文档库 最新最全的文档下载
当前位置:文档库 › 数字信号处理教案-

数字信号处理教案-

数字信号处理教案-
数字信号处理教案-

教师教案(2009—2010学年第1学期)

课程名称:数字信号处理

授课学时:64

授课班级:2701201-2701312

任课教师:杨远望

教师职称:讲师

教师所在学院:通信与信息工程学院电子科技大学教务处

第一章(Review) Continuous-time Signals and Systems

授课时数:4学时

一、教学内容及要求

信号系统分析的基本方法、基本概念

连续时间信号系统的时域分析

连续时间信号系统的频域分析

二、教学重点、难点及解决办法

重点强调信号系统分析的基本方法和基本概念,在数字信号处理中也同样适用。随堂课堂练习加深印象。

三、作业

四、教学后记

同学们对信号系统相关知识遗忘较多,对基本分析方法和概念感觉较陌生,通过课堂练习加深印象后有所好转,以后可增加课堂练习的数量。

第二章Discrete-Time Signals & Systems in the Time-Domain

授课时数:4学时

一、教学内容及要求

离散时间信号的基本概念

序列的运算

采样过程

离散时间系统

有限维LTI离散时间系统的时域分析

二、教学重点、难点及解决办法

离散时间信号的概念。学生对离散时间信号与数字信号的区别往往较难理解。可画图说明。

离散周期信号的定义与连续周期信号的区别。可以正弦信号为例举例说明。

卷积运算。可通过与离散时间系统时域分析结合其物理意义加以说明。

差分方程求解。可与微分方程比较教学。

三、作业

2.5 2.9 2.13 2.22 2.15 2.26 2.34 2.49 2.64 2.65 2.70

M2.2 M2.3 M2.9

四、教学后记

同学们对双语教学方式较不适应,可在课堂上增加读课本上较难懂的英文段落环节。

第三章Discrete-Time Fourier Transform

授课时数:6学时

一、教学内容及要求

教学内容

(1)离散时间信号的DTFT的定义式及其频域周期特性

(2)常用离散信号DTFT变换计算和DTFT变换的性质。

(3)离散时间序列的功率谱密度的概念。

(4)序列DTFT的MATLAB函数计算。

教学要求

(1)深刻理解离散时间信号的DTFT的定义和性质

(2)能利用DTFT的定义式和性质计算各种序列的DTFT。

(3)会用MATLAB函数计算序列的DTFT

二、教学重点与难点

重点:(1)DTFT定义及常用离散信号DTFT变换计算。

(2)DTFT的性质。

难点:(1)理解序列DTFT的周期特性。

(2)DTFT的定义和性质的运用和计算。

三、教学设计

1、用信号分解为复指数信号来解释DTFT定义,便于学生从“信号与系统”课程得到的概念来理解DTFT这一新的频域变换;

2、举例推导常用离散信号DTFT变换;

3、理论证明部分离散时间信号的DTFT的性质,特别是共轭对称性;

4、讲解MATLAB计算序列的DTFT变换的命令函数,使学生从本章开始熟悉MATLAB软件的使用。

四、作业

3.11 3.13 3.15 3.31 3.17 3.21 3.23 3.27 3.38 3.41 3.50 3.55 3.69 3.75 3.82 M3.3, M3.7

五、本章参考资料

见参考书目。

六、教学后记

第四章Digital Processing of Continuous-Time Signals

授课时数:6学时

一、教学内容及要求

教学内容

(1)连续信号的数字处理过程和频域概念

(2)带限信号、带通信号采样定理

(3)模拟滤波器设计方法

教学要求

连续时间信号的数字处理:

(1)理解连续信号的采样过程和频域概念。

(2)带限信号、带通信号采样定理。

(3)了解模拟滤波器设计方法。

二、教学重点与难点

重点:(1)带限信号采样定理,采样信号的时域及频域变化。

(2)带通信号采样定理。

难点:(1)采样过程的频域周期化(2)模拟滤波器设计方法。

三、教学设计

(1)连续时间信号的数字处理过程讲解应注意与工程背景结合;解释专业名词术语的中、英文含义。

(2)带限信号采样定理的内容与先修课程“信号与系统”有部分重叠,讲

解时要注意特别说明离散时域、频域与连续时域、频域的数学和物理

关系;

至于采样定理讲解时,将其与信号重构(恢复)结合在一起。

(3)带通信号采样定理是软件无线电技术的重要基础理论,结合采样的频域频域周期化不产生频谱混迭条件,解释降采样的物理重要性。

(4)模拟滤波器设计方法只作简单介绍,主要讲清楚滤波器指标物理含

义、Butterworth低通滤波器设计,特别要将MATLAB的设计中各函

数、参数的意义加以说明,提示学生使用时注意。

四、作业

Read the textbook from p.171 to 186

4.3 4.6 4.8 4.11 4.12

五、本章参考资料

见参考书目。

六、教学后记

第五章Finite-Length Discrete Transforms

授课时数:12学时

一、教学内容及要求

教学内容

(1)简介序列的正交和DFS

(2)DFT的定义及频域采样概念

(3)有限长序列的圆周移位和圆周卷积和DFT性质

(4)DFT与其他傅立叶变换的关系

(5)计算实数序列的DFT

(6)利用DFT计算线性卷积

(7)补充基-2 FFT算法原理

教学要求

(1)深刻理解和掌握DFT的定义。

(2)深刻理解和掌握DFT的各种性质。

(3)深刻理解DFT与其他傅立叶变换的关系。

(4)会计算实数序列的DFT。

(5)掌握序列的圆周卷积以及线性卷积的关系。

(6)了解基-2 FFT算法原理、运算量减少情况。

二、教学重点与难点

重点:(1)DFT变换的定义和性质。

(2)圆周卷积运算。

(3)FFT算法原理及如何减少运算量

难点:(1)DFT与DTFT变换的关系。

(2)DFT变换的定义和性质。

(3)圆周卷积运算及其与线性卷积的关系。

(4)基-2 FFT算法原理。

三、教学设计

1、借助矢量正交概念推广到序列的正交和DFS定义,建立DFS的时域、频域均为离散周期的概念;

2、推导DFS的部分性质,特别是周期卷积运算----通过制作PPT动画形象地展示其计算过程,并对比线性卷积的计算过程进行讲解,以便于学生理解;

3、DFT变换的定义特别需要讲清楚DTFT频域采样概念,结合DFS取主值一周加深学生对DFT变换的理解,讲解时板书应结合PPT;

4、推导部分DFT变换的性质,特别是实序列的共轭对称性,可以结合先修课程“信号与系统”的FT性质加深同学的理解;

5、通过制作PPT动画形象地展示圆周卷积运算过程,并对比线性卷积的计

算过程进行讲解圆周卷积与线性卷积的关系;

6、基-2 FFT算法原理应侧重于为什么该算法能减少乘法运算量,通过教材

内容重组作为该算法的工程应用举例。

四、作业

5.8 5.11 5.13 5.15 5.20 5.23 5.25 5.28 5.29 5.35 5.41 5.45 5.49 5.54 5.57

M5.1 M5.2 M5.8

五、本章参考资料

见参考书目。

六、教学后记

第六章z-Transform

授课时数:3学时

一、教学内容及要求

教学内容

(1)z变换的定义和收敛区(ROC)的概念。

(2)z变换的性质。

(3)传递函数的概念。

教学要求

(1)掌握离散信号的z变换计算方法和性质。

(2)深刻理解系统传递函数H(z)概念及其计算。

二、教学重点与难点

重点:(1)z变换的定义及计算。

(2)系统传递函数的概念。

难点:(1)z变换的性质。

(2)系统传递函数H(z)及其零、极点。

三、教学设计

1、z变换计算方法和性质在先修课程“信号与系统”中已经重点学习过,讲解

可以较快;

2、重点讲解系统传递函数H(z)概念及其零、极点分布,授课中注意板书与PPT的结合。

四、作业

Read textbook from p.301 to 343

6.1 6.5 6.8 6.9 6.12 6.17 6.20 6.24 6.25 6.30 6.37 6.40 6.45 6.51 6.58

M6.1 M6.3

五、本章参考资料

见参考书目。

六、教学后记

第七章LTI Discrete-Time in the Transform Domain

授课时数:4学时

一、教学内容及要求

教学内容

(1)根据幅度特性的系统分类

(2)根据相位特性的系统分类

(3)几种线性相位的系统特性

(4)数字滤波器概念

教学要求

(1)掌握根据幅度特性的系统分类。

(2)掌握根据相位特性的系统分类。

(3)深刻理解几种线性相位的系统特性。

(4)了解数字滤波器概念。

二、教学重点与难点

重点:(1)常见的几种数字系统。

(2)四种线性相位的(FIR)系统特性。

难点:线性相位系统的概念。

三、教学设计

1、结合工程要求讲解为什么要对系统幅度特性、相位特性进行分类;

2、结合频率选择性系统来介绍常见的几种数字滤波器系统;

3、重点推导四种线性相位的(FIR)系统特性,特别是它们的幅度特性、相位特性及零点的对称性------通过图形可以比较好地形象化展示其特点(这一部分可以不用教材的推导过程)。

四、作业

Read the textbook from p.353 to 391

Problems

7.8, 7.9, 7.12, 7.19, 7.21, 7.22, 7.26, 7.31, 7.53, 7.61, 7.62

M7.3, M7.5

五、本章参考资料

见参考书目。

六、教学后记

第八章Digital Filter Strcture

授课时数:4学时

一、教学内容及要求

教学内容

(1)数字滤波器实现的基本部件

(2)FIR滤波器的直接型、级联型、线性相位结构

(3)IIR滤波器的直接型、级联型、并联型结构

教学要求

(1)掌握IIR滤波器的直接型、级联型、并联型结构。

(2)掌握FIR滤波器的直接型、级联型、线性相位结构。

二、教学重点与难点

重点:数字滤波器的结构形式的推导及各自特点。

难点:数字滤波器实现结构的典范式结构和非典范式结构。

三、教学设计

1、解释数字滤波器实现的基本部件在DSP芯片中或程序中的实现,加深系统

结构实现的物理概念,有利于理解数字滤波器实现结构的典范式结构和非典范式结构;

2、解释数字滤波器结构的转置等效,进而推导出FIR滤波器的直接型、级联型、线性相位结构;

3、推导出IIR滤波器的直接型、级联型、并联型结构,并解释各自的优、缺点。

4、讲解利用MATLAB进行结构实现的命令、函数及其使用方法,帮助同学更好地掌握MATLAB应用。

四、作业

8.5(6.4), 8.10, 8.24(6.26), 8.26(6.28)

M8.1, M8.2, M8.3

五、本章参考资料

见参考书目。

六、教学后记

第九章IIR Digital Filter Design

授课时数:5学时

一、教学内容及要求

教学内容

(1)数字滤波器参数的物理意义

(2)IIR数字滤波器(主要低通)的冲激响应不变法设计

(3)IIR数字滤波器(主要低通)的双线性变换设计法

(4)高通,带通,带阻IIR数字滤波器的设计简介

(5)利用MATLAB设计IIR数字滤波器

教学要求

(1)理解数字滤波器的通带、阻带、通带起伏、阻带衰减、阶数等参数的物理意义。

(2)熟练掌握IIR数字滤波器(主要低通)的双线性变换设计法。

(3)了解高通,带通,带阻IIR数字滤波器的设计。

(4)熟练掌握利用MATLAB设计IIR数字滤波器的方法。

二、教学重点与难点

重点:(1)理解滤波器参数的物理意义。

(2)双线性变换法设计IIR数字滤波器的方法。

难点:双线性变换法的推导过程和频率预崎变。

三、教学设计

1、结合IIR、FIR数字滤波器的系统函数特点讲解数字滤波器的选型考虑;

2、推导冲激响应不变法设计IIR数字滤波器(主要低通),并指出该方法存在的频谱交叠缺点;

3、推导双线性变换法设计IIR数字滤波器,重点解释频率非线性变换现象和设计步骤中频率预崎变的必要性;

4、通过一个实际设计例题使同学理解实际设计IIR数字滤波器的过程和方法应用。

四、作业

Read textbook from 427 to 454

Problems

9.1 9.3 9.9 9.13 9.14 9.16 9.22

M9.2 M9.11

五、本章参考资料

见参考书目。

教学后记

第十章FIR Filter Design

授课时数:6学时

一、教学内容及要求

教学内容

(1) FIR数字滤波器窗函数设计法;理解窗函数的物理概念及其对数字滤波器参数(通带、阻带、通带起伏、阻带衰减、阶数等)的影响。

(2) FIR数字滤波器频率采样设计法。

(3) MATLAB设计FIR数字滤波器。

教学要求

熟练掌握FIR数字滤波器的窗函数设计法和频率采样法两种设计方法。理解窗函数的物理概念及其对数字滤波器参数(通带、阻带、通带起伏、阻带衰减、阶数等)的影响。会采用MATLAB完成FIR数字滤波器的设计。

二、教学重点与难点

重点:(1)窗函数的物理概念和窗函数设计法。

(2)频率采样设计法。

难点:(1)窗函数的物理概念及其对数字滤波器参数的影响。

(2)频率采样设计法。

三、教学设计

1、结合板书及图形讲解窗函数的物理概念及其对数字滤波器参数的影响,对各种窗函数的性能加以介绍;

2、FIR数字滤波器频率采样设计法是教材中的作业题,讲解时注意与DFT的关联,并解释该方法适用于窄带滤波器设计的原因;

3、解释FIR数字滤波器的设计的MATLAB命令、函数,提高学生的MATLAB应用能力。

四、作业

Read textbook from 461 to 515

Problems

10.8, 10.15, 10.16, 10.19

M10.1, M10.5, M10.8, M10.9

五、本章参考资料

见参考书目。

六、教学后记

第十六周~第十八周:

安排软件实验8学时。并进行MATLAB机考。

数字信号处理西电

数字信号处理上机第一次实验 实验一: 设给定模拟信号()1000t a x t e -=,的单位是ms 。 (1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分 量降低到峰值的3%以下的频谱)。 (2) 用两个不同的采样频率对给定的进行采样。 ○1 。 ○2 。 比较两种采样率下的信号频谱,并解释。 实验一MATLAB 程序: (1) ○ 1 clc; fs=5000; ts=1/fs; N=1000; t=(-N:N)*ts; s=exp(-abs(t)); plot(t,s,'linewidth',1.5) xlabel('时间') ylabel('幅度') set(gca,'fontweight','b','fontsize',12) SPL=N*100; figure sp=fftshift(fft(s,SPL)); sp=sp/max(sp)*100; freqb=-fs/2:fs/SPL:fs/2-fs/SPL; plot(freqb,abs(sp)) xlabel('频率') ylabel('频谱幅度') set(gca,'fontweight','b','fontsize',12) yy=abs(abs(sp)-3); [aa,freqind]=min(yy); (freqind-SPL/2)*fs/SPL t ()a x t ()()15000s a f x t x n =以样本秒采样得到。()() 11j x n X e ω画出及其频谱()()11000s a f x t x n =以样本得到。()()11j x n X e ω画出及其频谱

数字信号处理习题集(附答案)

第一章数字信号处理概述 简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。 在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。 () 答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处

理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频 率。 (b ) 对于kHz T 201=,重复(a )的计算。 采样(T) () n h () n x () t x () n y D/A 理想低通T c πω=() t y 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理期末试卷(含答案)

一、 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ω j e X n x FT =,用)(n x 求出)](Re[ω j e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 二、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列 )1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A. a Z < B. a Z ≤ C. a Z > D. a Z ≥ 3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()(Λ=?=k k Y k X k F ,19,1,0)],([)(Λ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,) ()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

信号处理-习题(答案)

数字信号处理习题解答 第二章 数据采集技术基础 2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中 ?? ???≥Ω<Ω=Ωππ 3032 1 )(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。试问输出信号y 1(t ), y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。 解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率ππ π32 621 =< =Ωh , 所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率ππ π32 652 => =Ωh , 所以y 2(t )失真。 2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求: (1) 该信号的最小采样频率; (2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。 ○ 1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频

率f m 的两倍,即 f s ≥2f m ○ 2采样公式 )()()(s nT t nT x t x n x s === 解:(1)在模拟信号中含有的频率成分是 f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz ∴信号的最高频率f m =6000Hz 由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号 ? ?? ? ????? ??-???? ????? ??=? ??? ????? ??+???? ????? ??-???? ????? ??=? ??? ????? ??++???? ????? ??-+???? ????? ??=? ??? ????? ??+???? ????? ??+???? ????? ??=? ?? ? ??====n n n n n n n n n n n f n x nT x t x n x s s nT t s 522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分, 即 kHz f f f kHz f f f s s 25000200052150001000512211 ======,, 若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号

数字信号处理教案

数字信号处理教案

数字信号处理教案

课程特点: 本课程是为电子、通信专业三年级学生开设 的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0 080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认

真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》作者丁玉美高西全西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述.

数字信号处理期末试题及答案(1)

一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 答案: 1.10 2.交换律,结合律、分配律 3. 4 11,01z z z --->- 4. k N j e Z π2= 5.{0,3,1,-2; n=0,1,2,3} 6.()()()y n x n h n =* 7. x(0) 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( a ) A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( c ) A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( b ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT 的是 ( d ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列 C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完 全不失真恢复原信号 ( a ) A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( b ) A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( c ) A. 实轴 B.原点 C.单位圆 D.虚轴

西电数字信号处理上机实验报告

数字信号处理上机实验报告 14020710021 张吉凯 第一次上机 实验一: 设给定模拟信号()1000t a x t e -=,t 的单位是ms 。 (1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。 (2) 用两个不同的采样频率对给定的()a x t 进行采样。 ○1()()15000s a f x t x n =以样本秒采样得到。 ()()11j x n X e ω画出及其频谱。 ○2()()11000s a f x t x n =以样本秒采样得到。 ()() 11j x n X e ω画出及其频谱。 比较两种采样率下的信号频谱,并解释。 (1)MATLAB 程序: N=10; Fs=5; T s=1/Fs; n=[-N:T s:N]; xn=exp(-abs(n)); w=-4*pi:0.01:4*pi; X=xn*exp(-j*(n'*w)); subplot(211) plot(n,xn); title('x_a(t)时域波形'); xlabel('t/ms');ylabel('x_a(t)'); axis([-10, 10, 0, 1]); subplot(212); plot(w/pi,abs(X)); title('x_a(t)频谱图'); xlabel('\omega/\pi');ylabel('X_a(e^(j\omega))');

ind = find(X >=0.03*max(X))*0.01; eband = (max(ind) -min(ind)); fprintf('等效带宽为%fKHZ\n',eband); 运行结果: 等效带宽为12.110000KHZ

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

数字信号处理教案

数字信号处理教案 余月华

课程特点: 本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。 本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。 鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。基本掌握了课堂教学内容后, 再去做作业。在学习中, 要养成多想问题的习惯。 课堂讲授方法: 1. 关于教材: 《数字信号处理》 作者 丁玉美 高西全 西安电子科技大学出版社 2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。. 3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述. 4. 要求、辅导及考试: a. 学习方法: 适应大学的学习方法, 尽快进入角色。 课堂上以听为主, 但要做课堂笔记,课后一定要认真复习消化, 补充笔记,一般课堂教学与课外复习的时间比例应为1 : 3 。 b. 作业: 大体上每两周收一次作业, 一次收清。每次重点检查作业总数的三分之一。 作业的收交和完成情况有一个较详细的登记, 缺交作业将直接影响学期总评成绩。 c. 辅导: 大体两周一次。 d. 考试: 只以最基本的内容进行考试, 大体上考课堂教学和所布置作业的内容。 课程的基本内容与要求 第一章. 时域离散信号与时域离散系统 1. 熟悉6种常用序列及序列运算规则; 2. 掌握序列周期性的定义及判断序列周期性的方法; 3. 掌握离散系统的定义及描述方法(时域描述和频域描述); 4. 掌握LSI 系统的线性移不变和时域因果稳定性的判定; 第二章 时域离散信号与系统的傅立叶变换分析方法

(完整版)数字信号处理试卷及答案

江 苏 大 学 试 题 课程名称 数字信号处理 开课学院 使用班级 考试日期

江苏大学试题第2A页

江苏大学试题第3A 页

江苏大学试题第页

一、填空题:(每空1分,共18分) 8、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 9、 双边序列z 变换的收敛域形状为 圆环或空集 。 10、 某序列的DFT 表达式为∑-== 10 )()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N , 变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 11、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值4)0(=h ; 终值)(∞h 不存在 。 12、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长 序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 13、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换 关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之 间的映射变换关系为)2tan(2ωT = Ω或)2 arctan(2T Ω=ω。 当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,

2017年西电电院数字信号处理教学大纲

《数字信号处理》课程教学大纲 课程代码:IB3123008 课程名称:数字信号处理英文名称:Digital Signal Processing 开课学期:第6学期 学分:3 学时:48 课程类別:必修课,专业基础课 适用专业:电子信息工程、信息对抗技术、遥感科学与技术、电磁场与无线技术、智能科学与技术 开课对象:三年级本科生 先修课程:信号与系统、MATLAB语言 后修课程:雷达原理、数字图像处理、数字音视频处理等 开课单位:电子工程学院 团队负责人:史林责任教授:史林 执笔人:史林核准院长:苏涛 一、课程性质、目的和任务 数字信号处理采用数字技术,研究信号和系统分析、处理、设计的基本原理和方法,是电子信息与电气工程类专业(电子信息工程专业、通信工程专业、信息工程专业等)的专业基础课,具有理论与实践紧密结合的特点。 通过本课程的学习,使学生建立数字信号处理的基本概念,掌握数字信号处理的基本原理、理论和方法,了解数字信号处理的新方法和新技术,熟练应用现代工具进行数字信号处理的仿真、分析和设计,达到能够对数字信号和系统进行分析、处理和设计的能力水平。为学习后续专业课程、进行创新性研究和解决复杂工程问题,奠定坚实的专业基础理论知识和工程实践能力。 本课程对学生达到如下毕业要求有贡献

二、教学内容、基本要求及学时分配 《数字信号处理》课程的教学内容、基本要求、学时分配和毕业要求指标点在教学中的具体体现如下。 (一)绪论 ( 2学时) 1.教学内容 介绍数字信号处理的基本概念、研究的内容及应用领域、发展概况和发展趋势,数字信号处理的基本特点,用数字方法处理信号的基本概念和一般方法。 2.基本要求 (1)了解数字信号处理研究的内容、应用领域、发展概况和发展趋势; (2)熟悉数字信号处理的基本概念和特点; (3)掌握用数字方法处理信号的基本概念和一般方法。 3.重点、难点 重点:数字信号处理的基本概念和特点。 难点:用数字方法处理信号的基本概念和一般方法 4.作业及课外学习要求 作业:分析数字信号处理的特点;熟悉用数字方法处理信号的一般方法,理解其中每个模块单元的作用。 课外学习:学习或复习MATLAB语言,掌握编程方法和技巧,做好后续的上机实验准备。 5.对毕业要求指标点的具体贡献 对指标点2-1的具体贡献:理解复杂工程问题中的数字系统; (二)离散时间信号和系统的时域分析( 4学时+4学时上机) 1.教学内容

数字信号处理基础书后题答案中文版

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、35000π =ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π =ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S === μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数 倍 -200 200 400 600 800 1000 1200 0.10.20.30.40.50.60.70.80.91 幅度 频

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 ) 5 4sin( )8 sin( )4() 51 cos()3() 54sin()2() 8sin( )1(n n n n n π π π π - ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2))8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。 ③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他0 2 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= }2 3 ,4,7,4,23{0,h(n)*答案:x(n)= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转) 解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+= }{1,4,6,5,2答案:x(n)= 4. 如果输入信号为 ,求下述系统的输出信号。

数字信号处理期末试卷(含答案)

一、 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ω j e X n x FT =,用)(n x 求出)](Re[ω j e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5 .1)5()0(======h h h h h h ,其幅 度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 二、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

2017年西电电院数字信号处理上机实验报告三

实验三、信号的频域与Z域分析 班级:学号:姓名:成绩: 1实验目的 (1)理解序列离散傅里叶变换(DTFT)的定义,熟悉序列DTFT的计算及其主要性质; (2)掌握Z变换的计算和主要性质,熟悉Z变换的收敛域及其与序列特性的关系,以及Z变换与DTFT的关系; (3)掌握时域离散线性时不变系统的频域分析方法,深刻理解系统的频率响应。了解系统的稳态响应和暂态响应、相位延迟和群延迟等概念; (4)掌握时域离散线性时不变系统的z域分析方法,深刻理解离散系统的系统函数及其零极点分布,熟悉零极点分布与系统的因果性和稳定性关系、零极点分布对系统频率特性的影响、差分方程的Z变换解法等; 2 实验内容 (1)设计计算机程序,产生序列并计算序列的DTFT,绘制其幅频特性和相频特性曲线; (2)根据系统的单位脉冲响应和差分方程,计算系统的频率响应,绘制系统频率响应的幅频特性和相频特性曲线; (3)根据系统的单位脉冲响应和差分方程,计算系统的系统函数、零极点分布;改变系统的零极点分布,观察系统频率响应的变化。 3实验步骤 (1)设计有限长序列Rn;计算序列的DTFT,绘制幅频特性和相频特性曲线 (2)改变系统的系统函数的零点分布,绘制系统改变前和改变后的频率响应的幅频特性和相频特性曲线 4 程序设计 x=[1,1,1,1];nx=[0:3];%x(n)=R(n) w=linspace(-2.8*pi,2.8*pi,100000);%取100000个点

X=x*exp(-j*nx'*w);%DTFT figure(1); subplot(3,2,1),plot(w/pi,abs(X));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(3,2,2),plot(w/pi,angle(X));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi') %差分方程求解 a=[1,-0.4];b=[1]; [H,w]=freqz(b,a,'whole'); subplot(3,2,3),plot(w/pi,abs(H));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(3,2,4),plot(w/pi,angle(H));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi') %零极点分布 a=[1,-1.6,0.9425];%分母 b1=[1,-0.3];b2=[1,-0.8];%分子 [F,w]=freqz(b1,a,'whole'); figure(2); subplot(2,2,1),zplane(b1,a);%零极点分布图 subplot(2,2,3),plot(w/pi,abs(F));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(2,2,4),plot(w/pi,angle(F));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi') figure(3);%改变零极点分布,观察频率响应变化 [F,w]=freqz(b2,a,'whole'); subplot(2,2,1),zplane(b2,a); subplot(2,2,3),plot(w/pi,abs(F));xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|') subplot(2,2,4),plot(w/pi,angle(F));xlabel('\omega/\pi');ylabel('\phi(\omega)/\pi')

数字信号处理习题集附答案)

第一章数字信号处理概述简答题: 1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用? 答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称位“抗折叠”滤波器。 在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。 判断说明题: 2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()答:错。需要增加采样和量化两道工序。 3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理 理论,对信号进行等效的数字处理。() 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字

长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。 第二章 离散时间信号与系统分析基础 一、连续时间信号取样与取样定理 计算题: 1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混迭效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。 (a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。 (b ) 对于kHz T 201=,重复(a )的计算。 解 (a )因为当0)(8=≥ω πωj e H rad 时,在数 — 模变换中 )(1)(1)(T j X T j X T e Y a a j ωω=Ω= 所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为 8 π = ΩT c 因此 Hz T f c c 625161 2==Ω= π

数字信号处理试题及答案

数字信号处理试题及答案 一、填空题:(每空1分,共18分) 1、 数字频率ω就是模拟频率Ω对采样频率s f 的归一化,其值就是 连续 (连续还就是离 散?)。 2、 双边序列z 变换的收敛域形状为 圆环或空集 。 3、 某序列的 DFT 表达式为∑-==1 0)()(N n kn M W n x k X ,由此可以瞧出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔就是 M π 2 。 4、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值 4)0(=h ;终值)(∞h 不存在 。 5、 如果序列)(n x 就是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 就是一长度为128 点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的 映射变换关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω 与数字频率ω之间的映射变换关系为)2 tan(2ω T =Ω或)2arctan(2T Ω=ω。 7、当线性相位 FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为 )1()(n N h n h --= ,此时对应系统的频率响应)()()(ω?ω ωj j e H e H =,则其对应的相位函数为 ωω?2 1 )(-- =N 。 8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。 二、判断题(每题2分,共10分) 1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可 以了。 (╳)

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 课程编号: 11322617,11222617,11522617 课程名称:数字信号处理 英文名称:Digital Signal Processing 课程类型: 专业核心课程 总学时:56 讲课学时:48 实验学时:8 学分:3 适用对象: 通信工程专业、电子信息科学与技术专业 先修课程:信号与系统、Matlab语言及应用、复变函数与积分变换 执笔人:王树华审定人:孙长勇 一、课程性质、目的和任务 《数字信号处理》是通信工程、电子信息科学与技术专业以及电子信息工程专业的必修课之一,它是在学生学完了信号与系统的课程后,进一步学习其它专业选修课的专业平台课程。本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础。 二、课程教学和教改基本要求 数字信号处理是用数字或符号的序列来表示信号,通过数字计算机去处理这些序列,提取其中的有用信息。例如,对信号的滤波,增强信号的有用分量,削弱无用分量;或是估计信号的某些特征参数等。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计和识别等都是数字信号处理的研究对象。 本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。通过本课程的学习使学生掌握利用DFT理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础,应当达到以下目标: 1、使学生建立数字信号处理系统的基本概念,了解数字信号处理的基本手段以及数字信号处理所能够解决的问题。 2、掌握数字信号处理的基本原理,基本概念,具有初步的算法分析和运用MATLAB编程的能力。 3、掌握数字信号处理的基本分析方法和研究方法,使学生在科学实验能力、计算能力和抽象思维能力得到严格训练,培养学生独立分析问题与解决问题的能力,提高科学素质,为后续课程及从事信息处理等方面有关的研究工作打下基础。 4、本课程的基本要求是使学生能利用抽样定理,傅立叶变换原理进行频谱分析和设计简单的数字滤波器。 三、课程各章重点与难点、教学要求与教学内容

相关文档
相关文档 最新文档