=0,短时过零率Z 为

波形穿过横轴(零电平)的次数

|))1(())((|211

00∑-=--=N n w w n S Sgn n S Sgn Z

{0

0,1,1)sgn(≥<-=x x x

短时过零可以看作信号频率的简单度量

浊音的短时平均幅度最大,无声的短时平均幅度最小,清音的短时过零率最大,无

声居中,浊音的短时过零率最小。

3、短时自相关函数

∑--=+=1

0)()()(k N n w w w k n s n s

k R

①是偶函数;

②s(n)是周期的,那么R (k )也是周期的;

③可用于基音周期估计和线性预测分析

4、判断语音信号的起点和终点

利用短时平均幅度和短时过零率可以判断语音信号的起点和终点。语音端点检测方法可采用测试信号的短时能量或短时对数能量、联合过零率等特征参数,并采用双门限判定法来检测语音端点,即利用过零率检测清音,用短时能量检测浊音,两者配合。首先为短时能量和过零率分别确定两个门限,一个是较低的门限数值较小,对信号的变化比较敏感,很容易超过;另一个是比较高的门限,数值较大。低门限被超过未必是语音 的开始,有可能是很短的噪声引起的,高门限被超过并且接下来的自定义时间段内的语音。

四、实验步骤及程序

(1) 实验步骤:

1、取一段录音作为音频样本。

2、利用公式分别编程计算这段语音信号的短时能量和短时过零率,然后分别画出它们

的曲线。

3、调整能量门限。

4、进行幅度归一化并设置帧长、短时能量阈值、过零率阈值等参数。

5、编写程序实现语音端点检测。

6、最后得到语音端点检测图像。

(2) 语音信号的端点检测程序流程图:

输入语音信号

幅度归一化

设置参数

计算短时能量和过零率

调整能量门限

开始端点检测

输出样本端点检测图像

图 1.1 语音信号的端点检测程序流程图

(3) 语音信号的端点检测实验源程序:

[x,fs,nbits]=wavread('1.wav');%语音信号的端点检测matlab实现x = x / max(abs(x));%幅度归一化到[-1,1]

%参数设置

FrameLen = 256; %帧长

inc = 90; %未重叠部分

amp1 = 10; %短时能量阈值

amp2 = 2;

zcr1 = 10; %过零率阈值

zcr2 = 5;

minsilence = 6; %用无声的长度来判断语音是否结束

minlen = 15; %判断是语音的最小长度

status = 0; %记录语音段的状态

count = 0; %语音序列的长度

silence = 0; %无声的长度

%计算过零率

tmp1 = enframe(x(1:end-1), FrameLen,inc);

tmp2 = enframe(x(2:end) , FrameLen,inc);

signs = (tmp1.*tmp2)<0;

diffs = (tmp1 -tmp2)>0.02;

zcr = sum(signs.*diffs,2);

%计算短时能量

amp = sum((abs(enframe(filter([1 -0.9375], 1, x), FrameLen, inc))).^2, 2);

%调整能量门限

amp1 = min(amp1, max(amp)/4);

amp2 = min(amp2, max(amp)/8);

%开始端点检测

for n=1:length(zcr)

goto = 0;

switch status

case {0,1} % 0 = 静音, 1 = 可能开始

if amp(n) > amp1 % 确信进入语音段

x1 = max(n-count-1,1); % 记录语音段的起始点

status = 2;

silence = 0;

count = count + 1;

elseif amp(n) > amp2 || zcr(n) > zcr2 % 可能处于语音段

status = 1;

count = count + 1;

else% 静音状态

status = 0;

count = 0;

end

case 2, % 2 = 语音段

if amp(n) > amp2 ||zcr(n) > zcr2 % 保持在语音段

count = count + 1;

else% 语音将结束

silence = silence+1;

if silence < minsilence % 静音还不够长,尚未结束 count = count + 1;

elseif count < minlen % 语音长度太短,认为是噪声 status = 0;

silence = 0;

count = 0;

else% 语音结束

status = 3;

end

end

case 3,

break;

end

end

count = count-silence/2;

x2 = x1 + count -1; %记录语音段结束点

subplot(3,1,1)

plot(x)

axis([1 length(x) -1 1])

xlabel('帧数');ylabel('Speech');

line([x1*inc x1*inc], [-1 1], 'Color', 'red');

line([x2*inc x2*inc], [-1 1], 'Color', 'red');

subplot(3,1,2)

plot(amp);

axis([1 length(amp) 0 max(amp)])

xlabel('帧数');ylabel('Energy');

line([x1 x1], [min(amp),max(amp)], 'Color', 'red');

line([x2 x2], [min(amp),max(amp)], 'Color', 'red');

subplot(3,1,3)

plot(zcr);

axis([1 length(zcr) 0 max(zcr)])

xlabel('帧数');ylabel('ZCR');

line([x1 x1], [min(zcr),max(zcr)], 'Color', 'red');

line([x2 x2], [min(zcr),max(zcr)], 'Color', 'red');

五、实验结果与分析

图1.2语音信号的端点检测实验结果输出图像

(1)从图中可以明显看出,浊音的短时能量大、短时过零率低。清音的短时能量小、短时过零率高。

(2)门限的选取对语音检测结果有很大影响。

(3)仅仅根据能量判断是比较粗糙的,还需要根据过零率进行判断。因为清音和噪声的短时平均过零率比背景噪声的平均过零率要高出好几倍。

六、实验体会

这次的实验,,给我最大的收获就是培养了独立思考和动手的能力,还有就是实验的灵活性,总得来说就是在独立与创新这二个环节,我更加掌握MA TLAB的程序设计方法,进一步的了解了掌握基于MA TLAB编程实现带噪语音信号端点检测的原理,这充分锻炼了我们独立的动手能力和独立的解决所遇到的问题,让我对这门课程又有了新的理解。

语音端点检测

目录 摘要........................................................................................ 错误!未定义书签。Abstract .................................................................................. 错误!未定义书签。第1章绪论.. 0 1.1课题背景 0 1.2语音端点检测现状 0 1.3相关工作 (2) 1.4本文主要研究内容 (3) 第2章语音信号时频域分析及预处理 (4) 2.1语音信号简述 (4) 2.2语音信号分析 (4) 2.2.1 时域分析 (5) 2.2.2 频域分析 (5) 2.3语音信号分析处理 (7) 2.3.1 预加重 (7) 2.3.2 加窗分帧 (8) 2.4本章小结 (9) 第3章语音端点检测算法研究 (10) 3.1语音端点检测 (10) 3.1.1 简述 (10) 3.1.2 语音端点检测原理 (10) 3.1.3 语音端点检测算法及实施方案 (12) 3.2基于短时能量和短时过零率的语音端点检测 (13) 3.2.1 短时平均能量 (14) 3.2.2 短时过零率 (16) 3.2.3 基于短时能量和短时过零率的双门限端点检测 (18) 3.2.4 双门限语音端点检测实验 (19) 3.3基于倒谱特征的语音端点检测 (20) 3.3.1 倒谱特征 (20) I

3.3.2 倒谱距离 (21) 3.3.3 倒谱距离的检测算法流程 (23) 3.3.4 基于倒谱特征的语音端点检测试验分析 (25) 3.4基于谱熵的语音端点检测 (26) 3.4.1 谱熵特征 (26) 3.4.2 基于谱熵的端点检测流程 (27) 3.4.4 基于谱熵特征的语音端点检测试验分析 (28) 3.5算法比较 (30) 3.6本章小结 (33) 结论.................................................................................... 错误!未定义书签。参考文献................................................................................ 错误!未定义书签。致谢.................................................................................... 错误!未定义书签。附录1..................................................................................... 错误!未定义书签。附录2..................................................................................... 错误!未定义书签。附录3..................................................................................... 错误!未定义书签。附录4..................................................................................... 错误!未定义书签。附录5..................................................................................... 错误!未定义书签。

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

信号检测论评价法实验报告

信号检测论的评价法实验报告 (福州大学应用心理系福建福州 350001)摘要:信号检测论是现代心里物理学最重要的内容之一。本实验使用了信号检测论的基本方法评价法考察了被试对图片再认的准确性和判断标准。通过本实验来了解信号检测论的一些观点和评价法的具体实施方法、步骤。 关键词:信号检测法范式、评价法、感受性、判定标准 一、引言 科学主义要求心理学的量化和精确性。心理物理学的发展在信号检测论出现之后进入了一个新的阶段,被习惯称为现代心里物理学。信号检测论被引入到心理学实验中,是对传统心理物理学的重大突破。信号检测论(Signal Detector Theory)原是信息论的一个分支,研究的对象是信息传输系统中信号的接收部分【1】。信号检测论主要包括有无法和评价法两种实验方法。国内运用信号检测论实验的研究主要集中在记忆领域,在注意、知觉、表象、内隐学习以及社会认知领域的研究也日渐增多[2]。本实验运用了信号检测论的评价法来考察被试对图片再认的准确性和判断标准。 二、实验方法 1、实验目的:(1)掌握信号检测论的基本理论,学会计算信号检测论指标d’、 C、β;(2)学习绘制接受者操作特性曲线,了解信号检测论的用途;(3)了解评价等级对再认回忆的影响。 2、实验仪器与材料:本实验的仪器为计算机和Psykey系统中的信号侦查论---评价法。实验材料为两套图片:一套是识记过的图片,共60张(每个图片内容不同)作为信号SN;另一套是没有识记过的图片,共60张(每个图片也不同,但与相应的第一套相似),作为噪音N。

3、被试:福州大学应用心理学系2012级学生一名,性别男,矫正后视力正常。 4、实验程序: (1)准备工作 打开并登录计算机里的psykey软件系统,找到里面的信号检测论——评价法实验,并开始实验。 (2)正式实验 被试阅读指导语:“请你来做一个记忆实验,先看60张图片,要求你尽量记住这些图片,电脑播放这些图片的速度是没一秒钟一张。”被试阅读完毕并理解指导语后,开始实验。根据实验设计,以1s的时间间隔开始呈现第一套的60张图片,每张图片呈现时间为2s。 接着被试继续阅读指导语:“现在电脑会呈现120张图片,其中一半是你刚才看过的,另一半是新的图片。在看一张图片时,你就要判断它是不是刚才看到过的,并请点击相应数字:5——100%的可能为看过,4——75%的可能为看过,3——50%的可能为看过,2——25%的可能为看过,1——0%的可能为看过。你必须在5秒之内完成判断。请你尽快判断。” 根据实验设计,开始呈现二套图片混合后的120张图片,让被试判断是否是刚才识记过的,并按照规定的等级按键作出评价。 实验完毕由计算机统计实验数据。 二、实验结果 表1 被试实验结果统计 类型 1 2 3 4 5 合计 信号17 2 4 7 30 60 噪音54 1 3 1 1 60

基于能量和过零率的语音端点检测

课题:基于能量和过零率的语音端点检测姓名:陈启望简盛龙颜艳丹 专业:2008级电子科学与技术(2)班 指导老师:胡朝炜 国立华侨大学信息科学与工程学院

一、前言 在复杂的应用环境下,从信号流中分辨出语音信号和非语音信号,是语音处理的一个基本问题。端点检测就是从包含语音的一段信号中确定出语音的起始点和结束点。正确的端点检测对于语音识别和语音编码系统都有重要的意义,它可以使采用的数据真正是语音信号的数据,从而减少数据量和运算量并减少处理时间。 二.方案选择 判别语音段的起始点和终止点的问题主要归结为区别语音和噪声的问题。 ①短时能量——如果能够保证系统的输入信噪比很高(即使最低电平的语音的能量也比噪声能量要高),那么只要计算输入信号的短时能量就基本能够把语音段和噪声背景区别开来。但是,在实际应用中很难保证这么高的信噪比,仅仅根据能量来判断是比较粗糙的。 ②短时平均过零率——它是语音信号时域分析中的一种特征参数。它是指每帧内信号通过零值的次数。在离散时间语音信号情况下,如果相邻的采样具有不同的代数符号就称为发生了过零。如果是正弦信号,其平均过零率就是信号频率的两倍除以采样频率,而采样频率是固定的。因此过零率在一定程度上可以反映信号的频率信息。语音信号不是简单的正弦序列,所以平均过零率的表示方法就不那么确切。 ③两级判决法——在用短时能量判断的同时,还需进一步利用短时平均过零率进行判断,因为清音比噪声的短时平均过零率比背景

噪声的平均过零率要高出高几倍。即基于能量和过零率的端点检测方法,也称双门限比较法。 综上所述,选择第三种方法,更加准确,实现的程序也不是很复杂。 三、方法的理论介绍 1.第一级判决 a.先根据语音短时能量的轮廓选取一个较高的门限T1,进行一个粗 判:语音起止点位于该门限与短时能量包络交点所对应的时间间隔之外(即AB段之外)。 b.根据背景噪声的平均能量确定一个较低的门限T2,并从A点往左、 从B点往右搜索,分别找到短时能量包络与门限T2相交的两个点C和D,于是CD段就是用双门限方法根据短时能量锁判定的语音段。 2.第二级判决 以短时平均过零率为标准,从C点往左和从D点往右搜索,找到短时平均过零率低于某个门限T3的两点E和F,这便是语音段的起

基于Matlab的语音端点检测实验研究

浙江科技学院学报,第19卷第3期,2007年9月Jo ur na l of Zhejiang U niv ersity of Science and T echnolog y Vo l.19No.3,Sep.2007 收稿日期:2007 04 23 作者简介:张震宇(1976 ),男,浙江兰溪人,讲师,硕士,主要从事电子技术和语音信号处理的研究。 基于Matlab 的语音端点检测实验研究 张震宇 (浙江科技学院自动化与电气工程学院,杭州310023) 摘 要:端点检测在语音识别中占有十分重要的地位,直接影响着系统的性能。今借助于M atlab 这一功能强大的工具,成功地开展了语音端点检测的实验研究。首先简介端点检测涉及的几个基本概念,然后分析端点检测的基本方法,最后分别进行孤立字、孤立词的语音检测实验;重点阐述实验开展的具体过程,并给出部分关键源代码。实验取得了良好的效果。 关键词:端点检测;短时能量;过零率;M atlab 中图分类号:T P391.42 文献标识码:A 文章编号:1671 8798(2007)03 0197 05 Expe rime ntal Study on Speec h Endpoint Detection Base d on Matlab ZH ANG Zhen y u (Schoo l o f Automat ion and Electr ical Engineer ing,Zhejiang U niv ersity of Science and T echnolog y,H angzhou,310023,China) Abstract:Endpoint detection plays an important ro le in speech recog nition,w hich dir ectly af fects perform ance of the speech system.With M atlab,exper im ents to detect speech endpoint are developed successfully.Firstly ,several basic concepts are introduced briefly.T hen,the basic method for endpoint detection is analyzed.At last,2experiments for isolated wo rd are car ried out.T he detailed ex perim ent procedure is focused on and par t of key source codes is given,w hich gains favourable effect. Key words:endpo int detection;short term energy ;zer o crossing r ate(ZCR);M atlab 所谓端点检测,就是从一段给定的语音信号中找出语音的起始点和结束点。在语音识别系统中,正确、有效地进行端点检测不仅可以减少计算量和缩短处理时间,而且能排除无声段的噪声干扰、提高语音识别的正确率。研究表明,即使是在安静的环境下,语音识别系统一半以上的错误可能主要来自端点检测 [1] 。除此之外,在语音合成、编码等系统 中,高效的端点检测也直接影响甚至决定着系统的主要性能。因此,端点检测的效率、质量在语音处理系统中显得至关重要,广泛开展端点检测实现手段方面的研究,有一定的现实意义。 笔者查阅了大量关于端点检测的文献资料,典型的如文献[2 5]等,发现大部分文献把重点放在理论分析层面上,集中研究了如何较好地改进检测方

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

信号系统实验报告

电子工程系 信号与系统课程实验报告 2011-----2012学年第一学期 专业: 电子信息工程技术班级: 学号 : 姓名: 指导教师: 实常用连续时间信号的实现

一、实验目的 (1)了解连续时间信号的特点; (2)掌握连续时间信号表示的向量法和符号法; (3)熟悉MATLAB Plot函数等的应用。 二、实验原理 1、信号的定义 信号是随时间变化的物理量。信号的本质是时间的函数。 2、信号的描述 1)时域法 时域法是将信号表示成时间的函数f(t)来对信号进行描述的方法。信号的时间特性指的是信号的波形出现的先后,持续时间的长短,随时间变化的快慢和大小,周期的长短等。 2)频域(变换域)法 频域法是通过正交变换,将信号表示成其他变量的函数来对信号进行描述的方法。一般常用的是傅立叶变换。信号的频域特性包括频带的宽窄、频谱的分布等。 信号的频域特性与时域特性之间有着密切的关系。 3、信号的分类 按照特性的不同,信号有着不同的分类方法。 (1)确定性信号:可以用一个确定的时间函数来表示的信号。 随机信号:不可以用一个确定的时间函数来表示,只能用统计特性加以描述的信号。 (2)连续信号:除若干不连续的时间点外,每个时间点在t上都有对应的数值信号。离散信号:只在某些不连续的点上有数值,其他时间点上信号没有定义的信号。 (3)周期信号:存在T,使得等式f(t+T)=f(t)对于任意时间t都成立的信号。非周期信号:不存在使得等式f(t+T)=f(t)对于任意时间t都成立的信号。 绝对的周期信号是不存在的,一般只要在很长时间内慢走周期性就可以了。 (4)能量信号:总能量有限的信号。 功率信号:平均功率有限切非零的信号。 (5)奇信号:满足等式f(t)=--f(--t)的信号。偶信号:满足等式f(t)=f(--t)的信号。 三、涉及的MATLAB函数 1、plot函数 功能:在X轴和Y轴方向都按线性比例绘制二维图形。 调用格式: Plot(x,y):绘出相x对y的函数线性图。 Plot(x1,y1,x2,y2,…..):会出多组x对y的线性曲线图。 2、ezplot函数 功能:绘制符号函数在一定范围内的二维图形。简易绘制函数曲线。 调用格式: Ezplot (fun):在[-2π,2π]区间内绘制函数。 Ezplot (fun,[min,max]):在[min,max]区间内绘函数。 Ezplot (funx,funy):定义同一曲面的函数,默认的区间是[0, 2π]。】 3、sym函数 功能:定义信号为符号的变量。 调用格式:sym(fun):fun为所要定义的表达式。 4、subplot函数

基于MATLAB的语音端点检测

短时能量matlab实现: [x]=wavread('song1.wav'); x=x/max(abs(x)); figure; subplot(3,1,1); plot(x); axis([1 length(x) -1 1]); ylabel('Speech'); FrameLen=240; FrameInc=80; yframe=enframe(x,FrameLen,FrameInc); amp1=sum(abs(yframe),2); subplot(3,1,2); plot(amp1); axis([1 length(amp1) 0 max(amp1)]); ylabel('Amplitude'); legend('amp1=∑│x│'); amp2=sum(abs(yframe.*yframe),2); subplot(3,1,3); plot(amp2); axis([1 length(amp2) 0 max(amp2)]); ylabel('Energy'); legend('amp1=∑│x*x│'); 短时过零率matlab实现: [x]=wavread('song1.wav'); figure; subplot(3,1,1); plot(x); axis([1 length(x) -1 1]); ylabel('Speech'); FrameLen = 240; FrameInc = 80; amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); subplot(312) plot(amp); axis([1 length(amp) 0 max(amp)]) ylabel('Energy'); tmp1 = enframe(x(1:end-1), FrameLen, FrameInc); tmp2 = enframe(x(2:end) , FrameLen, FrameInc); signs = (tmp1.*tmp2)<0; diffs = (tmp1 -tmp2)>0.02; zcr = sum(signs.*diffs, 2); subplot(3,1,3); plot(zcr);

实验二实验报告

PAM和PCM编译码器系统 一、实验目的 1.观察了解PAM信号形成的过程;验证抽样定理;了解混叠效应形 成的原因; 2.验证PCM编译码原理;熟悉PCM抽样时钟、编码数据和输入/输出 时钟之间的关系;了解PCM专用大规模集成电路的工作原理和应用。 二、实验内容和步骤 1.PAM编译码器系统 1.1自然抽样脉冲序列测量 (1)准备工作; (2)PAM脉冲抽样序列观察; (3)PAM脉冲抽样序列重建信号观测。 1.2平顶抽样脉冲序列测量 (1)准备工作; (2)PAM平顶抽样序列观察; (3)平顶抽样重建信号观测。 1.3信号混叠观测 (1)准备工作 (2)用示波器观测重建信号输出的波形。 2.PCM编译码器系统 2.1PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号的观察; (2)抽样时钟信号与PCM编码数据测量; 2.2用示波器同时观察抽样时钟信号和编码输出数据信号端口 (TP502),观测时以TP504同步,分析掌握PCM编码输数据和抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系; 2.3PCM译码器输出模拟信号观测,定性观测解码信号与输入信号的 关系:质量,电平,延时。 2.4PCM频率响应测量:调整测试信号频率,定性观察解码恢复出的 模拟信号电平,观测输出信号电平相对变化随输入信号频率变化的相对关系;

2.5PCM动态范围测量:将测试信号频率固定在1000Hz,改变测试信 号电平,定性观测解码恢复出的模拟信号的质量。 三、实验数据处理与分析 1.PAM编译码器系统 (1)观察得到的抽样脉冲序列和正弦波输入信号如下所示: 上图中上方波形为输入的正弦波信号,下方为得到的抽样脉冲序列,可见抽样序列和正弦波信号基本同步。 (2)观测得到的重建信号和正弦波输入信号如下所示:

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

信号检测论有无法实验报告剖析

------------------------------------------------------------------------------- 实验报告信息栏 系别心理系年级 13级2班姓名魏晓芹同组成员杨思琪、张彤、韩永超 实验日期 2016年4月学号 120105510215 教师评定 ------------------------------------------------------------------------------- 信号检测论有无法实验报告 摘要本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC 曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。结果显示:(1)被试在先定概率为0.2、0.5、0.8的条件下,击中率分别为0.8、0.92、0.8625,虚报率分别为0.5125、0.56、0.75,辨别力d′分别为0.592、1.254、0.406,判定标准β分别为0.70、0.38、0.71。 关键词信号检测论;有无法;先定概率;辨别力d′;判定标准β 1引言 传统心理物理学对阈限的理解是有限的,不能将个体客观的感受性和主观的动机、反应偏好等加以区分,从而使研究者渐渐陷入到了由阈限概念本身所引发的僵局之中。而在1954年,坦纳和斯韦茨等人首次应用的信号检测论,正好解决了这个问题。 信号检测论的研究对象是信息传播系统中信号的接收问题。在心理学中,它是借助于数学的形式描述“接收者”在某一观察时间内将掺有噪音的信号从噪音中辨别出来。 信号检测论应用于心理学中的基本原理是:将人的感官、中枢分析综合过程看作是一个信息处理系统,应用信号检测论中的一些概念、原理对它进行分析。信号检测论在心理学中具体应用时,常把刺激变量当作信号,把对刺激变量起干扰作用的因素当作噪音,这样就可以把人接收外界刺激时的分辨问题等效于一个在噪音中检测信号的问题,从而便可以应用信号检测论来处理心理学中的实验结果。 信号检测论的理论基础是统计决策。信号检测论本身就是一个以统计判定为根据的理论。它的基本原理是:根据某一观察到的事件,从两个可选择的方面选

语音端点检测方法研究

语音端点检测方法研究1 沈红丽,曾毓敏,李平,王鹏 南京师范大学物理科学与技术学院,南京(210097) E-mail:orange.2009@https://www.wendangku.net/doc/f33627333.html, 摘要: 端点检测是语音识别中的一个重要环节。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题.鉴于此,本文介绍了语音端点算法的基本研究现状,接着讨论并比较了语音信号端点检测的方法,分析了各种方法的原理及优缺点,如经典的基于短时能量和过零率的检测方法,基于频带方差的检测方法,基于熵的检测方法,基于倒谱距离的检测方法等.并基于这些方法的分析,对端点检测方法做了进行了总结和展望,对语音信号的端点检测的进一步研究具有深远的意义。 关键词:语音信号;端点检测;噪声 中图分类号:TP206. 1 1. 引言 语音信号处理中的端点检测技术,是指从包含语音的一段信号中确定出语音信号的起始点及结束点。语音信号的端点检测是进行其它语音信号处理(如语音识别、讲话人识别等)重要且关键的第一步. 研究表明[1],即使在安静的环境中,语音识别系统一半以上的识别错误来自端点检测器。因此,作为语音识别系统的第一步,端点检测的关键性不容忽视,尤其是噪声环境下语音的端点检测,它的准确性很大程度上直接影响着后续的工作能否有效进行。 确定语音信号的起止点, 从而减小语音信号处理过程中的计算量, 是众多语音信号处理领域中一个基本而且重要的问题。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题。 2. 语音端点检测主要方法和分析 在很长一段时间里,语音端点检测算法主要是依据语音信号的时域特性[2].其采用的主要参数有短时能量、短时平均过零率等,即通常说的基于能量的端点检测方法。这些算法在实验室环境下具有良好的性能,但在噪声环境下,则无法达到其应有的效果。近年来,随着通信业的迅猛发展,又出现了很多的语音端点检测算法。它们主要是通过采用各种新的特征参数,以提高算法的抗噪声性能。如基于倒谱系数[3]、频带方差[4]、自相关相似距离[5] 、信息熵[6]等也逐渐的被应用到端点检测中。有时,还通过将信号的几种特征组合成为一个新的特征参数来进行端点检测。 2.1基于短时能量和短时平均过零率的检测方法 该方法也称为双门限比较法,它是在短时能量检测方法的基础上,加上短时平均过零率,利用能量和过零率作为特征来进行检测.在信噪比不是很低的情况下,根据语音信号的能量大于噪声噪声能量的假设,通过比较输入信号的能量与语音能量阈值的大小,可以对语音段和非语音段加以区分[7].输入每帧信号的能量可由下式得到[7-8]: 1本课题得到江苏省普通高校自然科学研究计划资助项目(项目批准号:07KJD510110)的资助。

信号检测实验报告

Harbin Institute of Technology 匹配滤波器实验报告 课程名称:信号检测理论 院系:电子与信息工程学院 姓名:高亚豪 学号:14SD05003 授课教师:郑薇 哈尔滨工业大学

1. 实验目的 通过Matlab 编程实现对白噪声条件下的匹配滤波器的仿真,从而加深对匹配滤波器及其实现过程的理解。通过观察输入输出信号波形及频谱图,对匹配处理有一个更加直观的理解,同时验证匹配滤波器具有时间上的适应性。 2. 实验原理 对于一个观测信号()r t ,已知它或是干扰与噪声之和,或是单纯的干扰, 即 0()()()()a u t n t r t n t +?=?? 这里()r t ,()u t ,()n t 都是复包络,其中0a 是信号的复幅度,()u t 是确知的归一化信号的复包络,它们满足如下条件。 2|()|d 1u t t +∞ -∞=? 201||2 a E = 其中E 为信号的能量。()n t 是干扰的均值为0,方差为0N 的白噪声干扰。 使该信号通过一个线性滤波系统,有效地滤除干扰,使输出信号的信噪比在某一时刻0t 达到最大,以便判断信号的有无。该线性系统即为匹配滤波器。 以()h t 代表系统的脉冲响应,则在信号存在的条件下,滤波器的输出为 0000()()()d ()()d ()()d y t r t h a u t h n t h τττττττττ+∞+∞+∞ =-=-+-???

右边的第一项和第二项分别为滤波器输出的信号成分和噪声成分,即 00()()()d x t a u t h τττ+∞ =-? 0 ()()()d t n t h ?τττ+∞ =-? 则输出噪声成分的平均功率(统计平均)为 2 20E[|()|]=E[|()()d |]t n t h ?τττ+∞ -? **00*000200 =E[()(')]()(')d d '=2()(')(')d d ' 2|()|d n t n t h h N h h N h ττττττδττττττττ+∞+∞+∞+∞+∞ ---=?? ?? ? 而信号成分在0t 时刻的峰值功率为 22 20000|()||||()()d |x t a u t h τττ+∞ =-? 输出信号在0t 时刻的总功率为 22000E[|()|]E[|()()|]y t x t t ?=+ 22**0000002200E[|()||()|()()()()] |()|E[|()|] x t t x t t t x t x t t ????=+++=+ 上式中输出噪声成分的期望值为0,即0E[()]0t ?=,因此输出信号的功率 成分中只包含信号功率和噪声功率。 则该滤波器的输出信噪比为 222000022000|||()()d ||()|E[|()|]2|()|d a u t h x t t N h τττρ?ττ+∞ +∞-==?? 根据Schwartz 不等式有

信号与系统实验报告

学生实验报告 (理工类) 课程名称:信号与系统实验专业班级:电子信息(1)班学生学号:1005101058 学生姓名:严生生 所属院部:信息技术学院指导教师:杨婧 20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制

实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求 实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示实验学时: 1 同组学生姓名:实验地点: B402 实验日期:实验成绩: 批改教师:杨婧批改时间: 一、实验目的和要求 熟悉MATLAB软件,利用MATLAB软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件。 三、实验过程 1,绘制正弦信号f(t)=Asin(ωt+ψ),其中A=1,ω=2π, ψ=π/6; 2,绘制指数信号f(t)=Ae^at,其中A=1,a=-0.4; 3,绘制矩形脉冲信号,脉冲宽度为2; 4,绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5,对上题三角波脉冲信号进行尺度变换,分别得出f(2t),f(2-2t); 6,绘制抽样函数Sa(t),t取值在-3π到+3π之间; 7,绘制周期矩形脉冲信号,参数自定; 8,绘制周期三角脉冲信号,参数自定; 1,打开MATLAB界面,建立新文件。 2,根据实验要求,编写程序。

《测试信号分析与处理》实验报告

测控1005班齐伟0121004931725 (18号)实验一差分方程、卷积、z变换 一、实验目的 通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。 二、实验设备 1、微型计算机1台; 2、matlab软件1套 三、实验原理 Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。 差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。用x表示滤波器的输入,用y表示滤波器的输出。 a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1) ak,bk 为权系数,称为滤波器系数。 N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。 y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。 传输函数H(z)是滤波器的第三种实现方法。 H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。 序列x[n]的z变换定义为 X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。

信号与系统实验报告汇总

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10 ()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

相关文档
相关文档 最新文档