文档库 最新最全的文档下载
当前位置:文档库 › 苯酚紫外吸收图谱分析

苯酚紫外吸收图谱分析

苯酚紫外吸收图谱分析

苯酚紫外吸收图谱分析:如图,B为苯酚紫外吸收图,C为苯酚加入氢氧化钠以后的紫外吸收图。由图观察发现,苯酚的最大吸收峰出现在220nm左右,该吸收峰为E吸收带。另一个中等吸收峰出现在270nm左右,该吸收峰为B带吸收。羟基也是助色基团,导致苯环的B带和E带都发生红移。

从图上看,向苯酚中加入氢氧化钠后,吸收峰的位置并未有较明显的移动,只是峰的强度增强了,按照理论分析,加入氢氧化钠后,最大吸收峰应该会红移,出现这种不正常的现象可能有以下原因,1)加入的氢氧化钠的浓度太低,不能和苯酚进行充分反应。2)测试的时候样品池没有清洗干净,有其他物质干扰。3)

实验过程中出现操作失误。

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。 (4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点 紫外吸收光谱的基本原理 吸收光谱的产生 许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱 紫外光谱的表示方法 通常以波长入为横轴、吸光度 A (百分透光率T% )为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(l0/I1), 10 入射光强度, 11透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0 透光率T与吸光度A 的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A= b e &为摩尔吸光系数,它是浓度为 1mol/L的溶液在1em的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;e为物质的浓度,单位为mol/L ; b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长加ax和该波长下的摩尔吸收系数 max来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具 有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的 分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱?通常以波长入为横轴、吸光度 A (百分透光率T% )为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0 入射光强度, I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0 透光率T与吸光度A 的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度e成正比A= b e &为摩尔吸光系数,它是浓度为 1mol/L的溶液在1em的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;e为物质的浓度,单位为mol/L ;b为液层厚度,单位为em。 在紫外吸收光谱中常以吸收带最大吸收处波长加ax和该波长下的摩尔吸收系数 max来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、?max和max与吸光分子的结构有密切的关系。各种有机化合形状、?max 和max与吸光分子的结构有密切的关系。各种有机化合物的?max和max都有定值, 同类化合物的e max比较接近,处于一个范围。 紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子 中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

紫外可见吸收光谱习题集及答案42554

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题) 1.2分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰( ) (1)消失(2) 精细结构更明显 (3)位移 (4)分裂 2。 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3。 2 分 (1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4)分光光度法 4。2分 (1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于( ) (1)8% (2) 40% (3) 50% (4)80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm,如用光电比色计测定应选用哪一种 滤光片?( ) (1)红色(2) 黄色 (3)绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮(3) 1,3-丁二烯(4) 甲醇 7. 2 分(1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在λ1和λ2处吸收之差 (3) 试样在λ1和λ2处吸收之和 (4)试样在λ1的吸收与参比在λ2的吸收之差 8. 2分 (1082) 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的( ) (1) 极大值 (2) 极小值 (3) 零(4) 极大或极小值 9。 2 分 (1101) 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统

核磁共振氢谱解析方法

2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3, 可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰的裂距(J),低场三 重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂 分为三重峰。则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定的分 子式应为CH 3-CH 2 -CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结 构。

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图 谱的步骤 -CAL-FENGHAI.-(YICAI)-Company One1

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节 未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢 原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。 8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。 9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现 AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。 10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。 11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。 12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。

紫外吸收光谱的应用

紫外吸收光谱的应用

第九章紫外吸收光谱分析ultraviolet spectro-photometry, UV 第三节紫外吸收光谱的应用applications of UV 一、定性、定量分析qualitative and quantitative analysis 1. 定性分析 εmax:化合物特性参数,可作为定性依据; 有机化合物紫外吸收光谱:反映结构中生色团和助色团的特性,不完全反映分子特性; 计算吸收峰波长,确定共扼体系等 甲苯与乙苯:谱图基本相同; 结构确定的辅助工具; εmax ,λmax都相同,可能是一个化合物; 标准谱图库:46000种化合物紫外光谱的标准谱图 ?The sadtler standard spectra ,Ultraviolet?2. 定量分析 依据:朗伯-比耳定律 吸光度:A= ε b c 透光度:-lg T = ε b c 灵敏度高:

εmax:104~105 L· mol-1 · cm -1;(比红外大) 测量误差与吸光度读数有关: A=0.434,读数相对误差最小; 二、有机化合物结构辅助解析structure determination of organic compounds 1. 可获得的结构信息 (1)200-400nm 无吸收峰。饱和化合物,单烯。(2)270-350 nm有吸收峰(ε=10-100)醛酮n →π* 跃迁产生的R带。 (3)250-300 nm 有中等强度的吸收峰(ε=200-2000),芳环的特征吸收(具有精细解构的B带)。 (4)200-250 nm有强吸收峰(ε≥104),表明含有一个共轭体系(K)带。共轭二烯:K带(~230 nm);?β,α不饱和醛酮:K带~230 nm ,R带~310-330 nm 260nm,300 nm,330 nm有强吸收峰,3,4,5个双键的共轭体系。 2.光谱解析注意事项 (1) 确认λmax,并算出㏒ε,初步估计属于何种吸收带;

紫外可见吸收光谱习题集和答案

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题 ) 1. 2 分 (1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分 (1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3. 2 分 (1020) 欲测某有色物的吸收光谱.下列方法中可以采用的是 ( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4) 分光光度法 4. 2 分 (1021) 按一般光度法用空白溶液作参比溶液.测得某试液的透射比为 10%.如果更改参 比溶液.用一般分光光度法测得透射比为 20% 的标准溶液作参比溶液.则试液的透 光率应等于 ( ) (1) 8% (2) 40% (3) 50% (4) 80% 5. 1 分 (1027) 邻二氮菲亚铁配合物.其最大吸收为 510 nm.如用光电比色计测定应选用哪一种 滤光片? ( ) (1) 红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分 (1074) 下列化合物中.同时有 n→*.→*.→*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮 (3) 1,3-丁二烯 (4) 甲醇 7. 2 分 (1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在1和2处吸收之差 (3) 试样在1和2处吸收之和 (4) 试样在1的吸收与参比在2的吸收之差8. 2 分 (1082) 在吸收光谱曲线中.吸光度的最大值是偶数阶导数光谱曲线的 ( ) (1) 极大值 (2) 极小值 (3) 零 (4) 极大或极小值 9. 2 分 (1101) 双光束分光光度计与单光束分光光度计相比.其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差 (4) 可以抵消因光源的变化而产生的误差

第9章-紫外可见吸收光谱法

第九章紫外可见吸收光谱法 §9-1 概述 利用紫外可见分光光度计测量物质对紫外可见光的吸收程度(吸光度)和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法(ultraviolet and visible spectrophotometry,UV-VIS)。它具有如下特点: (1)灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以达到104~105数量级。 (2) 准确度较高其相对误差一般在1% ~ 5%之内。 (3) 方法简便操作容易、分析速度快。 (4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定及结构分析(鉴定有机化合物中的官能团)。可对同分异构体进行鉴别。此外,还可用于配合物的组成和稳定常数的测定。 紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。例如,甲苯和乙苯的紫外吸收光谱基本相同。因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。 §9-2 紫外可见吸收光谱法的基本原理 当一束紫外可见光(波长范围200~760nm)通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子则不被吸收,光子是否被物质所吸收既决定于物质的内部结构,也决定于光子的能量。当光子的能量等于电子能级的能= h f),则此能量的光子被吸收,并使电子由基态跃迁到激发量差时(即ΔE 电 态。物质对光的吸收特征,可用吸收曲线来描述。以波长λ为横坐标,吸光度A 为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱(或紫外可见吸收曲线)。它能更清楚地描述物质对光的吸收情况(图9-1)。 从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长(λmax);低于高吸收峰的峰称为次峰;吸收峰旁

紫外可见吸收光谱法

紫外可见吸收光谱法 开放分类:化学科学 收藏分享到顶[1]编辑词条 目录 ? 1 概述 ? 2 基本原理 ? 3 特点 ? 4 仪器组成 ? 5 应用 ? 6 影响因素 ?展开全部 摘要 紫外可见吸收光谱法是利用某些物质的分子吸收10~800nm光谱区的辐射来进行分析测定的方法,这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于有机和无机物质的定性和定量测定。该方法具有灵敏度高、准确度好、选择性优操作简便、分析速度好等特点。 紫外可见吸收光谱法-概述 图4.3

分子的紫外可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。如(图4.3),胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。 紫外-可见以及近红外光谱区域的详细划分如图4.4所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。[1] (图)图4.4 紫外可见吸收光谱法-基本原理 紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有: (1)σ→σ* 跃迁指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道 (2)n→σ* 跃迁指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁 (3)π→π* 跃迁指不饱和键中的π电子吸收光波能量后跃迁到π*反键轨道。 (4)n→π* 跃迁指分子中处于非键轨道上的n电子吸收能量后向π*反键轨道的跃迁。

紫外可见光谱分析技术

紫外可见光谱分析技术及其发展和应用 医学院宋宗辉2016201632 紫外-可见吸收光谱法概述 分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。紫外-可见以及近红外光谱区域的详细划分如下图所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。 紫外可见区域 1.1分子结构与吸收光谱 1.1电子能级和跃迁 从化学键性质考虑,与有机物分子紫外-可见吸收光谱有关的电子是:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的n电子。有机物分子内各种电子的能级高低次序下图所示,σ*>π*>n>π>σ。标有*者为反键电子。

电子能级及电子跃迁示意图 可见,σ→σ*跃迁所需能量最大,λmax<170 nm,位于远紫外区或真空紫外区。一般紫外-可见分光光度计不能用来研究远紫外吸收光谱。如甲烷,λmax =125 nm。饱和有机化合物的电子跃迁在远紫外区。 1.2生色团 π→π*所需能量较少,并且随双键共轭程度增加,所需能量降低。若两个以上的双键被单键隔开,则所呈现的吸收是所有双键吸收的叠加;若双键共轭,则吸收大大增强,波长红移,λmax和εmax均增加。如单个双键,一般λmax为150-200nm,乙烯的λmax = 185nm;而共轭双键如丁二烯λmax = 217nm,己三烯λmax = 258nm。 n→π*所需能量最低,在近紫外区,有时在可见区。但π→π*跃迁几率大,是强吸收带;而n→π*跃迁几率小,是弱吸收带,一般εmax<500。许多化合物既有π电子又有n 电子,在外来辐射作用下,既有π→π*又有n→π*跃迁。如-COOR基团,π→π*跃迁λmax=165 nm,εmax=4000;而n→π*跃迁λmax=205nm,εmax=50。π→π*和n→π*跃迁都要求有机化合物分子中含有不饱和基团,以提供π轨道。含有π键的不饱和基团引入饱和化合物中,使饱和化合物的最大吸收波长移入紫外-可见区。这类能产生紫外-可见吸收的官能团,如一个或几个不饱和键,C=C,C=O,N=N,N=O等称为生色团(chromophore)。某些生色团的吸收特性见下表。 某些生色团及相应化合物的吸收特性

紫外光谱的应用

紫外光谱分析的应用 摘要:紫外吸收法是基于物质对不同波长的紫外光的吸收来测定物质成分和含量的方法。紫外光谱法能够适用于不饱和有机化合物,尤其是共轭体系的鉴定,以此推断未知物的骨架结构,对从分子水平去认识物质世界,推动近代有机化学的发展是十分重要的。采用现代仪器分析方法,可以快速、准确地测定有机化合物的分子结构。近年来紫外光谱在很多方面的研究与应用十分活跃,对实际工作取得了较好的效果。文章综述了近年来紫外光谱法的应用及发展动态。 关键词:紫外光谱;应用;检测 1、前言 光谱学的研究已有一百多年的历史了。1666年,牛顿把通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是可算是最早对光谱的研究。其后一直到1802年,渥拉斯顿观察到了光谱线,其后在1814年夫琅和费也独立地发现它。牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。此后便把这些线称为夫琅和费暗线。 实用光谱学是由基尔霍夫与本生在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,并利用这种方法发现了几种当时还未知的元素,并且证明了太阳里也存在着多种已知的元素。从19世纪中叶起,氢原子光谱一直是光谱学研究的重要课题之一。在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。 具有光学活性的化合物,在紫外—可见光区( 200 ~800 nm) 范围内,吸收一定波长的光子后,其价电子在分子的电子能级之间跃迁,由此而产生的分子吸收光谱被称为紫外—可见吸收光谱,简称紫外光谱[1]。紫外光谱与电子跃迁有关,在分子中用分子轨道来描述其中电子的状态,分子轨道可以看作是由对应的原子轨道以线性组合而成的,组成分子的两个原子其原子轨道线性组合,就形成了两个不同的分子轨道。其中轨道能量低的为成键分子轨道,是由两原子轨道相加而形成的,另一轨道能量高的为反键分子轨道,是由两原子轨道相减而成的。组成键的两个电子均在能量低的成键分子轨道中,一个自旋向上,一个自旋向下,此状态为分子的基态,但当成键的两个电子分别处在成键分子轨道和反键分子轨道时,分子便处在高能态。当分子受到紫外光的照射,并且紫外光的能量恰好等于分子基态与高能态能量的差额时,就会发生能量转移,从而使电子发生跃迁。当电子从基态向激发态某一震动能级跃迁时,通常我们由基态平衡位置向激发态做垂线,若与某一震动能级的波函数最大处相交,即说明在这个能级电子跃迁的概率最大。当电子能级改变时,振动能级和转动能级也不可避免地会有变化,即电

紫外光谱分析法习题答案资料讲解

紫外光谱分析法习题 答案

紫外光谱分析法习题 班级姓名分数 一、选择题 1. 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( 3 ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( 4 ) (1) 可以扩大波长的应用范围; (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差; (4) 可以抵消因光源的变化而产生的误差3. 许多化合物的吸收曲线表明,它们的最大吸收常常位于 200─400nm 之间,对这一光谱区应选用的光源为 ( 1 ) (1) 氘灯或氢灯 (2) 能斯特灯 (3) 钨灯 (4) 空心阴极灯灯 4. 助色团对谱带的影响是使谱带 ( 1 ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 5. 指出下列哪种是紫外-可见分光光度计常用的光源? ( 4 ) (1) 硅碳棒 (2) 激光器 (3) 空心阴极灯 (4) 卤钨灯 6. 指出下列哪种不是紫外-可见分光光度计使用的检测器? ( 1 ) (1) 热电偶 (2) 光电倍增管 (3) 光电池 (4) 光电管 7. 紫外-可见吸收光谱主要决定于 ( 2 ) (1) 分子的振动、转动能级的跃迁; (2) 分子的电子结构 (3) 原子的电子结构; (4) 原子的外层电子能级间跃迁 8. 基于发射原理的分析方法是 ( 2 )

(1) 光电比色法 (2) 荧光光度法 (3) 紫外及可见分光光度法 (4) 红外光谱法9. 基于吸收原理的分析方法是 ( 4 ) (1) 原子荧光光谱法;(2) 分子荧光光度法; (3) 光电直读光谱法; (4) 紫外及可见分光光度法 10.在紫外-可见分光光度计中, 强度大且光谱区域广的光源是 ( 3 ) (1) 钨灯 (2) 氢灯 (3) 氙灯 (4) 汞灯 11. 物质的紫外-可见吸收光谱的产生是由于 ( 3 ) (1) 分子的振动 (2) 分子的转动 (3) 原子核外层电子的跃迁 (4) 原子核内层电子的跃迁 12. 阶跃线荧光的波长 ( 1 ) (1)大于所吸收的辐射的波长; (2)小于所吸收的辐射的波长 (3)等于所吸收的辐射的波长; (4)正比于所吸收的辐射的波长 13. 比较下列化合物的UV-VIS吸收波长的位置(λmax ) ( 4 ) (1) a>b>c (2) c>b>a (3)b>a>c (4)c>a>b 14. 在紫外-可见光谱区有吸收的化合物是 ( 4 ) (1) CH3-CH=CH-CH3 (2) CH3-CH2OH (3) CH2=CH-CH2-CH=CH2 (4) CH2=CH-CH=CH-CH3 15. 双波长分光光度计和单波长分光光度计的主要区别是 ( 2 ) (1)光源的个数; (2)单色器的个数; (3)吸收池的个数; (4)单色器和吸收池的个数 16. 下列哪种方法可用于测定合金中皮克数量级(10-12)的铋? ( 2 )

核磁共振氢谱解析方法

创作编号:BG7531400019813488897SX 创作者:别如克* 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样 品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示 有芳香族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确 定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增 大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官 能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。 再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定 其结构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分 强度为2:2:3,可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰 的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH 3 -CH 2-CH 2 -结构单元。参考所给定的分子式应为CH 3 -CH 2 -CH 2 - NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求 其结构。

紫外可见吸收光谱在生物方面的应用

1.概述 人们在实践中早已总结出不同颜色的物质具有不同的物理和化学性质。根据物质的这些特性可对它进行有效的分析和判别。由于颜色本就惹人注意,根据物质的颜色深浅程度来对物质的含量进行估计,可追溯到古代及中世纪。1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。 紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围。目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。我国在分析化学领域有着坚实的基础,在分光光度分析方法和仪器的制造方面国际上都已达到一定的水平[1][2] 2.原理

物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下: A=錬c 式中:A—吸光度(又称光密度、消光值), ?—摩尔吸光系数(其物理意义为:当吸光物质浓度为1摩尔/升,吸收池厚为1厘米,以一定波长原光通过时,所引起的吸光值A),b—吸收介质的厚度(厘米),c—吸光物质的浓度(摩尔/升)。 物质的颜色和它的电子结构有密切的关系,当辐射(光子)引起电子跃迁使分子(或离子)从基态上升到激发态时,分子(或离子)就会在可见区或紫外呈现吸光,颜色的发生或变化是和分子的正常电子结构的变形联系的。当分子中含有一个或更多的生色基因(即具有不饱和键的原子基团),辐射就会引起分子中电子能量的改变。常见的生色团有:CO,-N=N-,-N=O,-C N,CS

分享五大波谱解析步骤简述一紫外光谱解析UV应用时顾及吸收带

分享:五大波谱解析步骤简述 (一) 紫外光谱 解析UV应用时顾及吸收带的位置,强度和形状三个方面。从吸收带(K 带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。可粗略归纳为以下几点: ①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环 烃或它们的简单衍生物。 ②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸 收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。 ③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常 显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。 ④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。 ⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度 吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。 (二)红外光谱 1. 解析红外光谱的三要素(位置、强度和峰形) 在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的 存在 2 .确定官能团的方法 对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。 只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲 振动。 例2. 亚甲基(CH2):2920cm-1和2850cm-1为其伸缩振动,1470cm-1和

紫外光谱分析方法

第四章紫外光谱、紫外-可见光分光光度法 §4-1紫外-可见吸收光谱的产生 一.原因:分子中价电子跃迁产生的光谱吸收 二.电子跃迁类型 与有机化合物有关的价电子有σ、π和n电子,主要跃迁有:1.N-V跃迁:由基态跃迁至反键轨道:σ-σ*、π-π* 2.N-Q跃迁:非键电子跃迁到反键轨道:n-σ*、n-π* 3.N-R跃迁:σ电子激发到更高能级或电离 吸收波谱: 此外,与分光光度法有关的跃迁还有: 4.电荷转移跃迁,常见过渡金属与有机配位体(显色剂)之间电子转移跃迁,大多在可见光区,吸收强度大,往往用于定量分析。5.配位场跃迁,d-d或f-f轨道在配位场作用下简并,轨道分裂,产生d-d(Ⅳ、V周期)、f-f(La系、Ar系)跃迁。此吸收能量少,吸收强度较小,多在可见光区。 三.辐射吸收的基本定律—朗伯-比尔定律 当一束平行光通过均匀的液体介质时,光的一部分被吸收,一部分透过溶液,还有一部分被容器表面散射。 即I0=It(吸收光)+Ia(透射光)+Ir 若散射光Ir→0 则I0=It+Ia 1.透光率T=Ia/I0 T↑,吸收↓ 2.吸光度A=lg1/T=lgI0/Ia A↑,吸收↑

3.朗伯-比尔定律 当入射光波长一定时(单色光),溶液吸光度A 只与溶液中有色物质浓度和比色皿厚度有关,成正比,即 A ∝LC => A =kLC 式中:k -比例常数-系吸系数 L -比色皿厚度 C -溶液浓度 当C 为摩尔浓度,令k =ε,称为摩尔吸光系数。 4.吸光度的加和性,若溶液中有m 种成分,其在某一波长下吸光系数分别为ε1、ε2…εm ,浓度分别为C 1、C 2…Cm 则∑εC 入入 总 A = 对于同一种物质,波长不同时ε(或K)不相同。 四、无机化合物的紫外-可见光谱 §4-2有机化合物的紫外-可见光谱 一.吸收光谱表示方法(光谱图) 用A ~λ或T %~λ作图称光谱图。 二.常用术谱 1.生色基团:含有π键的不饱和基团(为C =C 、C =O 、N =N 、-N =O 等)能产生π-π*跃迁,使得有机化合物分子在紫外-可见光区产生吸收的基团。① 共轭生色团 a 、基团结构不同:独立吸收 b 、相同,仅一个吸收峰,但强度随生色团数目增加叠加。

UV紫外可见吸收光谱-结构分析

课程名称: 实验名称:紫外可见吸收光谱法—结构分析 学院部门: 报告人: 同组人员: 实验时间: 提交时间: α( 阿而法) β( 贝塔) γ(伽马) δ(德尔塔) ε(艾普西龙) ζ(截塔) η(艾塔) θ(西塔) ι约塔) κ(卡帕) λ(兰姆达) μ(米尤) ν(纽) ξ(可系) ο(奥密克戎) π (派) ρ (若) σ (西格马)τ (套)υ (英文或拉丁字母)φ(斐)χ(喜)ψ(普西)ω(欧米伽)

一、实验目的 1、学习并掌握紫外可见分光光度计的使用方法; 2、了解并掌握不同的助色团对苯的紫外吸收光谱的影响; 3、了解并掌握溶剂极性对丁酮、三氯乙烯的紫外吸收光谱的影响; 4、了解并掌握pH对苯酚的紫外吸收光谱的影响。 二、实验原理 2.1 紫外吸收光谱产生的基本原理及相关概念 紫外吸收光谱是由于分子中价电子的跃迁而产生的。因此,这种吸收光谱决定于分子中价电子的分布和结合情况。按分子轨道理论,在有机化合物分子中有几种不同性质的价电子:形成单键的电子称为σ键电子;形成双键的电子称为π键电子;氧、氮、硫、卤素等含有未成键的孤对电子,称为n电子。 当饱和单键碳氢化合物中的氢被氧、氮、硫、卤素等杂原子取代时,由于这类原子中有n 电子,n电子较σ电子易于激发,使电子跃迁所需能量降低,吸收峰向长波长方向移动,这种现象称为红移,此时产生n→σ* 跃迁。这种能使吸收峰波长向长波方向移动的杂原子基团称为助色团。 芳香族化合物π→π*跃迁在近紫外区产生3个特征吸收带。苯的特征吸收带为184nm(E1),204nm(E2),254nm(B)。E1带、E2带和B带式苯环上三个共轭体系中的π→π*跃迁产生的,E1带和E2带属强吸收峰带,在230—270nm范围内的B带属弱吸收带,其吸收峰常随苯环上取代基的不同而发生位移。当苯环上有助色基团如—OH、—Cl等取代基时,由于n—π共轭,使E2吸收带向长波长方向移动,但一般在210nm左右。同时,n—π共轭还能引起苯吸收的精细结构消失。 生色基团为一类含有π键的不饱和基团,在饱和碳氢化合物或苯环上引入这些基团后其最大吸收波长将移至紫外及可见区范围内,产生红移效应。 2.2 影响化合物紫外吸收的因素 2.2.1 溶剂极性 溶剂极性对紫外光谱的影响较复杂,主要可分为两类:①对吸收强度和精细结构的影响。在非极性溶剂中,尚能观察到振动跃迁的精细结构。但若改为极性溶剂后,由于溶剂和溶质的分子作用力增强,使谱带的精细结构变得模糊,以致完全消失成为平滑的吸收谱带。②对最大吸收波长(λmax)的影响。n→σ*和n→π*跃迁的分子都含有非键的n电子,基态极性比激发态大,因此基态能够与溶剂之间产生较强的氢键,能量下降较大,而激发态能量下降较小,故跃迁能量增加,吸收波长相短波方向移动,即发生蓝移。而在π→π*跃迁的情况下激发态的极性比基态强,溶剂使激发态的能级降低的比基态多,使π→π*跃迁所需能量减小发生红移。 2.2.2 pH值 在碱性条件下苯及某些其衍生物易形成盐离子,盐离子带负电荷对应的杂原子上孤对电子增加则n电子较原化合物增多。n电子较易激发,因此所需跃迁能量降低,其对应的3个吸收峰将发生红移。反之,在酸性条件下,化合物形成正离子,杂原子上孤对电子与氢结合,n 电子云密度降低,使跃迁所需能量增加,波长向短波方向移动。 2.2.3 紫外可见分光光度计工作原理 紫外可见分光光度法是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。按所吸收光的波长区域不同,分为紫外分光光度法和可见分光光度法,合称为紫外可见分光光度法。紫外可见吸收光谱除主要可用于物质的定量分析外,还可以用于物质的定性分析、纯度鉴定、结构分析。

相关文档
相关文档 最新文档