文档库

最新最全的文档下载
当前位置:文档库 > 人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案

一、选择题

1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( )

(A)2 (B)3 (C)4 (D)5

2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( )

(A)60° (B)30° (C)60°或120° (D)30°或150°

3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( )

(A)等边三角形

(B)等腰三角形 (C)直角三角形

(D)等腰三角形或直角三角形

4.在△ABC 中,已知32sin ,53cos ==

C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)9

20 (D)512 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( )

(A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3

二、填空题

6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________.

7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形.

9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________.

10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________.

三、解答题

11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试

解△ABC .

12.在△ABC中,已知AB=3,BC=4,AC=13.

(1)求角B的大小;

(2)若D是BC的中点,求中线AD的长.

13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

14.在△ABC中,已知BC=a,AC=b,且a,b是方程x2-23x+2=0的两根,2cos(A+

B)=1.

(1)求角C的度数;

(2)求AB的长;

(3)求△ABC的面积.

参考答案

一、选择题

1. C 2.B 3.D 4. B 5.B

提示:

4.由正弦定理,得sin C =2

3,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形;

当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形.

5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°, 由正弦定理C

c B b A a sin sin sin ===k , 得a =k ·sin30°=

21k ,b =k ·sin60°=23k ,c =k ·sin90°=k , 所以a ∶b ∶c =1∶3∶2.

二、填空题

6.

362 7.30° 8.等腰三角形 9.2

373+ 10.425 提示:

8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1, ∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C .

9.利用余弦定理b 2=a 2+c 2-2ac cos B . 10.由tan A =2,得52sin =

A ,根据正弦定理,得A

BC B AC sin sin =,得AC =425. 三、解答题

11.c =23,A =30°,B =90°.

12.(1)60°;(2)AD =7.

13.如右图,由两点间距离公式,

得OA =29)02()05(22=-+-, 同理得232,145==AB OB .由余弦定理,得cos A =2

22222=??-+AB OA OB AB OA ,

∴A =45°.

14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.

(2)由题意,得a +b =23,ab =2,

又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C

=12-4-4×(2

1

)=10. 所以AB =10. (3)S △ABC =21ab sin C =21·2·23=2

3.