文档库 最新最全的文档下载
当前位置:文档库 › 生物质与煤热解特性及动力学研究

生物质与煤热解特性及动力学研究

生物质与煤热解特性及动力学研究
生物质与煤热解特性及动力学研究

生物质与煤共热解特性研究

生物质与煤共热解特性研究 摘要:选取一种典型生物质样品(棉秆),并将生物质样品与煤分别以1:9、3:7、5:5的质量比混合。采用热重分析法,在相同升温速率下,对各样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;随混煤中生物质比例的增加,热解温度降低,热解速度变快。 关键词:热重分析生物质煤热解共热解 随着人们越来越关注化石能源的使用对生态环境的不利影响,生物质能源的利用份额逐年上升[1]。但是,由于生物质分布分散、能量密度低、收集运输和预处理费用高、热值低、水分大、转化利用需要外热源等缺点[2],使得单独利用生物质燃料的设备容量较小、投资费用较高、系统独立性差和效率低。为了使生物质在较短期内实现大规模有效利用,并具有商业竞争力,生物质与煤混合燃烧和转化技术在现阶段是一种低成本、大规模利用生物质能源的可选方案。 1 生物质能的转化 生物质的利用转化方式主要有直接燃烧、热化学转化和生物转化[3]。热化学转化是指高温下将生物质转化为其它形式能量的转化技术,包括气化(在气体介质氧气、空气或蒸汽参与的情况下对生物质进行部分氧化而转化成气体燃料的过程)、热解(在没有气体介质氧气、空气或蒸汽参与的情况下,单纯利用热使生物质中的有机物质等发生热分解从而脱除挥发性物质,常温下为液态或气态,并形成固态的半焦或焦炭的过程)和直接液化(在高温高压和催化剂作用下从生物质中提取液化石油等);生物转化法是指生物质在微生物的发酵作用下产生沼气、酒精等能源产品。 固体生物质的热解及其进一步转化是开发利用生物质能的有效途径之一。在生物质热化学转化过程中,热解是一个重要的环节。生物质形态各异,组成多为木质素、纤维素等难降解有机物,与矿物燃料不同,因此生物质热解过程是一个复杂的过程,影响生物质热解的运行参数有终端温度、加热速率、压力和滞留时间等[4]。生物质的组成、结构等对热解也都有影响。研究生物质与煤共同作为燃料所具有的特性可为更广泛的利用生物质能提供参考依据。 2 试验 2.1 试验仪器及性能指标 采用美国Perkin-Elmer公司生产的热重-差热联用仪(TG/DTA),其性能指标如下:

生物质热解与煤热解气化比较与现状

生物质热解与煤热解气化比较与现状 关键词:生物质煤热解 研究表明[1],生物质与煤的热解特性差异很大;生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高。 现今单一煤种的热解在各方面都已经得到广泛的研究,而生物热解方面也正在取得巨大的研究成果。煤热解的气体产物以一氧化碳、甲烷和氢气为主,其中固体产物为固体焦和焦油。生物质热解气化产物主要是不饱和烃类气体和大量的氢气,还有不饱和烃类液体例如苯等。但是相比之下,由于大量水分的存在,生物质热解气化失重率比较大,而由于硫的掺杂,煤气化热解的产物中含有大量含硫氮化合物,使之燃烧会造成严重的环境污染。 为了提高脱硫脱氮的效率和改善煤单独热解产物不饱和度较高的问题,科学各界开始对生物质同煤共热解进行了研究和探索。研究结果[2]表明,生物质可阻止强粘结性煤热解过程中颗粒之间的粘结,得到粒状焦炭;生物质热解生成较多的H2,有利于煤中硫和氮的脱除;同时随着温度的升高、煤粒度的减小和煤变质程度的降低,热解脱硫和脱氮率增大。 根据研究[2]可知,生物质热解的最大热解峰(低于400摄氏度)和煤的最大热解峰(高于400摄氏度)不重合,而且差值有的在100摄氏度以上。由此可知,生物质与煤共同热解没有明显的协同作用。为了解决不同步热解的问题,科学界提出了两步法煤与生物热解、利用煤的黑度比生物质高的特点以辐射的加热方式进行同步加热、两段管式炉分步控温进行热解等。这些方法的核心都在于利用生物质的富氢产物为煤脱硫脱氮提供天然低廉的氢来源,同时也提高了煤的轻质液相产率,气体中的不饱和烃含量降低,将富裕的生物氢转移到了缺氢的煤焦中。 鉴于生物质与聚合物及生物质与煤的共热解或两步法热解具有很大的优势,加强生物质与聚合物的共热解和生物质与煤的共热解及两步法热解的研究显得很有必要。深入研究生物质与聚合物共热解的协同作用的机理,加强研究生物质与煤共热解中脱硫、脱氮及固体焦具有较强吸附能力的机理,同时,进一步研究改进生物质与煤两步法热解的工艺,为实现生物质中富裕的氢向煤的转移提供可能。 参考文献 [1] 尚琳琳,程世庆,张海清。生物质与煤共热解特性研究 [2] 马光路。生物质与聚合物、煤供热解研究进展

生物质快速热解技术

生物质快速热解技术 摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。 生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。 据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。 不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。 1生物质转化利用方法 1.1生物法或称为微生物法 生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。 1.2化学处理法 生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。 1.3热化学转化法 1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。 1.3.2液化分直接液化和间接液化两类,直接液化是生物质在高压设备中,添加适宜的催化剂,反应制得液化油,作为汽车用燃料,或者分离加工成化工用品,这是近年来生物质能利用研究的热点。间接液化是把生物质先气化成气体后,再进一步合成液体产品;或者把生物质中的纤维素、半纤维素水解,然后再发酵制取酒精。 1.3.3气化生物质在较高的温度(700—900℃)下,与气化剂(如空气、氧气或水蒸气)反应得到小分子可燃气体的过程。目前使用最广泛的是空气作气化剂,产生的气体主要作为燃料使用,可用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇、氨的化工原料。气化技术在国外已实现大规模工业化,主要有气化发电技术,目前我国在此方面已基本完成中试与小规模生产,现正走向大型产业化生产阶段。 1.3.4直接燃烧生物质在充足氧气的环境下直接燃烧,把化学能转变为热能。近年来还出现了生物质固化成型技术,通过机械加压的方法将分散、无定形生物质转化为一定形状和密度的固体燃料,然后再燃烧。 热化学转化法可用图1表示:

煤热解动力学研究

煤热解动力学研究 引言 热解是煤燃烧、气化和液化等热加工工业中的基本过程之一,也是成煤过程中的基本环节[1]。因此,研究煤的热解不仅为煤的热加工过程提供科学依据,也能为加深煤化学研究提供重要信息。在研究煤的热解动力学过程中,必然涉及反应速率与活化能和指前因子等动力学参数[2-4]。本文着重探索几种热解模型和热解动力学模型,并针对在还原气氛下进行煤热解这一课题,进行动力学选择和分析。 1热解模型 随着近十几年的现代仪器的发展,采用Py-FIMS、13C-NMR(碳核磁共振波谱法)、TG-FTIR(红外光谱仪)等手段对煤结构的研究,使得人们有可能有可能以煤的结构为基础研究煤的热解机理,并由此建立了比较成功的煤热解网络模型,如由用来描述气体逸出与焦油形成的降解一蒸发一交联的FG-DVC模型、FLASHCHAIN模型和化学渗透脱挥发分(CPD)模型。这些模型都是用简化的煤化学和网络统计学描述焦油前驱体的生成,但在网络几何形状、断桥和交联化学、热解产物、传质假设和统计方法上各有不同[5]。 1.1 FG-DVC热解模型 FG-DVC(Functional Group Depolymerization Vaporization Crosslinking)模型是由用来描述气体逸出的官能团模型与描述焦油形成的降解一蒸发一交联模型结合而成的。FG模型是用来描述煤、

半焦和焦油中气体的产生与释放机理;DVC模型是用来描述在桥键断裂和交联发生的影响下煤中大分子网络所发生的分解和缩聚行为,预测碎片的分子量分布情况[6]。FG-DVC模型的基本概念:(1)煤中官能团分解产生小分子类热解气体;(2)大分子网络分解产生焦油和胶质体;(3)胶质体分子量的分布由网络配位数决定;(4)大分子网络的分解是由桥键的断裂来控制,而桥键的断裂是受活泼氢限制;(5)网络的固化是由交联控制的,交联的发生伴随着二氧化碳(桥键断裂前)和甲烷(桥键断裂后)的放出。低阶煤(放出大量二氧化碳)在桥键断裂以前发生交联,高挥发分的烟煤(几乎不产生二氧化碳)在交联前就经历了明显的桥键断裂具有高流动性,故放出二氧化碳量的增加致交联的增加和流动性的降低;(6)焦油的逸出是受传质控制的(焦油分子蒸发到小分子气体或焦油蒸汽中以与其蒸汽压或轻组分体积成比例的速度被带出煤粒,高压减小了轻组分体积,所以就降低了具有较低蒸汽压大分子类产品的产量)。 Serio等[7]对FG模型作了进一步假设:1)大部分官能团独立分解生成轻质气体;2)桥键热分解生成焦油前驱体,前驱体本身也尤其代表性的官能团组成;3)焦油和轻质烃或其它组分相互竞争煤中的可供氢以稳定自由基,一旦内部供氢耗尽,焦油和轻质烃类(除CH4外)便不在生成;4)焦油和半焦的官能团以相同速率继续热解。 DVC模型最初用蒙特卡罗法来分析断键、耗氢和蒸发过程,后来也开始使用渗透理论,只是在个别概念上稍有修正。DVC模型为焦油生成提供了统计基础,该模型假定断键裂为单一的乙撑性断键,其活

生物质热解总结

一、热解分类 根据反应温度和加热速率的不同,生物质热解工艺可分成慢速、常规、快速或闪速几种。慢速裂解工艺已经具有了几千年的历史,是一种以生成木炭为目的的炭化过程川,低温和长期的慢速裂解可以得到30%的焦炭产量;低于600℃的中等温度及中等反应速率(0.1-1℃)的常规热 裂解可制成相同比例的气体、液体和固体产品: 快速热裂解大致在10-200℃/S的升温速率,小于5秒的气相停留时间;闪速热裂解相比于快速热裂解的反应条件更为严格,气相停留时间通常小于1秒,升温速率要求大于1护'C/S.并以102-1护Vs的冷却速率对产物进行快速冷却。但是闪速热裂解和快速热裂解的操作条件并没有严格的区分,有些学者将闪速热裂解也归纳到快速热裂解一类中,两者都是以获得最大化液体产物收率为目的而开发。 事实上,现在人们在考虑生物质的热解机理时,常常假设生物质的三种主要组成物独立进行裂解。纤维素主要在325℃-375℃之间裂解,半纤维素主要在225℃-325℃之间发生裂解,而木质素则在250℃-500℃之间发生裂解(大多数木质素裂解发生在310℃-400℃之间)(shafizadch和Chin. 1977)。纤维素和半纤维素的裂解产生大多数的挥发物,而木质素裂解产生大多数的碳。 二、纤维素热解机理 1、纤维素结构 纤维素是由D-葡萄糖通过β(1-4)一糖苷键相连形成的高分子聚合物。不同的分子通过氢键形成大的聚集结构。目前的研究表明纤维素存在五种结晶变体,即纤维素I,Ⅱ,Ⅲ, IV和V。其中纤维素I是纤维素的天然存在形式。 纤维素是自然界中大量存在的天然高分子物质,是自然界分布最广、含量最多的一种多糖。纤维素是植物细胞壁的主要成分,它是由吡喃葡萄糖普通过0-1, 4-搪昔联结成的线性大分子,一般可用通式(C6HioO5)n表示, n称为聚合度,通常情况下在104左右. 纤维素是由β-D-葡萄糖为聚合单元构成的直状高聚物, 分子通式为(C6H10O5)n。它是具有饱和糖结构的典型碳水化合物,为生物质细胞壁的主组成部分。在高温作用下, 纤维素会发生一系列复杂的脱水、解聚、脱挥发分和结构重整等变化。纤素热解动力学涉及这一系列复杂变化中包含的各反应机理。但是, 由于热解过程中并行或者顺序发生的反应数目众多,实际上不可能、对工程应用来说没有必要建立一个考虑了所有这些反应的详尽的动力学模型. 因此, 该领域内的研究者关注的大多是谓的“准机理模型(pseudo-mechanistic model) ”, 在这一类模型中, 热解产物被笼统地划分为挥发分、固定碳等几大类. 总体上, 准机理模型有两种:单步全局模型和半全局动力学模型[]。 [ 7 ]余春江, 骆仲泱, 方梦祥, 廖燕芬, 王树荣, 岑可法;一种改进的纤维素热解动力学模型;浙江大学学报(工学板),2002:36,509-515 2、纤维素热解机理 由于纤维素在生物质原料中占据了几乎一半的含量,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,纤维素具有最为简单的结构且在不同的材质中其结构和化学特性变化最小,因而当前研究基本上都从纤维素的热解行为入手开展工作。 纤维素热解动力学模型体现了纤维素热解化学反应的本征过程,是整个热解模型的核心部分。动力学模型的可靠性对于颗粒热解模型是否能正确反映真实过程至关重要。 2.1源于对纤维素燃烧过程的研究 纤维素热裂解机理的探索,最早源于对纤维素燃烧过程的研究,通过纤维素燃烧试验,Broido发现纤维素在低温加热条件下,经由吸热反应一部分纤维素转化为脱水纤维素。热裂解

生物质快速热裂解工艺及其影响因素

Ξ 生物质快速热裂解工艺及其影响因素 黑龙江省人民政府农村能源办公室 潘丽娜 摘 要 介绍了目前生物质快速热裂解的工艺及其影响因素,表明了生物质快速热裂解工艺及技术是目前生物质能利用各种方式中很有前途的利用方式。以小型流化床为例着重介绍了生物质快速裂解装置组成及设备工作原理,并分析了影响生物质快速热裂解过程及产物的主要因素,分析表明,温度是影响热裂解过程中最主要因素。 关键词 生物质快速热裂解 应用 工艺类型 装置组成 影响因素 中图分类号:Q941 文献标识码:A 文章编号:1009—3230(2004)02—0007—02 0 前言 生物质是一种潜在的能源资源,是人类未来能源和化学原料的重要来源,生物质资源包括:农作物秸秆,柴薪、水生植物、油料作物和各种有机废弃物。在我国农村能源消费中生物质占70%。而在我国生物质能利用技术的研究和开发较晚,农村能源中的生物质的很大部分都以直接燃烧的形式利用,这种利用方式不仅能源利用率低,平均热效率不到25%,而且燃烧带来的大量烟雾给空气造成严重的污染。 1 生物质热裂解概念及其基本原理 111 生物质热裂解的概念 生物质热裂解(热分解)是指在隔绝空气或只通入少量空气的条件下,使生物质受热而发生分解的过程。生物质发生热裂解时将生物质分解成3种产物:气体(不可冷凝的挥分份)、液体(可冷凝的挥发份)和固体(炭)。 2 生物质热裂解的工艺 流化床快速热裂解的工艺流程较为简单,结合图1所示流程图对其工艺流程加以分析:上线为生物质颗粒一定的速率进入流化床反应器,在反应器内与高温的砂子流化充分接触,高温发生热裂解反应,反应生成的固体小颗粒随气流向上流入旋转分离器,在旋风分离器中因离心力,器壁摩擦力,以及小颗粒自身的重力作用下落入旋风分离器底部的集炭箱中,并收集。下线为气相流,空气经压缩机打入贫氧发生器,再经反应得贫氧气体充当载气,在压力的作用下,载气先通入螺旋进料器以保持进料器系统有一个足够的送风压力以保证预料顺利进入反应器,两路气体在床内一起流化砂子和原料混合物,经热裂解之后生成的气体与载气一起通过旋风分离器分离,从旋风分离器流出的气体在金属冷凝器,球型玻璃管冷凝可液化的气体,之后,剩余的气体由转子流量计再经过滤器进入收集装置。 3 生物质快速热裂解工艺主要影响因素分析 不同的工艺类型对产物及产物的比例有着重要的影响,不同的反应条件对热裂解的过程和产物亦有不同的影响。就目前的研究而言,总的讲来,影响热裂解的主要因素包括化学和物理两大方面。化学因素包括一系列复杂的一次反应和二次化学反应;物理因素主要是反应过程中的传热、传质以及原料的物理特性等。在具体的操作方面表现为:温度、升温速率、物料特征以及反应的滞留时间和压力等等。 311 滞留时间的影响 滞留时间在生物质快速热裂解反应中有生物质颗粒的固相滞留时间和气相滞留时间之分,而 7 2004年第2期(总第86期) 应用能源技术 Ξ收稿日期:2004—01— 21

(完整版)花生壳生物质热解特性研究毕业设计

毕业论文 学院:材料科学与工程学院 专业年级:08级高分子二班 题目:花生壳生物质热解特征研究 指导教师:杨素文博士 评阅教师: 2012年5月

摘要 生物质能是重要的可再生资源之一,而热解是未来最有前景的生物质利用方式之一。通过对生物质的热解动力学研究,可以获得热解反应动力学参数,对于判断热解反应机理和影响因素以及优化反应条件具有重要意义。利用热分析仪,在氮气气氛下,采用不同升温速率对花生壳热解行为进行了研究。通过热重分析实验了解生物质受热过程中的基本变化规律及其影响因素,结果表明,随升温速率的增大,达到最高热解速率时所对应的温度也越高,且升温速率越高热解越快,达到相同热解程度所需的时间越短。通过热重曲线研究花生壳的热解动力学,求出动力学参数。 关键词:生物质, 热解、热重分析,动力学 ABSTRACT Biomass energy is one of most important renewable energies. Paralysis is one of most promising methods of biomass utilization in the future. Study on biomass paralysis kinetics which can obtain paralysis kinetic parameters is of great important significance toward judging paralysis mechanism and influence factors and optimizing reaction

煤与生物质共热解研究进展

煤与生物质共热解的研究进展 1研究背景 目前,国内外对单独的煤或生物质热解气化研究都相对比较成熟,由于煤是由生物质经几千万年以上转换而得来的,研究表明,生物质特性和利用方式与煤炭有很大的相似性。如果能将两者热解过程有效地结合起来,实现生物质与煤的共热解,势必能扬长避短,得到更好的效果。热解是生物质与煤利用技术中具有共性的重要问题。 煤在500°C热解产物以焦炭为主;在500~650°C快速热解产物以焦油或生物油为主;在800~1100°C以可燃气为主。 影响生物质与煤热解过程及产物的因素有:①生物质或煤的物料特性;②热解终温的高低;③升温速率的快慢。生物质与煤的混合共热解,既能克服生物质能量密度低的问题,又能发挥生物质本身的特点,实现高附加值化工产品的富集。在对煤与生物质的热解研究中,目前对于催化热解机理,升温速率影响,混烧方式以及反应动力学进行了较多的研究,其中对于二者的混合共热解成为重要课题。 2生物质与煤共热解特性及动力学研究 目前,国内外对生物质与煤共热解研究主要在于二者的协同作用。对于协同作用问题,主要存在两种观点:一种认为生物质与煤共热解时存在协同作用;另一种是二者不存在协同作用 2.1 单独生物质和煤的热失重曲线比较. 图2-1[1]比较了生物质和煤的热失重曲线,可以看出,煤和生物质的DTG 曲线图中都出现了两个峰,也即脱水峰和脱挥发分峰。在50~200℃的低温阶段,煤和生物质都出现不同程度的脱水峰,这是由于煤和生物质本身都含有水分所致,物料所含水分越高,该段TG 曲线变化越明显。随着热解温度的上升,煤和生物质进入热解主要失重阶段。此段生物质的失重率急剧增大,且生物质的总热解转化率明显高于煤,这与两者的组成成分和分子结构有关。由于生物质与煤组成结构不同,其热解过程也大不相同。生物质是由纤维素、半纤维素以及木质素通过相对较弱的醚键(R-O-R)结合,其结合键能较小(380~420kJ/mol),在较低的热解温度下就断裂。因此,成分中含有较多纤维素和半纤维素的玉米秸秆(CS)在220℃左右就已开始热解,并在540℃左右就已基本热解完毕。而成分中含有较多木质素的木屑(SD)的热解起始温度稍高于CS,在230℃左右开始析出挥发分,并在590℃左右就已基本热解完毕。煤主要是C=C 键(键能为1000kJ/mol)相连的多环芳香碳氢化合物构成的大分子芳香聚合物,分子结合较强,在较低温度下很难断裂,因此煤热解温度较高。从表2-1 工业分析可知,生物质的挥发分含量要远远大于煤。以上因素都可能导致生物质更高的总热解转化率。 从DTG 曲线来看,两种生物质的挥发分开始析出温度为在225℃左右,其最大热解峰温分别为340℃左右(CS)和370℃左右(SD)左右,两种煤的挥发分开始析出温度分别为350℃左右(LC)和440℃左右(MC),其热解峰温分别约为470℃(LC)和580℃(MC)。煤的挥发分开始析出温度比生物质要高130~210℃,其主要热解阶段温度比生物质要高130~240℃。可见,生物质和煤的热解过程中主要热解阶段温度相差较大,当煤开始热分解时,生物质的大部分已经热解掉了。 因此,使两种物料在相同或相近的温度范围内共热解,生物质中富裕的氢才会尽可能有效的被煤利用而使两者共热解过程中发生协同效应。

生物质热解

生物质热解 通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,从而减少人类对于化石能源的依赖,减轻化石能源消费给环境造成的污染。目前,世界各国尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。 生物质热解是指生物质在没有氧化剂(空气、氧气、水蒸气等)存在或只提供有限氧的条件下,加热到逾500?,通过热化学反应将生物质大分子物质(木质素、纤维素和半纤维素)分解成较小分子的燃料物质(固态炭、可燃气、生物油)的热化学转化技术方法。生物质热解的燃料能源转化率可达95.5%,最大限度的将生物质能量转化为能源产品,物尽其用,而热解也是燃烧和气化必不可少的初始阶段。 1 热解技术原理 1.1 热解原理 从化学反应的角度对其进行分析,生物质在热解过程中发生了复杂的热化学反应,包括分子键断裂、异构化和小分子聚合等反应。木材、林业废弃物和农作物废弃物等的主要成分是纤维素、半纤维素和木质素。热重分析结果表明,纤维素在52?时开始热解,随着温度的升高,热解反应速度加快,到350,370?时,分解为低分子产物,其热解过程为: (C6H10O5)n?nC6H10O5 C6H10O5?H2O+2CH3-CO-CHO CH3-CO-CHO+H2?CH3-CO-CH2OH CH3-CO-CH2OH+H2?CH3-CHOH-CH2+H2O 半纤维素结构上带有支链,是木材中最不稳定的组分,在225,325?分解,比纤维素更易热分解,其热解机理与纤维素相似。

从物质迁移、能量传递的角度对其进行分析,在生物质热解过程中,热量首先传递到颗粒表面,再由表面传到颗粒内部。热解过程由外至内逐层进行,生物质颗粒被加热的成分迅速裂解成木炭和挥发分。其中,挥发分由可冷凝气体和不可冷凝气体组成,可冷凝气体经过快速冷凝可以得到生物油。一次裂解反应生成生物质炭、一次生物油和不可冷凝气体。在多孔隙生物质颗粒内部的挥发分将进一步裂解,形成不可冷凝气体和热稳定的二次生物油。同时,当挥发分气体离开生物颗粒时,还将穿越周围的气相组分,在这里进一步裂化分解,称为二次裂解反应。生物质热解过程最终形成生物油、不可冷凝气体和生物质。 1.2 热解反应基本过程 根据热解过程的温度变化和生成产物的情况等,可以分为干燥阶段、预热解阶段、固体分解阶段和煅烧阶段。 1.2.1 干燥阶段(温度为120,150?),生物质中的水分进行蒸发,物料的化学组成几乎不变。 1.2.2 预热解阶段(温度为150,275?),物料的热反应比较明显,化学组成开始变化,生物质中的不稳定成分如半纤维素分解成二氧化碳、一氧化碳和少量醋酸等物质。上述两个阶段均为吸热反应阶段。 1.2.3 固体分解阶段(温度为275,475?),热解的主要阶段,物料发生了各种复杂的物理、化学反应,产生大量的分解产物。生成的液体产物中含有醋酸、木焦油和甲醇(冷却时析出来);气体产物中有CO2、CO、CH4、H2等,可燃成分含量增加。这个阶段要放出大量的热。 1.2.4 煅烧阶段(温度为450,500?),生物质依靠外部供给的热量进行木炭的燃烧,使木炭中的挥发物质减少,固定碳含量增加,为放热阶段。实际上,上述四个阶段的界限难以明确划分,各阶段的反应过程会相互交叉进。 2 热解工艺及影响因素

煤与生物质

?煤与生物质(稻秸秆)共热解反应及动力学分析 ?发布时间:2009-10-16 阅读次数:218 字体大小: 【小】【中】【大】 煤与生物质(稻秸秆)共热解反应及动力学分析摘要:本文利用综合热分析仪,对煤(褐煤、无烟煤)与稻秸秆按不同比例混合及各自单独热解反应进行了热解实验。结果表明,生物质与煤的热解过程可简化看作是在较低温度段(400℃以下)热解以生物质为主;在高温段(600℃~850℃)热解以煤为主。生物质对煤的热解过程有促进作用,随着生物质参混比例的上升,使煤的热解高峰区的温度向低温区移动。但是促进程度是随着生物质的量的增加而减小的,并且对褐煤的促进作用要比对无烟煤的作用明显。在动力学分析中,发现褐煤和生物质单独热解过程在整个热解温度范围内可用 coats-Redfern法按反应级数n=1的过程来计算出热力学参数;但是两者混合后的热解过程,由于反应机理及过程发生了变化,并不能用简单的热解动力学模型来描述;最后,对无烟煤与稻秸秆(质量比例3:2)的混合物按升温速率分别为10℃/min和20℃/min的热解过程作了对比试验,总结出升温速率对热解反应的影响。 关键词:煤与生物质稻秸秆热重分析动力学参数 中图分类号:TK6 一引言 生物质是人类利用最早、最多、最直接的能源,同时也是低碳燃料和唯一可运输及储存的可再生能源,可实现CO2的零排放。我国生物质储量丰富,因此生物质能的开放和利用有着重大意义[1]。同时我国煤炭资源丰富,在今后很长一段时间内对煤炭的依赖性还很大。生物质与煤混合燃烧发电和热解转化技术是高效洁净合理利用我国两大优势能源的有效途径之一,不但可降低CO2、NOX 、SOX 的排放量,而且可以有效解决生物质单独使用时的焦油问题。 对于煤与生物质共热解的问题,国内外的学者作了不同结论的实验研究。对于其协同性问题,存在两个对立的观点。Chatphol.M[2]、Collot.A.G[3]等人,各自在实验中得到无协同作用的结论;而Nikkhah.K[4]、McGee.B[5]等人则在共热解试验中得出有协同性的结论。阎维平[6]用生物质混合物与褐煤的共热解试验证明生物质粉末对煤的热解有一定的促进和抑制的作用,两者间有协同性存在;而李文[7]、李世光[8]等人则通过试验说明两者无明显的协同作用。虽然各国学者对煤与生物质的共热解,做了很多实验研究,但是对反应机理和有无协同性等问题并未作出结论。 由于煤的种类众多,生物质与煤共热解的特性与煤的种类也应该有关,且还没学者对共热解过程进行深入的动力学分析,因此,本实验选用稻秸秆作为生物质试样,与褐煤及无烟煤分别进行了共热解的实验研究,寻求共热解的影响因素并进行了动力学分析。 二实验部分 1 实验样品 实验所考察的稻秸秆来自常州地区的稻子,褐煤选自云南富源煤矿,无烟煤来自山西长治的潞安矿。三者粒径均在20目到60目之间,将物料干燥后制成不同比例的试样,以备热重实验使用。表1为三种物料的工业分析参数; 名称M ad A ad V ad Fc ad 稻秸杆18.16 15.97 53.52 11.85

生物质热解原理与技术(朱锡锋)

《生物质热解原理与技术》可作为高等学校和科研院所相关专业的研究生和高年级本科生的教材使用,也可以作为生物质能领域工程技术人员的参考资料使用。 目录 目录 《21 世纪新能源丛书》序 前言 第1 章概述 1 1.1 能源的基本概念 1 1.2 绿色植物光合作用 3 1.3 生物质资源与分类 6 1.4 生物质的物理性质. 10 1.4.1 生物质的含水率.10 1.4.2 生物质的密度.10 1.4.3 堆积角、内摩擦角和滑落角 11 1.4.4 生物质炭的机械强度.12 1.4.5 生物质的比表面积.13 1.4.6 生物质的孔隙率.13 1.4.7 生物质的比热容.13 1.4.8 生物质的导热系数.13 1.5 生物质的燃料特性. 14 1.5.1 生物质的燃烧.14 1.5.2 生物质的发热量.15 1.5.3 生物质燃料的化学当量比 17 1.6 生物质能源转换技术. 18 参考文献 22 附录1-1 我国农作物秸秆资源及其分布 22 附录1-2 固体生物质燃料全水分测定方法 27 第2 章生物质的组成与结构. 30 2.1 生物质的组成和结构. 30 2.2 生物质的元素分析. 36 2.3 生物质的工业分析. 41 参考文献 47 附录2-1 纤维素聚合度的测定方法及常见生物质原料的组成成分 48 附录2-2 常见生物质原料的分析结果 56

第3 章生物质的热解原理. 80 3.1 纤维素热解机理 80 3.1.1 纤维素热解机理概述. 80 3.1.2 纤维素热解液体产物组成 81 3.1.3 LG 的形成 81 3.1.4 其他脱水糖衍生物的形成 90 3.1.5 呋喃类产物的形成. 93 3.1.6 小分子醛酮类产物的形成 94 3.1.7 纤维素快速热解的整体反应途径 97 3.2 半纤维素热解机理.100 3.2.1 半纤维素热解机理概述 100 3.2.2 半纤维素热解液体产物组成 100 3.2.3 脱水糖衍生物以及呋喃类产物的形成 100 3.2.4 小分子物质的形成.104 3.2.5 木聚糖快速热解的整体反应途径 104 3.3 木质素热解机理 107 3.3.1 木质素热解机理概述.107 3.3.2 木质素模型化合物及其热解机理.107 3.4 生物质热解的主要影响因素 118 3.4.1 加热速率的影响. 118 3.4.2 热解温度的影响. 118 3.4.3 热解时间的影响.122 3.4.4 原料种类的影响.122 3.4.5 原料性质的影响.123 3.4.6 其他因素的影响.124 参考文献 125 第4 章生物质的热解炭化.130 4.1 概述 130 4.2 生物质热解炭化原理.130 4.3 生物质热解炭化装置.132 4.3.1 传统生物质热解炭化装置 133 4.3.2 新型生物质热解炭化装置 140 4.4 生物质炭的性质与应用.146 4.4.1 生物质炭的组成.146 4.4.2 生物质炭的性质.147 4.4.3 生物质炭的应用.149 4.5 醋液与焦油的性质与应用.152 4.5.1 醋液的组成与性质.152

煤热解气体主产物及热解动力学分析

第44卷 第6期 煤田地质与勘探 Vol. 44 No.6 2016年12月 COAL GEOLOGY & EXPLORA TION Dec . 2016 收稿日期: 2015-12-25 基金项目: 山西省煤层气联合研究基金资助项目(2013012005) Foundation item :Shanxi Provincial Basic Research Program—Coal Bed Methane Joint Research Foundation(2013012005) 第一作者简介: 刘钦甫(1964—),男,河南人,博士,教授,从事煤田地质学研究. E-mail :lqf@https://www.wendangku.net/doc/f410627769.html, 引用格式: 刘钦甫, 崔晓南, 徐占杰, 等. 煤热解气体主产物及热解动力学分析[J]. 煤田地质与勘探, 2016, 44(6):27–32. LIU Qinfu, CUI Xiaonan, XU Zhanjie , et al. Main gases and kinetics of coal pyrolysis[J]. Coal Geology & Exploration, 2016, 44(6):27–32. 文章编号: 1001-1986(2016)06-0027-06 煤热解气体主产物及热解动力学分析 刘钦甫1,崔晓南2,徐占杰1,郑启明3,毋应科1 (1. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;2.中国地质大学(北京) 能源学院,北京 100083;3.河南工程学院资源与环境工程系,河南 郑州451191) 摘要: 为了研究不同煤化程度煤的热解气相产物、热解动力参数,采用热重–红外光谱–质谱(TG-IR-MS)联用技术对4种不同热演化程度的煤进行了热解实验。实时记录了4种煤样在30~1 100℃、10/min ℃升温速率、氦气气氛下热解过程中释放的各种气体成分及其释放量的变化趋势。研究结果表明,随煤热演化程度升高,煤的失重率和最大失重速率逐渐降低,与煤的干燥无灰基挥发分呈正相关关系;随着热解温度的升高,煤中逐渐释放出水、甲烷、二氧化碳、氢气和二氧化硫等小分子气体,且随着煤化程度的升高,各种气体的释放峰逐渐向高温处偏移,说明煤的热稳定性逐渐升高。不同变质程度煤的热解动力学分析结果表明,随着煤变质程度增高,其活化能逐渐降低,说明其热效应强度和发生热解反应的能力在逐渐降低。 关 键 词:煤;热解;热重–红外–质谱联用技术;气相产物;热解动力学 中图分类号:P57 文献标识码:A DOI: 10.3969/j.issn.1001-1986.2016.06.005 Main gases and kinetics of coal pyrolysis LIU Qinfu 1, CUI Xiaonan 2, XU Zhanjie 1, ZHENG Qiming 3, WU Yingke 1 (1. School of Geoscience and Surveying Engineering , China University of Mining and Technology (Beijing ), Beijing 100083, China ; 2. School of Energy Resources , China University of Geosciences (Beijing ), Beijing 100083, China ; 3. Department of Resources and Environment Engineering , Henan Institute of Engineering , Zhengzhou 451191, China ) Abstract: In order to study the gas products and kinetic parameters of coal pyrolysis, the pyrolysis experiment was carried out for four coal samples with different thermal evolution using Thermo Gravimetric-Infrared-Mass spec-trometry (TG-IR-MS). The variation trend of components and amount of released gases of four kinds of coal sam-ples during pyrolysis at temperature range of 30 to 1℃ 100 with the heating rate of 10/min under helium ℃℃ at-mosphere was recorded in real time. The thermal analysis results showed that the weight loss rate and the maximum weight loss rate of coal decreased gradually with the increase of the thermal evolution degree, and was positively related to the voltile of dry ash-free basis. Some small-molecule gases like H 2O, CH 4, CO 2, H 2 and SO 2 were re-leased gradually with pyrolysis temperature. With the increase of the coalification degree, the peaks of released gases gradually shifted to higher temperature. Pyrolysis kinetic analysis of coals with different coalification degree showed that the activation energy decreased with the metamorphism degree, illustrating that the heat effect strength and the ability of pyrolysis reactions decreased gradually. Keywords: coal; pyrolysis; TG-IR-MS; gaseous products; kinetics 煤热解是指煤在隔绝空气或惰性气氛下加热, 在不同温度下发生的一系列物理化学反应的复杂过 程,有时也称煤的干馏或热分解。煤热解的研究已 久,包括煤的热解特性、热解动力学、加氢液化和 加催化剂等附加条件的热解等[1-6]。近年来,随着现 代精密测试技术的不断进步,研究更加复杂和深入,涉及到煤与生物质共热解、添加物对煤热解气相产物的影响、热解动力学等诸多领域[7-11]。朱孔远等[7]、L R Steven 等[8]对煤与生物质共热解进行了研究。杨会民等[9]研究宁夏原煤时发现,矿物质及其脱灰煤中Na 、Ca 和Fe 盐的添加会影响热解过程中主要气相产物H 2、CH 4和CO 2的生成量、释放温区、峰形万方数据

生物质组分热解气化特性研究现状

生物质组分热解气化特性研究现状 摘要:为了提升生物质气化气热值,减少焦油产率,越来越多的研究者开始试图从生物质组分的角度对热解气化 特性进行探索.概述了碱金属、温度、压力、升温速率在热解气化过程中对生物质组分造成的影响,以及纤维素、半纤维素、木质素、萃取物和组分间相互作用对生物质热解气化过程造成的影响.提出了在二组分相互作用研究的基础上,应继续开展三组分相互作用的实验研究,以及生物质模化物和生物质原料化学结构差异对生物质原料热解气化特性的影响.此外,提出了采用单变量对照实验方法研究单变量的作用大小. 关键词:三组分;萃取物;相互作用 中图分类号:TK 6 文献标志码: A Abstract:In order to improve the heating value of the gaseous product and decrease the yield of tar from the pyrolysis and gasification of biomass,the pyrolysis and gasification characteristics of biomass components are investigated widely.The effects of the alkali,temperature,pressure,and heating rate on the pyrolysis and gasification are summarized.The effects of cellulose,hemicellulose,lignin and

the interactions between them on the gasification and pyrolysis are also discussed.Besides those,the effects of the interactions among three components,the difference among the biomass model compounds,and the chemical structure of the biomass on the gasification characteristics require some further investigations on the foundation of the two components experiments.At last,the single variable controlled experiments are proposed to study the effect of the single factor. Key words:three component;extract;interaction 生物质气化和热解是将生物质能源转换为高品位气体 燃料时使用的一种有效利用生物质能源的方式之一[1].但其 也存在着诸多问题,以生物质气化为例,主要有气化气低热值以及焦油等问题.气化气热值过低导致气化气成本上升,阻碍了气化技术的推广.提高热值的传统方法包括提高气化温 度和当量比(ER)、加入催化剂、改变物料特性[2].焦油对气化过程以及相关的设备和实验人员造成很大危害.去除焦油 的传统方法包括催化裂解、烘培、低温慢速热解处理等.催化裂解主要是在气化过程中加入镍基催化剂、白云石等,催化剂抑制焦油生成或使已生成的焦油再分解[3].此外,提高温度、改变ER也可促进焦油的分解. 近年来越来越多的研究者试图从生物质原料角度找出 提高气化气热值和去除焦油的方法,主要是从纤维素、半纤

生物质热解

生物质热解分慢速热解和快速热解。 快速热解为生物质在常压中等温度(约500℃),较高的升温速率103一104℃/s,蒸汽停留时间1s以内,据文献报道液体生物油的产率最高可达85%,并仅有少量可燃的不凝性气体和炭产生。 生物质快速热解技术始于20世纪70年代,是一种新型的生物质能源转化技术。它在隔绝空气或少量空气的条件下,采用中等反应温度,很短的蒸汽停留时间,对生物质进行快速的热解过程,再经过骤冷和浓缩,最后得到深棕色的生物油。 众所周知,目前生物质气化法是大规模集中处理生物质的主要方式,但也存在气体热值低,不易存贮、输送,小规模设备发电成本高以及上电网困难等问题;而固体燃料直接燃烧存在燃烧不完全,热利用率低,使用场合受限制等缺点。鉴于上述情形,生物质快速热解技术作为一项资源高效利用的新技术逐渐受到重视,已成为国内外众多学者研究的热点课题。因为生物油易于储存和运输,热值约为传统燃料油的一半以上,又可以作为合成化学品的原料,同时产生的少量气、固体产物可以在生产中回收利用。 2.1国外快速热解现状 国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论。欧美从20世纪70年代第一次进行生物质快速热解实验以来,已经形成比较完备的技术设备和工业化系统,表1较详细列出了欧美地区快速热解技术正常运行的反应器。

其中加拿大的Dyna Motive Energy Systems是目前利用生物质快速热解技术实行商业化生产规模最大的企业,其处理量为1500kg/h,生产以树皮、白木树、刨花、甘蔗渣为原料,在隔绝氧气450~500℃条件下,采用鼓泡循环流化床反应器,生物油的产率为60%一75%,炭15%一20%,不凝性气体10%~20%以上均为质量产率。生物油和炭可以作为商业产品出售,而不凝性气体则为循环气体燃烧使用,整个过程无废弃物产生,从而达到原料100%的利用率。 2.2国内快速热解现状 我国是一个农业大国,生物质资源非常丰富,仅稻草、麦草、蔗渣、芦苇、竹子等非木材纤维年产就超过10亿吨,加上大量的木材加工剩余物,都是取之不尽的能源仓库。 目前我国生物质的利用形式还是以直接燃烧为主,快速热解技术研究在国内尚处于起步阶段,主要的研究情况如下:沈阳农业大学开展了国家科委“八五”重点攻关项目“生物质热裂解液化技术”的研究工作,并与荷兰Twente大学合作,引进生产能力50kg/h的旋转锥型热解反应器,他们在生物质热解过程的实验研究和理论分析方面都做了很有成效的工作;浙江大学、中科院化工冶金研究所、河北环境科学院等近年来也进行了生物质流化床实验的研究,并取得了一定的成果;其中浙江大学于20世纪90年代中期,在国内率先开展了相关的原理性试验研究,最早使用GC—MS联用技术定量分析了生物油的主要组分,得到了各个运行参数对生物油产率及组成的影响程度;山东工程学院于1999年成功开发了等离子体快速加热生物质热解技术,并首次在国内利用实验室设备热解玉米秸粉,制出了生物油加。

相关文档