文档库 最新最全的文档下载
当前位置:文档库 › 叠加原理的验证实验报告

叠加原理的验证实验报告

叠加原理的验证实验报告
叠加原理的验证实验报告

广东第二师范学院学生实验报告

电路实验报告1--叠加原理

电路实验报告1-叠加原理的验证 所属栏目:电路实验- 实验报告示例发布时间:2010-3-11 实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路, 按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。

2.基尔霍夫定律和叠加原理的验证(实验报告答案)含数据处理

实验二 基尔霍夫定律和叠加原理的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加 性和齐次性的认识和理解。 3. 进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍 夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即 ΣI =0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即 ΣU =0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假 定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为 正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还 是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中 每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单 独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。) 线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加 或减小 K 倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压 值)也将增加或减小 K 倍。 三、实验设备与器件 1. 直流稳压电源 1 2. 直流数字电压表 1 3. 直流数字毫安表 1 4. 万用表 1 5. 实验电路板 1 四、实验内容 1.基尔霍夫定律实验 按图 2-1 接线。 台块 块 块块

1叠加定理实验

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 实验名称叠加定理实验课程名称课程号 学院(系)专业班级 学生姓名学号 19 实验地点科技楼实验日期 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 序号名称型号与规格数量备注 1 直流稳压电源0~30V可调二路 2 万用表 1 3 直流数字电压表 1 4 直流数字毫安表 1 5 迭加原理实验电路板 1 HE-12 四、实验内容 实验线路如图7-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。 F12 图7-1 1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。

2. 令U 1电源单独作用(将开关K 1投向U 1侧,开关K 2投向短路侧)。用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表7-1。 3. 令U 2电源单独作用(将开关K 1投向短路侧,开关K 2投向U 2侧),重复实验步骤2的测量和记录,数据记入表7-1。 4. 令U 1和U 2共同作用(开关K 1和K 2分别投向U 1和U 2侧), 重复上述的测量和记录,数据记入表7-1。 5. 将U 2的数值调至+12V ,重复上述第3项的测量并记录,数据记入表7-1。 表 7-1 五、实验注意事项 1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。 2. 注意仪表量程的及时更换。 六、预习思考题 1. 在叠加原理实验中,要令U 1、U 2分别单独作用,应如何操作?可否直接将不作用的电源(U 1或U 2)短接置零? 答:①要令Ul 单独作用,应该把K2往左拨,要U2单独作用应该把K1往右拨。 ②不可以直接将不作用的电源(Ul 或U2)短接置零,因为电压源内阻很小,如果直接短接会烧毁电源 2. 实验电路中,若有一个电阻器改为二极管, 试问叠加原理的迭加性与齐次性还成立吗?为什么? 答:①实验电路中,若有一个电阻器改为二极管,叠加原理的迭加性与齐次性不成立,因为叠加原理的迭加性与齐次性只适用于线性电路,二极管是非线性元件,使实验电路为非线性电路,所以不成立。 3.当K 1(或K 2)拨向短路侧时,如何测U FA (或U AB )? 答:①当用指针式电压表时, 电压表的红表笔接高电位点,黑表笔接低电位点,如果Kl(或K2)拨向短路侧,只有U2单独作用,B 点比A 点电位高,要测量U AB ,红表笔接B 点,黑表笔接A 点,但要加负号,同样,A 点比F 点电位高,要测量U FA ,红表笔接A 点,黑表笔接F 点,也要加负号。对于K2拨向短路侧,原理类似。 ②对于本实验,用的是数字电压表,表笔接法没有讲究,但要注意正、负号。一般红的接线柱接起点,黑的接线柱接终点,如要测量U FA 红的接线柱接F 点,黑的接线柱接A 点,直接记录数据,否则需要加负号。 七、实验报告 1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠 测量项目 实验内容 U 1 (V) U 2 (V) I 1 (mA) I 2 (mA) I 3 (mA) U A B (V) U C D (V) U A D (V) U D E (V) U F A (V) U 1单独作用 12 0 8.60 -2.37 6.21 2.38 0.787 3.165 4.40 4.39 U 2单独作用 0 6. -1.187 3.58 2.38 -.3.58 -1.187 1.213 -0.610 -0.608 U 1、U 2共同作用 12 6 7.41 1.216 8.60 -1.221 -0.402 4.385 3.79 3.78 2U 2单独作用 12 -2.36 7.14 4.74 -7.41 -2.35 2.417 -1.23 -1.229

叠加定理验证及串联RLC电路

电子技术实验报告 实验名称:叠加定理的验证及串联RLC电路时域响应的测试 学生姓名:唐子秋 学号:2012117010022 一、实验目的: 1.进一步掌握直流稳压电源和万用表的使用方法。 2.掌握直流电压和直流电源的测试方法。 3.进一步加深对叠加定理的理解。 二、实验原理: 叠加原理指出:在多个电源同时作用的线性电路之中,通过每一个元件的电流或其两端的电压,等于每一个电源单独作用时在改元件上所产生的电流或电压的代数和。在某一个电源单独作用时,电路中的其他电源去零值(将理想电压源短路、将理想电流源断路)。 二、实验内容: 1.按图示电路图搭建含两个独立电压源的总电路,运行电路可知:

XMM3=2.286A XMM4=285.715A XMM5=2.571A 2.搭建一个独立电压源作用的电路1,有如图

XMM3`=2.857A XMM4`=-1.143A XMM5`=1.714A 3.搭建一个独立电压源作用的电路,有如图:

XMM3``=-571.429mA XMM4``=1.429A XMM5``=857.143mA 则有: 综上,可得: XMM1=XMM1`+XMM1``; XMM2=XMM2`+XMM2``; XMM3=XMM3`+XMM3``; 观察三次实验的数据,可知: 1 1 1 2 2 2 i i i i i i ''' ''' =+=+ 三、实验结论:

在实验误差允许的范围内,支路上的电流为两个独立电压源单独作用产生的电流之和,即验证了叠加定理。 二、串联RLC电路时域响应的测试 一.实验目的 1、进一步掌握二阶RLC串联电路暂态响应的基本规律和特点。 2、研究二阶RLC串联电路参数对响应的影响。 二、实验原理 串联RLC电路模型和数学模 型: 三、测试方法 (1)调节R至较大电阻,观察并记录过阻尼波形.

实验二_基尔霍夫定律和叠加原理的验证(实验报告答案)

实验二基尔霍夫定律和叠加原理的验证 一、实验目的 1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。 二、实验原理 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。 基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。 三、实验设备与器件 1.直流稳压电源 1 台 2.直流数字电压表 1 块 3.直流数字毫安表 1 块 4.万用表 1 块 5.实验电路板 1 块 四、实验内容 1.基尔霍夫定律实验 按图2-1接线。

叠加定理的验证实验报告

叠加定理的验证实验报告

电子科技大学UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA 电子技术基础实验报告 Electronic Technology Basic Experiment Report 报告内容:叠加定理的验证

学院: 作者姓名: 学号: 指导教师: 实验:叠加定理的验证 一、实验目的 1.进一步掌握直流稳压电源和万用表的使用方法。 2.掌握直流电压和直流电流的测试方法。 3.进一步加深对叠加定理的理解。 4.通过Multisim仿真软件进行实验仿真,了解Multisim的使用方法。 二、实验原理 叠加定理: 叠加定理指出,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产生的相应电压或电流的代数和。 三、实验内容 叠加定理的验证 在仿真实验中根据图1所示电路对电路中电压源共同作用时的电流进行测量,根据图2所示电路对电压进行测量:

(图1) (图2) 根据所绘制的电路,在Multisim中进行电路仿真,分别将两电压源置零,即将电压源短路,得到下列所示电路。图3、图4所示电路,对支路电流进行测量,图5、图6所示电路,对支路电压进行测量。 (图3)(图4) 参数I R1(mA)I R2 (mA) I R3 (mA) U R1 (V) U R2 (V) U R3 (V) V1单独 作用 7.2 2.4 4.8 7.2 4.8 4.8 V2单独 作用 -2.4 -4.8 2.4 -2.4 -9.6 2.4 共同作 用时的 测量值 4.8 -2.4 7.2 4.8 -4.8 7.2

实验二叠加原理的验证(有数据)

实验二叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件 的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K 倍。 三、实验设备 四、实验内容 实验电路如图2-1所示 1. 按图2-1电路接线,E i为+6V、+12V切换电源,取E i = +12V, E为可调直流稳压电源,调至+6V0 2. 令E电源单独作用时(将开关S投向E i侧,开关S投向短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端电压,数据记入表格中。

■ It IC Ifi 1K匚汕 图2-1 3. 令巳电源单独作用时(将开关S投向短路侧,开关S投向吕侧),重复实验步骤2的测量和记录。 4. 令E i和巳共同作用时(开关S和S分别投向E和吕侧),重复上述的测量和记录。 5. 将E的数值调至+ 12V,重复上述第3项的测量并记录。 五、实验注意事项 1. 测量各支路电流时,应注意仪表的极性,及数据表格中“ +、- ”号的记录。 2. 注意仪表量程的及时更换。 六、预习思考题 1. 叠加原理中日、巳分别单独作用,在实验中应如何操作可否直接将不作用的电源(E或吕)置零(短接) 不能直接短接,这样会烧坏电源。 2. 实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗为什么 不成立,电阻器是线性的,二极管是非线性的。 七、实验报告

叠加原理 实验报告范文(含数据处理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1

3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。 表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时, I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。

实验四叠加原理的验证

实验四叠加原理的验证

实验四 叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K 倍。 三、实验设备 序号 名 称 型号与规格 数量 备 注 1 直流稳压电源 0~30V 可调 二路 2 万用表 1 自备 3 直流数字电压表 0~200V 1 4 直流数字毫安表 0~200mV 1 5 迭加原理实验电路板 1 DGJ-03 四、实验内容 实验线路如图6-1所示,用DGJ-03挂箱的“基尔夫定律/叠加原理”线路。

图6-1 1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。 2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表6-1。 表6-1 测量项目 实验内容U1 (V ) U2 (V ) I1 (m A) I2 (m A) I3 (m A) U A B (V) U C D (V) U A D (V) U D E (V) U F A (V) U1单独作用12. 09 0 8.6 9 -2. 04 6.2 2 2.4 7 0.8 2 3.2 8 4.4 4.4 1 U2单独作用0 6.0 8 -1. 2 3.6 3 2.4 1 -3. 67 -1. 17 1.2 3 -0. 6 -0. 6 U1、U2共同作用12. 6.07.4 1.28.6-1.-0. 4.5 3.7-3.

叠加定理实验报告

实验报告 一、实验名称 叠加定理与置换定理 二、实验原理 1、根据叠加定理,实验数据应满足当电路中只有U s1单独作用时流过一条支路的电流值加上电路只有Us2单独作用时流过该支路的电流值等于电路中Us1与Us2共同作用时流过该支路的电流值。 2、置换定理:若电路中某一支路的电压和电流分别为U和I,用Us=U的电压源或Is=I的电流源来置换该支路,如置换后电路有唯一解,则置换前后电路中全部支路电压与支路电流保持不变。 三、实验内容 1、测量并记录电阻的实际值(数据见实验数据表1) 2、根据下面电路图,在实验板上连接此电路实物图。将一万用表串联接入R3的那条支路中,并将万用表打在电流档上;将另一万用表并联在R33两端并打在电压档上。 3、选择一支路,记录两个电源同时作用时的两万用表的读数;单个电源作用,分别短路另一个电源(不是不接电源也不是将电源的值降为0,而是直接短路),记录两万用表的读数。(数据见实验数据表2) 四、实验数据 表1 器件R1 R2 R3 R11 R22 R33

阻值(Ω) 1.799k 219.5 267.8 2.173k 267.5 327.6 表2 电源电压/V 支路电压/V 支路电流/mA Multisim 实验板Multisim 实验板 Us1=10 Us2=15 8.250 8.35 31.0 31.70 Us1=10 Us2=0 0.632 0.636 2.337 2.35 Us1=0 Us2=15 7.728 7.72 29.0 29.33 两电源共同作用时仿真图: Us1单独作用时的仿真图: Us2单独作用时的仿真图:

将直流电源换成交流电源时的分别三张波形图: U1=10 U2=15交流波形图 U1=10 U2=0 交流波形图

实验2 叠加定理验证 (2学时)

实验2 叠加定理验证 (2学时) 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K 倍。 四、实验内容 实验线路如图2-1所示,用DG05挂箱的“基尔夫定律/叠加原理”线路。 图 2-1 1. 将两路稳压源的输出分别调节为12V 和6V ,接入U 1和U 2处。 2. 令U 1电源单独作用(将开关K 1投向U 1侧,开关K 2投向短路侧)。用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表2-1。

3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表1-1。 4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表2-1。 5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表2-1。 6. 将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~5的测量过程,数据记入表2-2。 7. 任意按下某个故障设置按键,重复实验内容4的测量和记录,再根据测量结果判断出故障的性质。 五、实验注意事项 1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确判断测得值的+、-号后,记入数据表格。 2. 注意仪表量程的及时更换。 六、预习思考题 1. 在叠加原理实验中,要令U1、U2分别单独作用,应如何操作?可否直接将不作用的电源(U1或U2)短接置零? 2. 实验电路中,若有一个电阻器改为二极管,试问叠加原理的叠加性与齐次性还成立吗?为什么? 七、实验报告 1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠加性与齐次性。 2. 各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。 3. 通过实验步骤6及分析表格2-2的数据,你能得出什么样的结论? 4. 心得体会及其他。

叠加原理实验报告

一、实验目的 1、通过实验来验证线性电路中的叠加原理以及其适用范围。 2、学习直流仪器仪表的测试方法。 二、实验器材 序号名称数量备注 1稳压、稳流源1DG04 2直流电路实验1DG05 3 1D31-2 直流电压、电流表 三、实验原理 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容及步骤 实验线路如图3-4-1所示。 图3-4—1 1、按图3-4-1,取U1=+12V,U2调至+6V。 2、U1电源单独作用时(将开关S1拨至U1侧,开关S2拨至短路侧),用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表格中。 3、U2电源单独作用时(将开关S1拨至短路侧,开关S2拨至U2侧),重复实验步骤2的测量和记录。 4、令U1和U2共同作用时(将开关S1和S2分别拨至U1和U2侧),重复上述的测量和记录。 五、实验数据处理及分析 线性叠加定理数据记录表 实验内容I?I?I?Uab Ucd Uad Ude Ufa U?单独作用8.360 -2.274 6.313 2.378 0.845 3.26 4.351 4.379

U?单独作用-1.06 3.586 2.422 -3.46 -1.24 1.245 -0.59 -0.537 U?,U?共同作 7.423 1.231 8.761 -1.248 -0.411 4.413 3.797 3.783 用 非线性叠加定理数据记录表 实验内容I?I?I?Uab Ucd Uad Ude Ufa U?单独作用8.556 -2.23 6.296 0.38 0.663 3.161 4.395 4.397 U?单独作用0.041 0.041 0.045 -0.002 5.872 0 0 0 U?,U?共同作 7.82 0 7.836 -0.002 -2.089 3.957 3.974 3.953 用 电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。电阻改为二极管后,叠加原理不成立。 六、实验总结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

运放器的放大原理及叠加定理的验证 电路分析实验报告

实验一运放器的放大原理及叠加定理的验证 一、实验目的 1.初次试验,基本掌握workbench的基本操作; 2.通过实验测定一运放器的放大倍数,并与用节点法算出来的理论值进行对比,验证节点法的正确性; 3.用几个简单的电路,验证线性电阻叠加原理。 二、实验原理 1.运放器原理:运放器的输入端,分别加载电压U+和U-,U+与U-的电势差十分小,约等于零,经过运放器后,输出电压为电势差的若干倍(可达到105~107倍)。 运放器模型图 2.叠加定理:对于一个具有唯一解的线性电路,由几个独立电源共同作用所形成的各支路电流或电压,等于各个独立电源单独作用时在相应支路中形成的电流或电压的代数和。 三、实验过程 1.运放器: (1)画电路图,测得结果如下图:

图中:R1=R3=R4=1Ω,R2=5Ω 电压表读数为13.20v 。 (2)用节点法计算放大的倍数: 该图4个节点如图所示,节点2、4的节点方程分别为: )(0)(334433211223=-+=--+U G U G G U G U G U G G 根据运放器特点(即虚短虚断),补充方程 Us U U U ==14 2 故解得 ==30U U Us R R R R R R R R 3 1424232-+v 20.13= 所以节点法可以用于计算运放器放大倍数的理论值。 2.叠加定理的验证 (1)如下所示画出4个电路图 图中Us1=6v ,Us2=12v ,Is=3A ,电阻全为2Ω 电压表均测同一电阻的电压。左上角图为Us1,Us2,Is 同时作用时的电压U0=-4v ,右上角,左下角,右下角电路分别是Is ,Us1,Us2作用下,同一电阻的电压分别为U1=2v ,U2=2v ,U3=-8v ,所以 3210U U U U ++=,即线性电路的叠加定理得到验证。 四、实验体会 由于首次使用workbench ,画电路图时,不太熟练,用了很长一段时间,才

叠加原理 实验报告范文(含数据处理)

叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 三、实验设备 高性能电工技术实验装置DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板DGJ-03。 四、实验步骤 1.用实验装置上的DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V和6V,接入图中的U1和U2处。 2.通过调节开关K1和K2,分别将电源同时作用和单独作用在电路中,完成如下表格。 表3-1 3.将U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。 4.将R3(330 )换成二极管IN4007,继续测量并填入表3-2中。

表3-2 五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用EWB软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。 验证叠加定理:以I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。 对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。 六、思考题 1.电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。 2.电阻改为二极管后,叠加原理不成立。 七、实验小结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

做叠加定理实验的心得体会

做叠加定理实验的心得体会篇一:电路实验心得体会 电路实验心得体会 电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大一上学期将要结束之际,我们进行了一系列的电路实验,从简单的戴维南定理到示波器的使用,再到回转路-----,一共五个实验,通过这五个实验,我对电路实验有了更深刻的了解,体会到了电路的神奇与奥妙。 不过说实话在做这次试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完这次电路实验时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次所有的实验,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实验的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实验中学到了许多在课堂上学不到的东西,终究使我在这次实验中受益匪浅。

下面我想谈谈我在所做的实验中的心得体会: 在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。 在戴维南定理的验证实验中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc ,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实验,我想我们应该注意一下万用表的使用, 尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实验前功尽弃!

1实验二叠加原理的验证

实验二叠加定理的验证 一、实验目的 1.验证叠加定理。 2.加深对电路的电流、电压参考方向的理解。 3.学习通用电工学实验台的使用方法。 4.学习万用表、电压表、电流表的使用方法。 二、实验仪器及元件 1.通用电学实验台1台 2.数字万用表UT61A 1块 3.电阻100Ω1支 220Ω1支 330Ω1支 三、实验电路 叠加原理指出:在有几个独立电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立电源单独作用时在该元件上所产生的电流或电压的代数和。具体方法是:一个电源单独作用时,其他的电源必须置为零(电压源短路,电流源开路);在求电流或电压的代数和时,当电源单独作用时电流或电压的参考方向与共同作用时的参考方向一致时,符号取正,否则取负。 叠加原理反映了线性电路的叠加性,叠加性只适用于求解线性电路中的电流、电压。对于非线性电路,叠加性不再适用。 在本实验中,用直流稳压电源来近似模拟理想电压源,由其产生的误差可忽略不计,这是因为直流稳压电源的等效内阻很小。 + U - + U2 -图1—1 验证叠加定理电路 四、实验方法 1.首先粗调好直流稳压电源,使其两路输出U1、U2均在10V以下,最大不得超过14V。 2.按照实验电路图1—1接线,经过老师检查无误后,方可开始实验。 3.测量U1、U2两个电源共同作用下的电路响应: ●将电路中ef、gh、jk三处分别用短接线短接; ●用万用表测量电源U1、U2的准确电压值; 1

●用万用表测量k、m两点之间的电压值,即R3支路的电压响应U km; ●断开ef间的短接线,在ef之间接入直流电流表测量R1支路的电流响应I1; ●同样方法,再次测量R2、R3支路的电流响应I2和I3; ●将实验数据记录入表1—1中。 4. 测量电源U1单独作用下的电路响应: ●将电路中ef、gh、jk三处分别用短接线短接; ●断开电源U2,将c、d两点用短接线短接; ●用万用表测量k、m两点之间的电压值,即R3支路的电压响应U km; ●断开ef间的短接线,在ef之间接入直流电流表测量R1支路的电流响应I1; ●同样方法,再次测量R2、R3支路的电流响应I2和I3; ●将实验数据记录入表1—1中。 5. 测量电源U2单独作用下的电路响应:断开电源U1,接入U2,重复上一步骤测量。 五、注意事项 1.每次使用万用表之前要检验其档位是否正确,切不可用电流档测量电压,也不可带电测量电阻。 2.要注意U1、U2单独作用时,电路中电流I1、I2的实际流向。 3. 某电源单独作用时,注意“不作用”电源的处理方法。 六、实验数据及分析 表1—1 七、回答问题 1.验证叠加原理时,如果电源内阻不可忽略,实验如何进行? 2.根据实验数据,进行分析、比较,来验证线性电路的叠加性,总结实验结论。 3.在验证叠加原理实验数据中,各电阻器件所消耗的功率能否用叠加原理计算得出?试用实验数据进行计算并作说明。 2

实验2--验证叠加原理

验证叠加原理 一. 实验目的 1. 验证叠加定理,加深对该定理的理解 2. 掌握叠加原理的测定方法 3. 加深对电流和电压参考方向的理解 二. 实验原理与说明 对于一个具有唯一解的线性电路,由几个独立电源共同作用所形成的各支路电流或电压,是各个独立电源分别单独作用时在各相应支路中形成的电流或电压的代数和。 (a)电压源电流源共同作用电路 (b)电压源单独作用电路 (c)电流源单独作用电路 图5-1 电压源,电流源共同作用与分别单独作用电路 图5-1所示实验电路中有一个电压源Us 及一个电流源Is 。 设Us 和Is 共同作用在电阻R 1上产生的电压、电流分别为U 1、I 1,在电阻R 2上产生的电压、电流分别为U 2、I 2,如图5-1(a)所示。为了验证叠加原理令电压源和电流源分别作用。当电压源Us 不作用,即Us=0时,在Us 处用短路线代替;当电流源Is 不作用,即Is=0时,在Is 处用开路代替;而电源内阻都必须保留在电路中。 (1) 设电压源Us 单独作用时(电源源支路开路)引起的电压、电流分别为' 1U 、' 2U 、' 1I 、' 2I ,如图5-1(b)所示。 (2) 设电流源单独作用时(电压源支路短路)引起的电压、电流分别为" 1U 、" 2U 、" 1I 、" 2I ,如图5-1(c)所示。 这些电压、电流的参考方向均已在图中标明。验证叠加定理,即验证式(5-1)成立。 "1'11U U U += " 2'22U U U += "1'11I I I += 式(5-1) "2'22I I I +=

三. 实验设备 名称 数量 型号 1. 直流稳压电源 1台 0~30V 可调 2. 固定稳压电源 1台 +15V 3. 万用表 1台 4. 电阻 3只 51Ω*1 100Ω*1 330Ω*1 5. 短接桥和连接导线 若干 P8-1和50148 6. 实验用9孔插件方板 1块 297mm ×300mm 四. 实验步骤 1. 按图5-2接线,取直流稳压电源U S1=10V ,U S2=15V ,电阻R 1=330Ω,R 2=100Ω,R 3=51。 图5-2 验证叠加原理的实验线路 2. 当U S1、U S2两电源共同作用时,测量各支路电流和电压值。 选择合适的电流表和电压表量程,及接入电路的极性。用短接桥(或导线)将“5”和“2”连接起来。接通电源U S1;用短接桥(或导线)将“6”和“4”连接起来,接通电源U S2,分别测量电流I 1、I 2、I 3和电压U 1、U 2、U 3。根据图5-2电路中各电流和电压的参考方向,确定被测电流和电压的正负号后,将数据记入表5-1中。 3. 当电源U S1单独作用时,测量各电流和电压的值。 选择合适的电流表和电压表量程,确定接入电路的极性。用短接桥(或导线)将“5”和“2”连接起来,接通电源U S1;将“6”和“3”连接起来,使电源U S2不作用。分别测量电流' 1I 、' 2I 、' 3 I 和电压' 1U 、' 2U 、' 3U 。根据图5-2中各电流和电压的参考方向,确定被测电流和电压的正负号后, 将数据记入表5-1中。 4. 当电源U S2单独作用时,测量各电流和电压的值。 选择合适的电流表和电压表量程,确定接入电路的极性,用短接桥(或导线)将“5”和“1”连接起来,使电源U S1不工作;将“6”和“4”连接起来,接通电源U S2。分别测量电流" 1I 、" 2I 、" 3 I 和电压" 1U 、" 2U 、"3U 。根据图5-2中各电流和电压的参考方向,确定被测电流和电压的正负号后,

叠加定理实验报告

实验一:叠加定理实验 一、实验目的 1.验证线性电路中叠加定理的正确性; 2.掌握叠加定理的适用范围。 二、实验仪器 1.直流电压源 2.直流电流源 3.Ground 4.普通电阻 5.直流电压表 6.直流电流表 三、实验原理 叠加定理指出,对于线性电路,任一电压或电流都是电路中各个独立电源单独作用(其余激励源置为0)时,在该处产生的电压或电流的叠加。对于不作用的激励源,电压源应视为短路,电流源应视为开路。 使用叠加定理时应注意以下几点: (1)叠加定理适用于线性电路,不适用于非线性电路; (2)在叠加的各分电路中,不作用的电压源置零,在电压源处用短路代替;不作用的电流源置零,在电流源处用开路代替。电路中所有电阻都不予更动,受控源则保留在各分电路中; (3)叠加时各分电路中的电压和电流的参考方向可以取为与原电路中的相同。取和时,应注意各分量前的“+”、“-”号; (4)原电路的功率不等于按各分电路计算所得的功率的叠加,这是因为功率是电压和电流的乘积。 四、实验内容 实验任务:验证叠加定理及线性电路的齐次性。 按照图1搭建实验电路,其中直流电压表和直流电流表内阻采用默认值。

图1实验电路 1.叠加定理的验证 (1)运行实验,记录激励源共同作用情况下电路中各处电流及电压于表1; (2)测量E s1单独作用时数据:设置电流源断路,电压源E s2短路,记录直流电压源U s1单独作用情况下电路中各处电流及电压于表1; (3)测量E s2单独作用时数据:设置电流源断路,电压源E s1短路,记录直流电压源E s2单独作用情况下电路中各处电流及电压于表1; (4)测量I s单独作用时数据:设置电压源E s1和E s2均短路,记录直流电流源I s单独作用情况下电路中各处电流及电压于表1; (5)补充完整表1,验证叠加定理的正确性。 表1叠加定理的实验数据 I1(A)U1(V)I2(A)U2(V)I3(A)U3(V)激励源共同作用 1.00 3.000.00-50.00 2.00 4.00 E s1单独作用 2.447.310.00 4.69 2.34 4.69 E s2单独作用-0.98-2.930.00 2.93-1.04-2.07 I s单独作用-0.40-1.200.00-50.000.60 1.20 叠加定理的验证 ∑x 单独=X共同 1.06 3.180.0044.38 1.80 3.82 五、实验仿真结果图:(截图说明) 1、激励源共同作用仿真结果图:

叠加原理的验证-实验报告

广东第二师范学院学生实验报告 院(系)名称班 别姓名 专业名称学号 实验课程名称电路与电子线路实验 实验项目名称叠加原理的验证 实验时间实验地点 实验成绩指导老师签名 一、实验目的 (1)验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。 (2)掌握测量有源二端网络等效参数的一般方法。 二、实验仪器 (1)电路实验箱一台 (2)万用表一块 三、实验内容和步骤 (1)按图3-13电路接线,E1为+12V切换电源,E2为可调直流稳压电源,调至+6V。 (2)令E1电源单独作用时(将开关S1投向E1侧,开关S2投向短路侧),用直流数字电压表和 毫安表(接电流插头)测量各支路电流及电阻元件两端电压。 (3)令E2电源单独作用时(将开关S1投向短路侧,开关S2投向E2侧),重复实验步骤2的测 量和记录。 (4)令E1和E2共同作用时(开关S1和S2分别投向E1和E2侧),重复上述的测量和记录。 (5)将E2的数值调至+12V,重复上述第3项的测量并记录。 (6)将以上所有数据记录在表3-9中。 图3-13 叠加原理实验电路图

表3-9 叠加原理实验数据记录 测量项目 E1/V E2/V I1/mA I2/mA I3/mA 实验内容 E1单独作用12 0 14.00 9.29 4.66 E2单独作用0 6 4.35 6.83 2.28 E1、E2共同作用12 6 15.8 11.29 15.18 2E2单独作用0 12 -18.3 -28.5 9.53 测量项目 U AB/V U FA/V U AD/V U DB/V U EA/V 实验内容 E1单独作用 4.71 7.20 4.76 0 -4.74 E2单独作用-3.42 -2.33 2.38 -5.98 0 E1、E2共同作用 5.76 11.88 11.85 -15.66 -12.02 2E2单独作用-14.25 -9.45 9.46 -23.5 0 四、实验报告要求 E1单独作用

相关文档
相关文档 最新文档