文档库 最新最全的文档下载
当前位置:文档库 › 氨氮废水处理技术研究

氨氮废水处理技术研究

氨氮废水处理技术研究
氨氮废水处理技术研究

氨氮废水处理技术研究

发表时间:2019-01-16T15:02:17.220Z 来源:《基层建设》2018年第36期作者:刘诚

[导读] 摘要:氨氮废水是在工业生产中产生的工业废水,包括了大量氨氮元素,如果这些包含氨氮元素的工业废水通过直接排放的方式排入江河湖泊,将会对我国的生物环境产生较大的不可逆转的危害。

广州市环境保护工程设计院有限公司 510000

摘要:氨氮废水是在工业生产中产生的工业废水,包括了大量氨氮元素,如果这些包含氨氮元素的工业废水通过直接排放的方式排入江河湖泊,将会对我国的生物环境产生较大的不可逆转的危害。氨氮废水处理技术是通过科学的方法对氨氮废水进行净化处理的污水处理系统,使之变成可利用的生活资源,达到满足工业生产的目的。文章主要针对氨氮废水处理技术研究进展的难题及发展方向进行了分析。

关键词:氨氮废水;废水处理技术;发展瓶颈;发展方向

1.前言

工业时代对重工业的发展势头直至今日仍不见其减缓的意思,水泥加工厂、化肥生产厂等对环境造成极大地危害,而生产工厂现今仍是许多地区发展的经济支柱,对氨氮废水处理技术不可避免的引起了人们的热议。而且氨氮废水处理技术现已涉及到广大人民的农业活动、国家环境问题、国民经济发展、人民生活等各方各面,随之增加的还有其工作的困难性与复杂性。虽然有了近些年来众多学者实践总结出的经验,但是氨氮废水处理技术也暴露出了大量问题。

2.产生故障因素

氨氮废水处理技术的环境保护型发展概念至今已相当成熟,它有一套完整的理论体系及分类方式。笔者通过对相关文献的查询,就这三个方面做出以下整理分析。

2.1自身技术受限

随着工业新时代的来临,人们的经济生活水平逐步提高,在追求更高生活标准的同时,对自身生活环境的要求也随之增加。氨氮废水处理技术如果技术过于陈旧、处理效率过低不仅会对废物利用观念下的污水厂系统专业的发展造成影响,而且对社会中各方面会产生负面的连带作用。但是由于受到基础化学和应用化学发展的限制,氨氮废水处理技术到现在为止仍是一个技术难题。相关理论和技术的发展速度缓慢,甚至停滞不前的原因表现在方方面面。其中主要有两点十分突出,一方面是基础物理进展缓慢,氨氮废水处理技术不达标,发展至今日,传统化学除污废水处理工艺仍是应用比较广的技术,其废水处理效率及效果已不在满足生产需求;另一方面,传统化学除污废水处理工艺技术耗资巨大,所以导致许多厂家采取不配合的方式,医用难度较大,到目前为止并没有给人们带来十分明显的利益,也没有引起人们足够的重视。新型氨氮废水处理技术一经提出就得到了国际社会的广泛关注,人们也对其营造的现代化的能源的由来方式充满了无尽的向往。到目前为止该设备仍处于初始阶段,但其已为人类带来相应的效益,发展势头一片良好。

2.2生物氨氮废水处理技术发展受限

前文提到传统的氨氮废水处理技术是当下工厂应用较为广泛的污水处理系统,但是其在应用过程中暴漏出大量的问题,其中有两个方面较为突出,一方面,传统氨氮废水处理技术理论技术受限,造成处理效率过低的问题,即使工厂都配置了氨氮废水处理系统,其处理后的废水人股能达到国家的废水排放标准;另一方面,废水处理技术步骤过于繁杂,工厂如果配置一整套的污水处理系统,将要引进大量的机械设备,其将会占用大量的工厂建设面积,废水处理费用也会成为工厂的一项较大开支,这会引起企业工厂的排斥反应,国建监管难度较大。生物氨氮废水处理技术是时下比较先进的包括氨氮废水处理在内的污水处理系统,他是生物学上的一个理论突破,为更为有效的废水处理提供可一个新的思路,但是当下该理论仍处于初步实行阶段,相关的应用受到极大的限制。

2.3氨氮废水处理技术人员能力受限

因为传统氨氮废水处理技术受限,一个好的技术工作人员在整个氨氮废水过程中起到的作用仍十分重大。技术工工作的准确性直接影响到工程的进展,甚至工作的成败。故障产生的一个重要来源表现在对氨氮废水处理机器的使用过程中产生的偏差,他们不良的甚至错误的操作方式,是产生这种误差的主要原因,例如操作时时采取的习惯大相径庭,观测时选用的角度大相径庭等。在操作过程中技术人员所造成的误差也是造成锻造过程检定和测量出现差错的一个重大缘由,对知识的掌握半生不熟、动手实践能力相对较差、操作流程没有搞明白等都可找到端疑,此外对仪器进行校准也会使实验结果产生较大偏差。不管科学技术发展到何种水平,人在其中的作用仍是至关重要的不可忽视的,它的作用往往在于统领全局,所以只要人好对人的管理才不至于最后功亏一篑。

3 技术及应用发展方向

3.1传统技术的革新依然是关键

加大资金投入,尽快发展相关理论(化学基础研究)和技术水平(应用化学),相关领域的发展以及技术水平的提升,是解决氨氮废水处理技术应用发展中问题的釜底抽薪的方法。在通信方式高度发达的今天,通过媒体的报道人们逐渐意识到了环境安全问题,所以环境安全问题就被人们推到了风口浪尖的位置,运营商对其安全性的管理的压力也与日俱增,保证其安全稳定的运营成了重中之重。这应当引起各国政府以及相关民间,企业组织的足够重视。只有通过这个方法才能解决现存的,才能解决的技术难题,使得氨氮废水处理技术水平达到一个从所未有的新高度,这不仅可以给人带来永久的利益,还会给人们带来了永久性的便利收获。大力发展相关理论(化学基础研究)和技术水平(应用化学)方面的理论基础,以及提升相关的技术水平是当下最应该注意的东西。

3.2大力发展生物氨氮废水处理技术

生物氨氮废水处理技术是时下比较先进的包括氨氮废水处理在内的污水处理系统,他是生物学上的一个理论突破,为更为有效的废水处理可提供一个新的思路,但是当下该理论仍处于初步实行阶段,相关的应用受到极大的限制。但是其有效的氨氮废水处理效率是值得人们对其投入较大的资金及人力的,在发展传统技术的基础上,关注发展生物氨氮废水处理技术是一种比较明智的发展选择。微生物的深入研究是生物废水处理的工作重点,找到能有效分解氨氮的微生物是研究方向,相信生物的力量永远是人类的技术无法超越的。

3.3生物氨氮废水处理技术人员技术培养是重点

通过的人员的管理和其技术手段提升,来降低当前故障排查工作毛病产生的原因是目前技术所限大背景下,一种最为快捷有效的解决方法,因此在操作过程中需尽可能的按照规程、规范来执行。在操作过程中测量人员所造成的误差也是造成电学计量检定和测量出现差错的一个重大缘由,对知识的掌握半生不熟、动手实践能力相对较差、操作流程没有搞明白等都是当前工作的重点。通过大数据处理器与问

污水处理技术概述

污水处理技术概述 污水处理技术,就是采用各种方法将污水中所含有的污染物质分离出来,或将其转化为无害和稳定的物质,从而使污水得以净化。 一、污水处理方法的分类 现代的污水处理技术,按其作用原理可分为物理法、化学法、物理化学法和生物处理法四大类。 (一)物理法 通过物理作用,以分离、回收污水中不溶解的呈悬浮状的污染物质(包括油膜和油珠),在处理过程中不改变其化学性质。物理法操作简单、经济。常采用的有重力分离法、离心分离法、过滤法及蒸发、结晶法等。 1.重力分离(即沉淀)法 利用污水中呈悬浮状的污染物和水密度不同的原理,借重力沉降(或上浮)作用,使水中悬浮物分离出来。沉淀(或上浮)处理设备有沉砂池、沉淀池和隔油池。 在污水处理与利用方法中,沉淀与上浮法常常作为其他处理方法前的预处理。如用生物处理法处理污水时,一般需事先经过预沉池去除大部分悬浮物质减少生化处理构筑物的处理负荷,而经生物处理后的出水仍要经过二次沉淀池的处理,进行泥水分离保证出水水质。 2.过滤法 利用过滤介质截流污水中的悬浮物。过滤介质有钢条、筛网、砂布、塑料、微孔管等,常用的过滤设备有格栅、栅网、微滤机、砂滤机、真空滤机、压滤机等(后两种滤机多用于污泥脱水)。 3.气浮(浮选) 将空气通入污水中,并以微小气泡形式从水中析出成为载体,污水中相对密度接近于水的微小颗粒状的污染物质(如乳化油)黏附在气泡上,并随气泡上升至水面,从而使污水中的污染物质得以从污水中分离出来。根据空气打入方式不同,气浮处理方法有加压溶气气浮法、叶轮气浮法和射流气浮法等。为了提高气

浮效果,有时需向污水中投加混凝剂。 4.离心分离法 含有悬浮污染物质的污水在高速旋转时,由于悬浮颗粒(如乳化油)和污水受到的离心力大小不同而被分离的方法。常用的离心设备按离心力产生的方式可分为两种:由水流本身旋转产生离心力的为旋流分离器,由设备旋转同时也带动液体旋转产生离心力的为离心分离机。 旋流分离器分为压力式和重力式两种。因它具有体积小、单位容积处理能力高的优点,近几十年来广泛用于轧钢污水处理及高浊度河水的预处理。离心机的种类很多,按分离因素分有常速离心机和高速离心机。常速离心机用于分离低浆废水效果可达60%~70%,还可用于沉淀池的沉渣脱水等。高速离心机适用于乳状液的分离,如用于分离羊毛废水,可回收30%~40%的羊毛脂。 (二)化学法 向污水中投加某种化学物质,利用化学反应来分离、回收污水中的某些污染物质,或使其转化为无害的物质。常用的方法有化学沉淀法、混凝法、中和法、氧化还原(包括电解)法等。 1.化学沉淀法 向污水中投加某种化学物质,使它与污水中的溶解性物质发生互换反应,生成难溶于水的沉淀物,以降低污水中溶解物质的方法。这种处理法常用于含重金属、氰化物等工业生产污水的处理。按使用沉淀剂的不同,化学沉淀法可分为石灰法(又称氢氧化物沉淀法)、硫化物法和钡盐法。 2.混凝法 向水中投加混凝剂,可使污水中的胶体颗粒失去稳定性,凝聚成大颗粒而下沉。通过混凝法可去除污水中细分散固体颗粒、乳状油及胶体物质等。该法可用于降低污水的浊度和色度,去除多种高分子物质、有机物、某种重金属毒物(汞、镉、铅)和放射性物质等,也可以去除能够导致富营养化物质如磷等可溶性无机物,此外还能够改善污泥的脱水性能。因此混凝法在工业污水处理中使用得非常广泛,既可作为独立处理工艺,又可与其他处理法配合使用,作为预处理、中间处理或最终处理。目前常采用的混凝剂有硫酸铝、碱式氯化铝、铁盐(主要指硫酸亚铁、三氯化铁及硫酸铁)等。

氨氮废水处理技术研究进展_黄骏 (1)

氨氮废水处理技术研究进展 黄 骏 陈建中 (昆明理工大学环境科学与工程学院,昆明650093) 摘 要 氨氮废水是造成水体富营养化的主要因素之一,本文综述了氨氮废水的几种主要处理技术,介绍了它们的处 理原理以及适用条件,指出了今后研究工作中需要解决的问题和氨氮废水处理技术今后的发展方向。 关键词 氨氮废水 处理技术 发展 Recent advances on the treatment technologies of ammonia -nitrogen wastewater Huang Jun Chen Jianzhong (College of Environmen tal Science and Engineering ,Kunming University of Science and T echnology ,Kunming 650093) A bstract The recent advances on the treatment technologies of ammonia -nitrogen wastewater were briefly review ed in this paper .In addition ,the paper reviewed mechanisms and conditions of treatment and pointed out the direction of development in the treatment technologies of ammonia -nitrogen w astew ater . Key words ammonia -nitrogen w astew ater ;treatment technologies ;development 1 前 言 氨氮排入水体,特别是流动较缓慢的湖泊、海湾,容易引起水中藻类及其他微生物大量繁殖,形成富营养化污染,除了会使自来水处理厂运行困难,造成饮用水的异味外,严重时会使水中溶解氧下降,鱼类大量死亡,甚至会导致湖泊的干涸灭亡[1]。氨氮还使给水消毒和工业循环水杀菌处理过程中增大了用氯量;对某些金属,特别是对铜具有腐蚀性;当污水回用时,再生水中氨氮可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和用水设备,并影响换热效率[10] 。 氨氮存在于许多工业废水中。钢铁、炼油、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料生产等工业,均排放高浓度的氨氮废水。某些工业自身会产生氨氮污染物,如钢铁工业(副产品焦炭、锰铁生产、高炉)以及肉类加工业等。而另一些工业将氨用作化学原料,如用氨等配成消光液以制造磨砂 玻璃。此外,皮革、孵化、动物排泄物等新鲜废水中 氨氮初始含量并不高,但由于废水中有机氮的脱氨基反应,在废水存积过程中氨氮浓度会迅速增加[2]。 不同类的工业废水中氨氮浓度千变万化,即使同类工业不同工厂的废水中其浓度也各不相同。氨氮处理技术的选择与氨氮浓度密切相关。此外,对一给定废水,氨氮处理技术的选择主要取决于水的性质、要求达到的处理效果和经济性。 2 处理方法 2.1 生物法 在废水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将废水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出[3,4]。因而,废水的生物脱氮包括硝化和反硝化两个阶段。生物脱氮工艺流程见图1 。 第3卷第1期环境污染治理技术与设备 V ol .3,N o .12002年1月Techniques and Equipment for Environmental Pollution Control Jan .,2002

氨氮去除方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。 物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术 目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。

环境工程-焦化工业废水处理工艺设计-文献综述

文献综述 水是地球的重要组成部分,也是生物机体不可缺少的组分,人类的生存和发展离不开水资源。地球上约有97.3%的水是海水,它覆盖了地球表面的70%以上,但由于海水是含有大量矿物盐类的“咸水”,不宜被人类直接使用。这样,人类生命和生产活动能直接利用且易于取得的淡水资源就十分有限,不足总水量的3%,且其中约3/4 以冰川、冰帽等固态的形式存在于南北极地,人类很难使用。与人类关系最密切、又较易开发利用的淡水储量约为4000000立方千米,仅占地球上总水量的0.3%。因此,解决水污染、合理地利用水资源是世界各国经济可持续发展的当务之急。焦化污水是一种高含氮、毒性强的有机工业污水之一。如果直接排入水体其污染程度大,毒害性强。因此,对焦化厂污水的处理无论在环境还是资源方面显得尤为重要。所以目前很多的专家在这方面做了很多的研究。 焦化污水来源与组成。焦化厂是钢铁企业生产的重要组成部分,焦炭是钢铁冶炼的重要原材料,炼焦回收的化工产品供给许多行业的生产。随着社会、经济的发展,焦化行业已发挥着越来越重要的作用。目前,国内生产焦化产品的厂家达数百家。焦化厂生产的主要任务是进行煤的高温干馏—炼焦,以及回收处理在炼焦过程中所产生的副产品。整个生产过程为选煤、炼焦及化工三部分。焦化污水则产生于炼焦制气过程及化工产品回收过程,水质复杂,产生量较大。其主要来源有:(1)剩余氨水。由炼焦的水分及炼焦过程中产生的化合物组成。通常情况下,其数量占全部污水的一半以上是氨氮污染物的主要来源;(2)化工产品工艺排水,包括化工产品回剩余氨水。由炼焦的水分及炼焦过程中产生的化合物组成。通常情况下,其数量占全部污水的一半以上是氨氮污染物的主要来收和精制过程中各有关工段的分离水及各种贮槽定期排水和事故排水;(3)粗苯终冷水及煤气脱硫和煤气终冷循环的排污水。其中含有一定数量的酚、氰、苯、硫化物及吡啶碱等。(4)焦油车间污水:焦油车间根据有机物的沸点不同,用蒸馏法初步分离各种产品,再经酸碱洗涤分离出粗苯、吡啶等产品。污水主要是间断地排出高浓度含油、含酸

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

常见工业废水处理技术介绍

常见工业废水处理技术介绍 在电子、塑胶、电镀、五金、印刷、食品、印染等行业, 从废水的排放量和对环境污染的危害程度来看, 电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中, 由于磨料及抛光剂等存在, 废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二 沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有: 有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外, 其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂, 废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般能够参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油, 在进行气浮前应投加CaCl2破乳剂, 将乳化油破除, 有利于用气浮设备去除。当废水中COD浓度高时, 可先采用厌氧生化处理, 如不高, 则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生, 废水pH 一般为2-3, 还有高浓度的Fe2+, SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过 滤池→pH回调池→排放 磷化废水又叫皮膜废水, 指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理, 表面生成一层难溶于水的磷酸盐保护膜, 作为喷涂底层, 防止铁件生锈。该类废水中的主要污染物为: pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二 沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等, 因此可采用磷化废水处理工艺对阳极氧化废水进行处理。二、电镀废水 电镀生产工艺有很多种, 由于电镀工艺不同, 所产生的废水也各不相同, 一般电镀企业所排出的废水包括有酸、碱等前处理废水,

稀土氨氮废水处理技术研究进展

目前我国已探明稀土工业储量为5370万t,占全世界约53%,占全国稀土储量81.2%的包头白云鄂博稀土工业储量为4360万t,约占全球稀土储量的43%。稀土产业为内蒙古自治区、包头尤其我国带来巨大的资源效益,但同时也引发了严重的环境问题。 包头市稀土精矿冶炼中年排放污水达250万t,其中大部分废水经过简单处理或未经处理直接排入尾矿库。目前国内外开发稀土后处理氨氮废水技术尚未成熟,大量含氨氮废水未经处理直接排放,对当地生态环境构成了严重威胁,同时也造成了水资源和氨盐的流失和严重浪费。 目前,稀土氨氮废水污染问题已成为制约包头市稀土行业发展的重要问题。笔者对稀土氨氮废水处理技术进行了综述。 1稀土氨氮废水的来源 在我国,稀土初级产品加工及稀土冶炼主要在包头地区。其生产过程:浓硫酸与白云鄂博稀土精矿混合并在焙烧窑中焙烧使精矿分解,然后通过加碳酸氢铵、水浸,生产出混合碳酸稀土,通过对碳酸稀土的萃取分离生产单一稀土元素及其氧化物。 在稀土产品加工过程中,使用大量的化学试剂,由于白云鄂博矿具有放射性针和高氟元素的特点,导致在稀土生产过程中产生大量成分复杂的污染物。 稀土冶炼过程中产生的氨氮废水主要有2种:①硫铵废水:主要来源于生产碳酸稀土及稀土分离氨皂化过程,主要污染物为硫酸铵,氨氮浓度约在8000mg/L,还含有大量的Ca2+、Mg2+、Cl-等杂质,废水的成分较复杂;②氯铵废水:主要来源于稀土萃取的分离生产过程,主要污染物为氯化铵,氨氮的浓度达10000 ̄15000mg/L,由于在生产过程中所用的水为纯净水,因此废水中其他杂质很少。 2稀土氨氮废水的处理方法 2.1直接蒸发结晶法 直接加热蒸发处理,将水以蒸馏水或热水的方式循环使用,铵盐以结晶铵的方式回收,直接蒸发结晶法只适用于铵盐含量高的废水,且废水中杂质较少,便于回收铵盐产品[1]。目前,工业上主要采用此方法。如包头和发稀土公司采用的三效蒸发处理氨氮废水装置,除节约蒸汽成本,还实现了一定的经济效益。2.2吹脱法 吹脱法主要基于气液传质的原理,通过调节氨氮废水的pH使NH4+转化为气态NH3,然后通过大量曝气使水中NH3向大气中转移,以达到去除氨氮的目的。氨吹脱主要受气液比、pH、温度等因素影响。 研究表明,气液比、pH和温度对氨氮去除率都有显著的效果。最优吹脱工艺参数为气液比3000~4000,pH12,温度35~45℃, 此条件下,经吹脱处理后出水氨氮浓度可控制在100mg/L以下;采用Ca(OH)2来调pH进行吹脱,虽然能获得相同的去除效果,但易造成结垢,影响操作,因此不宜采用Ca(OH)2;不同浓度的氨氮废水及水质特点对氨氮吹脱效果影响较小[2]。2.3沸石选择性离子交换法 天然沸石种类很多,用于去除氨氮的主要为斜发沸石,利用斜发沸石对NH4+的强选择性,可采用交换吸附工艺去除水中氨氮。影响斜发沸石处理效果的因素有进水氨氮浓 稀土氨氮废水处理技术研究进展 窦艳铭,陈莉荣 内蒙古科技大学能源与环境学院,内蒙古包头 014010 摘 要:介绍了稀土氨氮废水的来源,综述了稀土氨氮废水的处理方法,包括直接蒸发结晶法、吹脱法、化学沉淀法等,并对 各处理方法进行了比较。关键词:稀土;氨氮;废水;处理中图分类号:X703.1 文献标识码:A 文章编号:1002-204X(2012)04-0090-02 StudyAdvancesinRareEarthAmmoniaNitrogenWastewaterTreatmentTechnology DOUYan-mingetal(SchoolofEnergyandEnviroment,InnerMongoliaUniversityofScienceandTechnology,Baotou,InnerMongolia014010) AbastractThesourceofrareearthammonianitrogenwastewaterwasintroduced,thetreatmentmethodsofrareearthammonianitrogenwastewaterwerereviewed,includingdirectevaporationmethod,blow-offmethod,chemicalprecipitationmethodandseveraloftreatmentmethods,etc.werecompared.KeywordsRareearths;Ammonia;Wastewater;Treatment 基金项目:内蒙古自然科学基金项目(2010MS0609)。 作者简介:窦艳铭(1985-),男,山西阳泉人,硕士研究生,研究方向:稀土氨氮废水。收稿日期:2012-03-27 宁夏农林科技,NingxiaJournalofAgri.andFores.Sci.&Tech.2012,53(04):90-91,93 90

高氨氮废水处理方法

一高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作般上ph 在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水用,ph 一种是无机氨形一种是氨水形成的氨氮,中氨氮的构成主要有两种,成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 形态比例NH3升高,氨在水中PH氨氮在水中存在着离解平衡,随着.升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里( Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持

“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。.2 生物脱氮法 传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。 O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于L,O 段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解

工业废水文献综述

工业废水处理课程论文 题目:重金属废水处理方法综述 姓名: XXX 学号: XXXXX 学院:环境学院 专业:环境工程 班级: 1班 指导老师: XX 二零一二年五月十四日

重金属废水处理方法综述 摘要:本文介绍了几种典型的重金属废水处理方法,主要包括化学沉淀法、还原法、吸附法、膜分离法、混凝法、离子交换法、电化学法等,并对上述方法的机理、优缺点进行了综述。关键词:重金属废水处理方法机理优缺点 一引言 随着现代工业的高速发展,重金属工业废水的排放量日益增加,水质更加复杂,其中有些属于致癌、致畸或致突变的剧毒物质对人类危害极大。在环境污染方面所说的重金属主要指汞、铬、镉、铅、镍、铜等不具备自然净化能力,难被生物氧化分解且毒性极强的金属元素。重金属废水主要来源于电镀、矿山开采、机械加工、有色金属冶炼、废旧电池垃圾处理,以及农药、医药、油漆、颜料等生产过程排放的废水。目前,研究经济、高效的重金属工业废水的处理技术已成为环保工作的当务之急。水体重金属污染已经成为我国和世界上最严重的环境问题之一,对重金属废水的治理受到国内外科研工作者的高度重视。 二重金属废水处理方法 (一)我国重金属废水污染现状 近年来随着城市现代化水平和工业生产的发展,废水排放量逐年增加,我国水体重金属污染问题越来越严重,这主要是工业重金属废水的大量排放造成的,高达80.1%江河湖库底质受到污染,各类地表水饮用水体中重金属的超标现象严重。35.11%的城市河流的河段出现总汞含量超过地表水三类水体标准的现象,25%的河段总铅含量超过三类水体标准,18.46%的河段有总镉含量的超标样本出现。黄河、淮河、辽河等十大流域的水质中重金属含量超标断面的污染程度均为劣五类;黄浦江水系表层沉积物调查发现,九条支流中铜、锌、镉、铅污染较严重,干流汞含量明显增加,更为严重的是镉超背景值2倍,铅超1倍;苏州河中铅全部超标,镉为75%超标,汞为62.5%超标。进入江河等的污染物最终流入海洋,致使重金属污染的危害殃及博大的海洋,如果对此现象不加重视和控制,这种危害将越来越严重。 (二)重金属处理方法

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

氨氮废水处理技术综述

第33卷第5期 2013年10月 山 西 化 工 SHANXI CHEMICAL INDUSTRY Vol.33 No.5 Oct.2013 环境保护 [3]随着工业的发展,产生的废弃物越来越多,大量未处理氨氮废水方面,吕锡武等用序批式反应器对氨氮废经处理或处理不完全的含氮污染物的任意排放,给环境水进行处理,实验中好氧阶段的总氮损失验证了好氧反造成了巨大的污染。由于氨氮的存在会消耗水体的溶解硝化的存在,并从生物化学和生物学角度阐释了好氧反氧,导致水体富营养化,进而影响水中生物生长,鱼类硝化的机理。实验结果表明,随着混合液溶解氧浓度的中毒、死亡,甚至会进一步导致食用了中毒鱼类的人类提高,好氧反硝化脱氮的能力逐渐降低,当溶解氧质量中毒,其危害不容小觑。在工业上,氨氮的存在会增加浓度为0.5mg/L时,总氮去除率可达到66.0%;张小玲等 [4] 循环水杀菌处理的过程及污水回收利用用氯量,且其对研究了在低溶解氧下,SBR反应器的短程硝化特征和控 铜等金属具有一定的腐蚀性,在污水回收利用时还会增制条件。实验结果表明,实现短程硝化的关键是保持大用氯量;同时能形成生物垢,堵塞管道和用水设备,高、低溶解氧交替的环境,一定条件下,用半连续碳源[5]影响换热效率。 投加方式可保证总同步脱氯效率达到80%;邹小玲采用相对于生活中的洗涤用水和农业灌溉废水,氨氮废SBBR工艺处理ADC发泡剂废水,以达到脱除氨氮的目水更广泛的来源是肥料生产、炼焦、煤气、合成橡胶、的。同时,考察了影响去除率的各个因素,确定了最佳染料、烧碱、电镀及石油开采等工业过程。工业过程中操作参数,保证了COD和氨氮的去除率分别为95.4%和氨氮废水排放量大、浓度高,危害也最大。 93.5%。并且,作者采用Monod模型对硝化反应阶段进行了动力学分析,得到了氨氮去除动力学模型。另外,叶[6][7]1 氨氮废水处理技术的国内外研究状况 建峰等、杨洋等研究了厌氧氨氧化工艺及其影响因素,确定了反应的最佳条件。在物理化学法处理氨氮废[9]1.1 国内研究状况 水方面,胡允良等用吹脱法处理高浓度制药氨氮废水,[10]国内在处理氨氮废水方面做了大量工作。在生物法 达到96%的吹脱效率。李可彬等对乳状液膜去除氨氮进行了研究,由合适的表面活性剂和膜增强剂等组成的液膜,在合适条件下的一级去除率可以达到97%。曲久 [11]辉等利用高铁酸盐对氨氮的氧化能力进行了研究,强化其氧化和絮凝的协同效果。实验结果表明,少量的三价铁在高铁氧化絮凝法去除氨氮过程中,具有一定的催 氨氮废水处理技术综述 李广慧 中北大学化工与环境学院,山西 太原 030051综述了氨氮废水处理技术的国内外研究现状,阐述了生物硝化反硝化法、反渗透法、氨吹脱法、化学沉淀法、离子交换法、电化学氧化法、折点氯化法去除氨氮的原理和影响因素,指出了各种方法的优、缺点及工艺技术的选择原则。 氨氮废水;研究状况;处理技术 X703.1 ---() [关键词] [摘要][中图分类号] [文献标识码] A [文章编号] 10047050(2013)05006669 收稿时间:20130921 作者介绍:李广慧,男,1983年出生,中北大学在读工程硕士。研究方向:化工废水处理。 --DOI:10.16525/https://www.wendangku.net/doc/f35040369.html,14-1109/tq.2013.05.021

某厂氨氮废水处理工程设计方案

氨氮废水处理工程 设计方案 废水水量及水质确定 一、废水的水量 根据业主提供的废水处理量为:Q=240T/d, 二、废水的水质 根据业主提供的资料,废水水质如下: NH4-N:6000mg/L T:30℃PH=7-8 SO42-:10000mg/L 废水处理要求 本项目设计废水处理能力为240T/d。 本工程废水处理后废水中氨氮含量达到国家一级排放标准, 即:NH3-N≤15mg/L 废水处理工艺方案 一、工艺确定原则 1、严格执行有关环境保护的各项规定,废水处理后氨氮含量达到该地区的地方排放标准氨氮小于15mg/L; 2、依据废水水质特点,在充分论证的基础上,选用先进合理的废水处理工艺,保证废水达标排放; 3、治理方案力求工艺简洁,方法原(机)理清晰明了; 4、处理系统具有灵活性和操作弹性,以适应废水水质、水量的变化; 5、本方案力求达到工艺先进、运行稳定、管理简单、能耗低、维修方便等特点; 6、处理后不造成二次污染。 二、工艺设计范围 1.废水处理工艺流程、工艺高程和各处理单元设计; 2.废水处理平面布置、设备选型、布置和控制设计; 3.废水处理区1.00m以内的所有工艺管道和线路设计; 三、污水处理工艺设计选择依据 1)、本工程的废水中主要污染物和控制指标为氨氮。氨氮废水处理,目前国内采用的处理工艺有以下几种:https://www.wendangku.net/doc/f35040369.html, 1、生化处理工艺 该工艺利用生物菌将有机氮转化为氨氮,再通过硝化与反硝化将硝态氮还原成气态氮从水中逸出,从而达到脱氮的目的。

但由于生物菌所能承受氨氮的浓度较低,一般不能超过200mg/L,当氨氮高于200-300mg/L 时,会抑制细菌生长繁殖。因此该工艺只适用于氨氮含量200mg/L左右的低浓度氨氮废水。此外,生化处理工艺工程占地面积较大,温度较低时,总脱氮效率也不高。 2、传统填料式的吹脱工艺 该工艺是利用废水中所含的氨氮等挥发性物质的实际浓度与平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮等挥发性物质不断的由液相转移到气相中,从而达到从废水中去除氨氮的目的。 但由于氨氮在水中存在溶解平衡关系,当气液两相的氨处于平衡状态时,水中的氨氮将不能被吹脱逸出,因此该工艺不适用于高浓度氨氮废水。且传统填料式吹脱工艺还存在吹脱效率低,吹脱风量大(气液比3000:1左右)、时间长,对温度要求高、填料易结垢等缺点。 3、蒸氨汽提法 蒸氨气体法也是利用氨氮的气相浓度和液相浓度之间的气液平衡关系对氨氮进行分离,该工艺是把水蒸气通入废水中,当蒸气压超过外界压力时,废水沸腾从而加速了氨氮等挥发性物质的逸出过程。 与传统填料式吹脱相同的是,当气液两相中氨达到平衡时,蒸氨气提法也不能继续使水中氨氮持续逸出,因此单次气提也不能将氨氮完全脱除,若采用连续多次气提进行脱氮则会大大增加投资成本和运行成本。 以上两种方法均只能将氨氮处理至100mg/L左右。 4、沸石离子交换法 沸石是含水的钙、钠以及钡、钾的铝硅酸盐矿物,因其含有一价和二价阳离子,具有离子交换性,因此沸石具有离子交换的能力,可将废水中的NH4+交换出来。 该工艺的缺点是只适用于氨氮含量在50mg/L以下的废水,且交换剂用量大需再生,再生频繁,并且再生液需要再次脱氨氮。采用该工艺还要求对废水做预处理以除去悬浮物,因此此法的成本较高,同等浓度下,处理费用为其他工艺的1.5~2倍。 5、折点加氯工艺 折点加氯工艺是利用氯气通入水中所发生的水解反应生成次氯酸和次氯酸盐,通过次氯酸与水中氨氮发生化学反应,将氨氮氧化成氮气而去除。 此方法的缺点是加氯量大、费用高、操作安全性差,设备腐蚀严重,容易发生危险,工艺过程中每氧化1mg/L的氨氮要消耗14.3mg/L的碱度,从而增加了总溶解固体的含量,比较适合低浓度氨氮废水的处理。 6、超声波吹脱工艺 利用超声波来降解水中的化学污染物,尤其是难降解有机污染物,是一种深度氧化处理废水的新技术。 该工艺利用超声波辐射将压缩空气作为超声波的推动力,产生空化气泡,加强了废水中

污水深度处理工艺的综述与比较综述.

安徽建筑大学 污废水深度处理技术论文 专业:xx级市政工程 学生姓名:xx xx 学号:xxxxx 课题:污水深度处理工艺的综述与比较指导教师:xxxx xx年xx月xx日

污水深度处理工艺的综述与比较 摘要:为了达到一定的回用水标准使污水作为水资源回用于生产或生活中,污水经过城市污水或工业废水经一级、二级处理后必须进行深度处理。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。深度处理的方法有:絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、催化氧化法等物理化学方法与生物脱氮、脱磷法等。熟悉了解国内外这些工艺,因地制宜的合理选择适用技术对我们的城市污水深度处理处理工程设计和建设都有重要的意义。关键词:城市污水;污水深度处理工艺;优缺点 引言: 目前,饮用水水质安全正受到人们普遍关注,而国家现行的水质标准也在不断提高.为了满足日益严格的饮用水水质标准,深度处理工艺正在成为技术改造的主要途径。污水深度处理,也称高级处理或三级处理。它是将二级处理出水再进一步进行物理、化学和生物处理,以便有效去除污水中各种不同性质的杂质,从而满足用户对水质的使用要求。深度处理常见的方法有以下几种。 1.絮凝沉淀法 1.1絮凝沉淀法概述 絮凝沉淀处理利用絮凝剂使水中悬浮颗粒发生凝聚沉淀的时处理过程。地面水中投加絮凝剂后形成的矾花或生活污水的有机性悬浮物、活性污泥等在沉淀池中沉降处理时,絮体互相碰撞凝聚,颗粒尺寸变大,沉速随深度加深而增快。这时,水的沉淀处理效率不仅取决于颗粒沉速,而且与沉淀池深度有关。絮凝过程为水中细小胶体与分散颗粒由于分子吸引力的作用互相粘结凝聚的过程,分自由絮凝与接触絮凝两种类型(前者发生在沉淀池中,而后者发生在悬浮澄清池或接触滤池中),生成的矾花在沉淀、过滤等水处理过程中起着强化和提高处理效率的作用。 1.2絮凝沉淀法工艺特点 絮凝沉淀法絮凝体成型快,活性好,过滤性好;不需加碱性助剂,如遇潮解,其效果不变;适应PH值宽,适应性强,用途广泛;处理过的水中盐份少;能除去重金属及放射性物质对水的污染;有效成份高,便于储存,运输。 2.砂虑法 2.1砂虑法概述 水和废水通过粒状滤料(如砂滤中的石英砂)床层时,在压力差的作用下,悬浮液中的液体(或气体)透过可渗性介质(过滤介质),固体颗粒为介质所截留,从而实现液体和固体的分离.其中的悬浮颗粒和胶体就被截留在滤料的表面和内部空隙中,这种通过粒状介质层分离不溶性污染物的方法称为粒状介质过滤。石英砂滤器是利用一种或几种过滤介质,常温

高浓度氨氮废水处理工艺

高浓度氨氮废水处理工艺 目前,工业废水、垃圾渗滤液、城市污水等高浓度氨氮废水对水体造成的危害已成为全世界关注的环境问题。绝大部分含氨氮的废水在未经任何处理或处理不达标的情况下直接排入水体,导致水体污染及富营养化,进而影响土壤、空气等。常见的含氮化合物主要包括有机氮、氨氮、亚硝酸盐氮以及硝酸盐氮。其中氨氮是导致水体富营养化的主要污染物,其排放控制已成为目前水处理领域的重点和难点。 氨氮废水的处理方法有很多种,国内外学者针对该问题开展了大量研究。其中吹脱法是传统的高浓度氨氮废水处理方法,其设备占地面积小,操作灵活便捷,但也存在耗能大、处理成本高等缺点。成泽伟等采用超声波强化吹脱去除氨氮,去除率明显高于一般吹脱技术,且升幅超过50%。彭人勇等的研究也显示,超声波对吹脱的强化作用可以让氨氮去除率提升30%~40%。 沸石是含水多孔铝硅酸盐的总称,其晶体构造主要由(SiO)四面体组成,其中的部分Si4+为Al3+取代,导致负电荷过剩,故其结构中有碱金属(碱土金属)等平衡电荷的离子,同时沸石构架中存在较多的空腔和孔道。上述结构决定了沸石具有吸附、离子交换等性质,因此其对氨氮具有很强的选择性吸附能力。 本研究在超声吹脱工艺的基础上,利用改性沸石对超声吹脱后的高浓度氨氮废水进行超声强化吸附处理,考察了沸石粒度、吸附时间、沸石投加量、吸附温度、吸附超声功率等因素对处理效果的影响,以期为高浓度氨氮废水的处理提供参考。 一、实验部分 1.1材料和仪器 实验所处理废水为模拟高浓度氨氮废水,为NH4Cl和超纯水配制的NH4Cl溶液,氨氮质量浓度约为1200mg/L的,实验中以实测浓度为准。 吸附剂选用浙江省缙云县产天然沸石经复合改性后得到的改性沸石,密度2.16g/cm3,硬度3~4,硅铝比4.25~5.25,孔隙率30%~40%。 D-51型pH计:日本HORIBA有限公司;UV765型紫外-可见分光光度计:上海精密化学仪器有限公司;JJ50型精密电子天平:美国双杰兄弟(集团)有限公司;EVOMA15/LS15型扫描电子显微镜:北京欧波同有限公司。 1.2实验方法 1.2.1超声吹脱 实验装置如图1所示。超声波发生器通过将工频电转变为20kHz以上(一般为

工业废水处理综述word版本

膜技术用于工业废水处理综述 摘要:主要介绍了电渗析、反渗透、超滤、纳滤、膜蒸馏、乳状液膜技术等膜分离技术的基本原理及特点,重点报导了这些膜分离技术在工业废水处理中的应用现状,并讨论了它们应用于工业废水处理的可行性。 关键词:膜分离;工业废水处理;应用 一、工业废水的来源 在工业生产过程中要消耗大量新鲜水,排出大量废水,其中夹带许多原料,中间产品或成品,例如:重金属(冶金、电镀行业等),有毒化学品,酸碱(化工行业等), 有机物(食品行业等),油类(采、炼油行业等),悬浮物(火电、冶金行业等),放射性物质(核工业等) 二、膜技术在工业废水处理中的应用 以高分子分离膜代表的膜分离技术作为一种新型的流体分离单元操作技术,三十年取得了令人瞩目的巨大发展。 1 、电渗析(Electrodialysis)――电渗析(简称ED)是以直流电为推动力,利 用阴阳离子交换膜对水溶液中阴阳离子的选择透过性,使一个水体中的离子通过膜迁移到别一水体中的物质分离过程。 (1)电渗析在处理赤泥碱性废水中的应用氧化铝生产过程产生的工业废渣赤 泥是一种严重的碱性污染源。电渗析装置能够稳定运行,电渗析处理赤泥废碱液,可回收碱和工艺用水,而低含碱赤泥可用作生产水泥的原料,为实现氧化铝生产零排放工程开发了一项技术上、经济上完全可行的新颖工艺路线。当然,电渗析处理赤泥碱液时,由于无机物的积累性沉淀和膜的使用寿命问题,使其工业化应用还有一定距离,今后研究的关键在于预处理和耐碱性膜的研制。 (2)电渗析在脱除化学镀镍老化液中亚磷酸盐中的应用-化学镀镍液使用 多次后,功效减弱,成为镀镍老化液,老化液通常是处理后被排放掉。但化学镀镍老化液中含一定大量的镍和次亚磷酸根离子,它的排放造成了很大的浪费。电渗析能够大量去除镀液中有害的亚磷酸盐、硫酸盐,极大的延长镀液的寿命。 2、反渗透(Reverse osmosis) --- 反渗透(简称RO)是以压力为推动力,利 用 反渗透膜只能透过水而不能透过溶质的选择透过性,从某一含有各种无机物、有机物和微生物的水体中,提取纯水的物质分离过程。反渗透主要用于苦咸水(溶解团达到10 g/l)和海水的淡化。随着反渗透理论研究的深入和成膜技术的不断提高,反渗

氨氮废水处理技术

氨氮废水处理技术 氨氮废水的形成一般是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。排放的废水以及垃圾渗滤液等。氨氮废水对鱼类及某些生物也有毒害作用。 另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。 处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。 本文对氨氮废水处理方法作一综述并对各种方法的优缺点进行分析汇总。 化学沉淀法 化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2﹢、PO43﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下: Mg2﹢+NH4﹢+PO43﹣=MgNH4P04

影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg2﹢):n(NH4﹢):n(P043-))等。 以氯化镁和磷酸氢二钠为沉淀剂对氨氮废水进行处理,结果表明当pH值为10,镁、氮、磷的摩尔比为1.2:1:1.2时,处理效果较好。 以氯化镁和磷酸氢二钠为沉淀剂进行研究,结果表明当pH值为9.5,镁、氮、磷的摩尔比为1.2:1:1时,处理效果较好。 对新出现的高浓度氨氮有机废水一生物质煤气废水进行研究,结果表明,MgC12+Na3PO4.12H20明显优于其他沉淀剂组合。当pH值为10.0,温度为30℃,n(Mg2﹢):n(NH4+):n(P043-)=1:1:1时搅拌30min废水中氨氮质量浓度从处理前的222mg/L降到17mg/L,去除率为92.3%。 将化学沉淀法和液膜法相结合用于高浓度工业氨氮废水的处理。在对沉淀法工艺进行优化的条件下,使氨氮去除率达到98.1%,然后联用液膜法进一步处理使其氨氮浓度降低到0.005g/L,达到国家一级排放标准。 对化学沉淀法进行改进研究,考察Mg2﹢以外的二价金属离子(Ni2﹢,Mn2﹢,Zn2﹢,Cu2﹢,Fe2﹢)在磷酸根作用下对氨氮的去除效果。对硫酸铵废水体系提出了CaSO4沉淀—MAP沉淀新工艺。结果表明,可以实现以石灰取代传统的NaOH调节剂。 化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理;化学沉淀法去除效率较好,且不受温度限制,操作简单;形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本;如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。 化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。 吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到

相关文档