文档库 最新最全的文档下载
当前位置:文档库 › 数字温度传感器测量误差的原因及处理方法

数字温度传感器测量误差的原因及处理方法

数字温度传感器测量误差的原因及处理方法
数字温度传感器测量误差的原因及处理方法

例如,在ADT7461的D+和D-输入端之间增加一个简单的R-C-R滤波器可以减少或消除在温度测量电路上的噪声效应。远程传感器是一种连接了二极管的标准PNP晶体管,其发射极被连接到ADT7461的D+引脚,基极和集电极连接到D-引脚。该滤波器包含两个100Ω的电阻和一个1nF的电容。

把该滤波器尽可能地放在接近D+和D-输入端的地方并按图示进行连接。该滤波器的截止频率为1.6 MHz。如果不放置滤波器,温度测量误差可以达到80℃或更高!加入滤波器之后,测量误差可以下降到1℃以下,因此这个电路非常适合于高噪声环境。

可以使用其它数值的电阻和电容来构建满足截止频率要求的滤波器:电容的最大值应低于2.2 nF,因为任何更高的数值将对温度测量产生影响;同样,D+和D-上的电阻加起来最大不应超过3 kΩ。

通常,在远程传感器和标准的数字温度传感器之间的任何电阻都将影响温度测量的精度,比如,对于与传感器串联的寄生电阻,每欧姆将导致0.5℃的偏移。

然而,ADT7461可以自动抵消最大为3 kΩ的串联电阻效应,正是这个特性使我们可以在ADT7461和远程传感器之间加入滤波器。图中的滤波器在连接到外部传感器的D+和D-路径上都使用了100 Ω的电阻。这两个电阻无需用户校准,实际上,任何同PCB引线或其它连接器有关的电阻将被抵消掉,从而允许远程传感器被放在距ADT7461一定距离的地方。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/f414355362.html,/

测量误差的分类1

测量误差的分类,表示方法及检测仪表的品质指标 测量误差: 定义:由仪表读得的被测参数的真实值之间,总是存在一定的差距,这种差距称为测量误差。 分类:(1)系统误差 这种误差的大小和方向不随时间测量过程而改变,这种误差是可以避免的。 (2)疏忽误差 测量者在测量过程中疏忽大意所致,这种误差也可以避免。 (3)偶然误差 这种误差是由一些随机的偶然原因引起的,亦称随机误差。它不易被发觉和修正。 偶然误差的大小反映了测量过程的精度。 表示方法: 式中△ —— 绝对误差 X ——被校表的读数值 X 0——标准表的读数值 Λ——仪表在X 0相对误差 检测仪表的品质指标: 常见的指标简介如下: (1)检测仪表的准确度(精确度) б={△max/(标尺上限值-标尺下限值)}×100% б——相对百分误差 △max ——绝对误差 允许误差是指在规定的正常情况下允许的相对百分误差的最大值,即 б允=±{仪表允许的最大绝对误差值/(标尺上限值-标尺下限值) }×100% б允越大,准确度越低,б允 越小,仪表的准确度越高。

一般数值越小,仪表的准确度等级越高。 (2)检测仪表的恒定度 恒定度常用变差(回差)来表示 变差={最大绝对差值/(标尺上限值-标尺下限值) }×100% (3)灵敏度与灵敏限 S=Δα/Δx 式中S——仪表灵敏度 Δα——指针的线位移或角位移 Δx——引起Δα所需的被测参数变化量 (4)反应时间 仪表反应时间的长短,实际上反映了仪表动态特征的好坏。 (5)线性度 线性度用来说明输出量与输入量的实际关系曲线偏离直线的程度。 线性度常用实际测得的输入-输出特征曲线(称为标定曲线)与理论拟合直线之间的最大偏差与检测仪表满量程输出范围之比的百分数来表示,即 б?=(△?max /仪表量程)×100% 式中б?——线性度(非线性误差) Δ?max——标定曲线对理论拟合直线的最大偏差 (6)重复性 重复性表示检测仪表在被测参数按同一方向作全程连续多次变动时所得标定特性曲线不一致的程度。 бz =(Δz max/仪表量程)×100% 式中бz——重复性误差 Δz max—同方向多次测量时仪表表示值得最大偏差值

测量误差产生的原因

测量误差产生的原因 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝(Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下: 1. 人为因素 由于人为因素所造成的误差,包括误读、误算和视差等。而误读常发生在游标尺、分厘卡等量具。游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm。误算常在计算错误或输入错误数据时所发生。视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.3~0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生的误差量。为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V 形且本尺为凸V形,因此形成两刻划等高。 2. 量具因素 由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素。刻度分划是否准确,必须经由较精密的仪器来校正与追溯。量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用。 3. 力量因素 由于测量时所使用接触力或接触所造成挠曲的误差。依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成。其次,依据赫兹(Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量 应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度的断面二次矩为,长的支柱为,纵弹性系数分别为、,因此测量力为P 时,挠曲量为。为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度。除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲。通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点(Airey Points) 。线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点(Bessel Points) 4. 测量因素 测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等。余弦误差是发生在测量轴与待测表面成一定倾斜角度,如图2-4-5所示其误差量为,为实际测量长度。通常,余弦误差会发生在两个测量方向,必须特别小心。例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸。同理,测量外侧时,也需注意取其正确位置。测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

谈谈系统误差的产生原因及其消除或减少的方法(精)

谈谈系统误差的产生原因及其消除或减少的方法 在讨论随机误差时,总是有意忽略系统误差,认为它等于零。若系统误差不存在,期望值就是真值。但是,在实际工作中系统误差是不能忽略的。所以要研究系统误差,发现和消除系统误差。 一、系统误差产生的原因 在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。 1、在检定或测试中,标准仪器或设备的本身存在一定的误差。在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。又称为工具误差或仪器误差。如:标称值为100g的砝码,经检定实际值为99.997g,即误差为 0.003g。用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生 0.003g的恒定系统误差。 某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。这种误差,一般称零位误差,或简称零差。 某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。这种误差称为装置误差。 2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。因这种误差是由客观环境因素引起的,一般把它称为环境误差。 3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。这种误差称方法误差或称理论误差。 4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。此项误差又称为人员误差。 二、消除或减少系统误差的方法 mad消除或减少系统误差有两个基本方法。一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。 1.采用修正值方法 对于定值系统误差可以采取修正措施。一般采用加修正值的方法。 对于间接测量结果的修正,可以在每个直接测量结果上修正后,根据函数关系式计算出测量结果。修正值可以逐一求出,也可以根据拟合曲线求出。 应该指出的是,修正值本身也有误差。所以测量结果经修正后并不是真值,只是比未修正的测得值更接近真值。它仍是被测量的一个估计值,所以仍需对测量结果的不确定度作出估计。 2.从产生根源消除 用排除误差源的办法来消除系统误差是比较好的办法。这就要求测量者对所用标准装置,测量环境条件,测量方法等进行仔细分析、研究,尽可能找出产生系统误差的根源,进而采取措施。

测量误差及数据处理的基本知识(精)

第一章测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就 是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N,相应的真值为N0,测量值与真值之差ΔN ΔN=N-N0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将

测量误差与精度

5.5.1 测量误差与精度 1. 测量误差的含义及表示方法 测量误差是测量结果与被测量的真值之差。由于测量误差的存在,被测量的真值是不能准确得到的。实用中,一般是以约定真值或以无系统误差的多次重复测量值的平均值代替真值。 测量误差有绝对误差和相对误差之分。 上述定义的误差称为绝对误差。即 = - (5-3) 绝对误差可能是正值或负值。被测尺寸相同的情况下,绝对误差大小能够反映测量精度。被测尺寸不同时,绝对误差不能反映测量精度。这时,应用相对误差的概念。 相对误差是指绝对误差的绝对值与被测量真值之比,即 (5-4) 2. 测量的精确度 测量的精确度是测量的精密度和正确度的综合结果。测量的精密度是指相同条件下多次测量值的分布集中程度,测量的正确度是指测量值与真值一致的程度。下面用打靶来说明测量的精确度: 把相同条件下多次重复测量值看作是同一个人连续发射了若干发子弹,其结果可能是每次的击中点都偏离靶心且不集中,这相当于测量值与被测量真值相差较大且分散,即测量的精密度和正确度都低;也可能是每次的击中点虽然偏离靶心但比较集中,这相当于测量值与被测量真值虽然相差较大,但分布的范围小,即测量的正确度低但精密度高;还可能是每次的击中点虽然接近靶心但分散,这相当于测量值与被测量真值虽然相差不大但不集中,即测量的正确度高但精密度低;最后一种可能是每次的击中点都十分接近靶心且集中,这相当于测量值与被测量真值相差不大且集中,测量的正确度和精密度都高,即测量的精确度高。 5.5.2 测量误差的来源及减小测量误差的措施 测量误差直接影响测量精度,测量误差对于任何测量过程都是不可避免的。正确认识测量误差的来源和性质,采取适当的措施减小测量误差的影响,是提高测量精度的根本途径。测量误差主要来源于以下几个方面:

测量误差产生的原因及其避免途径

测量误差产生的原因及其避免途径 测量工作的实践表明,在任何几何量测量工作中,无论是测角、测高还是测量距,当对同一量进行多次观测时,不论测量仪器多么精密,观测进行得多么仔细,测量结果总是存在着差异,彼此不相等。测量误差的来源与下列因素有关:基准件的误差、测量方法的误差、计量器具的误差、测量环境以及测量人员引起的误差等。 一、基准件的误差 任何基准都不可避免存在误差,当用它作基准时,其误差会带入测量值中。因此,在选择基准件时,一般都希望基准件的精度选高一些。但是,基准件的精度太高也不经济,在生产实践中一般取基准件的误差占总测量误差的1/5~1/3。 二、测量方法误差 方法误差是指测量时选用的测量方法不完善而引起的误差。测量时,采用的测量方法不同,产生的测量误差也不一样。例如,测量大型工件的直径,可以采用直接测量法,也可以采用测量弦长和弓高的间接测量法,其测量误差是不相同的。直接测量与间接测量相比较,前者的测量误差只取决于被测参数本身的计量与测量环境和条件所引起的误差;而后者则取决于被测参数有关的各个间接测量参数的计量器具与测量环境和条件所引起的误差,以及它们之间的计算误差。 三、计量器具的误差 1.理论误差 由于仪器设计时,经常采用近似机构代替理论上所要求的运动机构,用均匀刻度的刻度尺近似的代替理论上要求非均匀刻度的刻度尺,或者仪器设计时违背阿贝原则等,这样造成的误差称理论误差。 2.仪器制造和装配调整误差 仪器零件的制造误差和装配调整误差都会直接引起仪器误差。例如,仪器读数装置中刻度尺、刻度盘的刻度误差和装配时的偏斜或偏心引起的误差;仪器传动装置中杠杆、齿轮副、螺旋副的制造误差以及装配误差;光学系统的制造、调整误差;传动件间的间隙、导轨的平面度、直线度误差等。这些都会影响仪器的示值误差和稳定性。 影响仪器制造、装配误差的因素很多,情况比较复杂,也难于消除掉。最好的方法是在使用中,对一台仪器进行检定,掌握它的示值误差,并列出修整表,以消除其系统误差。另外,用多次测量的方法以减少随机误差。 四、测量力引起的误差

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

测量误差及其处理的基本知识

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

水文测量误差产生的原因分析及对策研究`

水文测量误差产生的原因分析及对策研究` 发表时间:2016-10-17T16:52:01.323Z 来源:《基层建设》2015年10期作者:刘红[导读] 摘要:测量工作能够使人们更好的了解客体状况,是对事物的一个综合的认识过程,在水文环境的检测中,水文测量就是一项重要的工作内容,但是在实际操作中因为人为因素或者计算方式的不同造成测量数值存在误差的情况,这为水文测量工作的准确性带来了困难,本文通过分析水文测量的误差产生原因提出了相应的解决措施。 新县水利局 2965554 摘要:测量工作能够使人们更好的了解客体状况,是对事物的一个综合的认识过程,在水文环境的检测中,水文测量就是一项重要的工作内容,但是在实际操作中因为人为因素或者计算方式的不同造成测量数值存在误差的情况,这为水文测量工作的准确性带来了困难,本文通过分析水文测量的误差产生原因提出了相应的解决措施。 关键词:水文测量;误差;原因与对策 水是人类与动植物都离不开的生命资源,水文的检测工作不仅是自身学科的研究基础,而且对于水利工程的建设、水资源评价、优化配置等多个方面都有很重要的科研意义,测量工作是人们对某些区域信息收集的主要方式,在实际的工作中出现误差在所难免,但是通过对测量工作进行一定的控制,有效的将误差控制在合理的范围之内也是可以实现的。 一、水文测量误差产生的原因 1、设备以及测量方法造成的误差 水文测量工作会受到测量设备的影响,测量设备在生产之后可能会由于一些原因存在相应的测量误差,这就是所说的设备误差,例如水准仪或者水准尺,无论进行多么认真仔细的校正,都会存在一定的误差值[1]。如果测量设备的水准管轴与视准轴之间存在不平行的问题就很可能造成误差的产生,这种由于设备原因产生的误差一般被称为系统误差,在实际的工作中这类误差是完全可以减小的,比如将设备前后的两个视距保持在统一水平上就可以有效的减小误差的数值。此外,因为设备使用原因而产生的误差还包括水准尺工具自身的内部原因,比如水准尺上面的刻度的划分不规范或者是水准尺在使用之前存在弯曲的现象等。除了因设备而产生的误差之外,还有因为测量方法不规范、不科学而产生的误差问题,通常人们把这种误差叫做方法误差,比如在水文环境的检测中,水体的流量以及水面位置都不是固定的,会随着时间的变化而改变,所以在水文测量中如果时间间隔过长就会产生同一水文环境下的误差。 2、模型误差和人员误差 在水文测量工作中,模型误差也会导致测量的结果不准确,在测量过程中,会选用一些模型进行概化,这些模型一般都是数学模型,并且在原基础上对其进行相应的概化,但是概化后的模型就会出现相应的误差[2]。比如在进行水体流量的计算过程中,水体两侧形状不规则的河道一般都会按照平行状态处理,测量工作中的模型的控制形成都是按照这一标准进行记录、计算的,在最终的检测结果中就会产生与实际数值之间的误差。另一方面,工作人员造成的误差在水文测量产生的误差中也比较常见,这种类型的误差是由于测量人员自身专业素质以及掌握的技术水平存在差异而产生的,如果工作人员对水文测量工作的步骤进程了解不清楚也会造成误差的扩大。测量人员在进行水文测量工作时有时会因为经验不足造成检测结果数据的偏差,在水准尺的使用过程中有时候也会因为数值的估算读取而出现误差,这可能是由于工作人员自身或者测量距离不准确而造成的,这也体现了测量人员自身技术水平的重要性。 二、水文测量误差产生的对策研究 1、维护测量设备,改善测量环境 在进行水文测量工作时,对于一些误差的出现是不可避免的,一些误差也是能够减少的,因此必须根据误差的成因进行相应对策的处理,对于水文测量工作误差的处理,可以从以下几点进行解决[3]。首先是加强对水文测量设备的维护,测量设备是水文测量中的物质基础,其中误差产生的主要原因是设备自身的问题造成的,为了减少这种硬件设施存在的误差问题,就必须重视测量设备的维护工作,定期对设备进行检查校正,产生问题需要及时的检修,避免因为细节上的问题造成误差的增大。其次,减少误差的另一个方式就是在野外环境中作业时通过人为的干涉来改善测量环境,水文测量结果必须保证真实、准确,在测量环境的选择中,应该选择环境比较稳定的水体,如果水面风浪过大或者漂浮物过多就会对测量结果产生影响,造成误差的加大。因此在环境的选择上必须综合考虑多方面的因素,这样既可以确保结果的准确性又可以对测量设备起到一个保护的作用,避免环境的恶劣对设备造成的损坏。 2、提高测量人员的专业技术水平 提高水文测量工作人员的专业技术水平能够大大减少实际工作中产生的误差,测量工作中人员专业素质的培养和管理是至关重要的,如果工作人员技术水平不达标,即使测量设备非常精准和很难不出现误差,他们不仅能够影响水文测量的结果还能够对设备的使用造成很大的影响,人员误差的减少能够延长设备的使用期限,出现问题时也能够及时发现、几时处理,避免了因为使用过程中的不恰当对机器设备造成的损坏。另外,在日常工作中也要不断的提高测量人员的工作积极性,使其在水文测量中保持一个正确的工作态度,因此要对测量人员进行定期的专业素质的教育和培训。测量误差的出现离不开测量人员技术水平的影响,加强测量人员的技术水平同时也是水文测量工作质量不断提高的客观要求。 结束语 造成水文测量工作中的误差产生的原因多种多样,有检测系统造成的,也有因为外界因素的影响产生的误差,水文测量的工作必须保证测量结果的真实性和准确性,这样才能保证收集到的信息数据不会受到较大程度的干扰。解决误差的具体措施是减小误差出现的重要方法,必须对误差的解决对策进行详细的分析,以此来确保测量结果的精准性。 参考文献: [1]马腾.浅谈水文测量误差的成因及对策[J].城市地理,2015,02:112. [2]张留柱.水文测量误差研究[D].河海大学,2005. [3]刘颖,张成龙,李迎春.水文测量误差的成因及对策[J].产业与科技论坛,2012,17:113.

试验检测误差产生原因及改善措施

试验检测误差产生原因及改善措施 1.概述 工程质量的评价是以各种试验检测数据为依据的,而大量实践表明:一切试验测量结果均具有误差。因此作为从事试验检测工作的专业技术人员和管理人员有必要了解误差的种类,分析这些误差产生的原因及影响因素,以便在工作过程中采取针对性的措施最大限度的加以减少和消除误差。同时应具备科学地解析检测数据的能力,确保检测结果能最大限度地反应真值,及时、准确、可靠地测定检测对象,为管理部门提供真实可靠的工程质量状况及其变化规律。 2.试验检测的误差分类及成因 根据误差产生的原因及产生性质,可以把测量误差分为系统误差、随机误差和过失误差三大类。 2.1系统误差原因分析 系统误差是由人机系统产生的误差,是由一定原因引起的在相同条件下多次重复测量同一物理量时产生的。它具有测量结果总是朝一个方向偏离,其绝对值大小和符号保持恒定,或按照一定规律变化的特点。因此系统误差有时称之为恒定误差。系统误差主要由些列原因引起: (1)仪器误差 由于测量工具、设备、仪器结构上的不完善,电路的安装、布置、调整不得当,仪器刻度不准确或刻度的零点发生变动,样品不符合要求等原因引起的误差。 (2)人为误差 指试验检测操作人员感官的最小分辨力和某些固有习惯引起的误差。例如,由于观察者的最小分辨力不同,在测量数值的估读或与界面的接触程度上,不同

观测者就有不同的判断误差。有的试验检测人员的固有习惯,如在读取仪表读数时总是把头偏向一边,也可能会引起误差。 (3)外界误差 外界误差也称环境误差,是由于测试环境,如温度、湿度等的影响而造成的误差。 (4)方法误差 由于测试者未按规定的方法进行试验检测,或测量方法的理论依据有缺点,或引用了近似的公式,或试验条件达不到理论公式所规定的要求等造成的误差。 (5)试剂误差 在材料的成分分析及某些性质的测定中,有时要用一些试剂,当试剂中含有被测成分或含有干扰杂质时,也会引起测试误差,这种误差称为试剂误差。 一般来说,系统误差的出现是有规律的,其产生原因往往是可知或可掌握的,只要仔细观察和研究各种系统误差的具体来源,就可设法消除或降低其影响。 2.2随机误差原因分析 随机误差往往是由不能预料、不能控制的原因造成的。例如试验检测人员对仪器最小分度值的估读很难每次严格相同;测量仪器的某些活动部件所指示的测量结果在重复测量时很难每次完全相同,尤其是使用年久或质量较差的仪器设备时更为明显。 无机非金属材料的许多物化性能都与温度有关。在试验检测过程中,温度应控制恒定,但温度恒定有一定的限制,在此限度内总有不规则的变动,导致测量结果发生不规则的变动。此外,测量结果与室温、气压和湿度也有一定的关系。由于上述因素的影响,在完全相同的条件下进行重复测量时,测量值或大或小,

测量误差的基本概念测量误差的基本概念

测量误差的基本概念测量误差的基本概念 使用任何仪器进行测量时,都存在测量误差。测量结果与测量的真值之间的差异,称为测量误差。真值就是一个量所具有的真实数值。真值是一个理想概念,实际应用中通常用实际值来替代真值。实际值是根据测量误差的要求,用更高一级的标准器具测量所得之值。 一、测量误差的表示方法 测量误差的表示方法 测量误差有绝对误差和相对误差两种表示方法。 1、绝对误差是指被测量的测量值与其真值之差。与绝对误差的大小相等,但符号相反的量值称为修正值。绝对误差只能说明测量结果偏离实际值的情况,不能确切反映测量的准确程度。 2、相对误差是指绝对误差与被测量的真值之比。相对误差是两个相同量纲的量的比值,只有大小和符号。 测量中常用绝对误差与仪器的满刻度值之比来表示相对误差,称为引用相对误差。测量仪器使用最大测量仪器使用最大引用相对误差表示它的准确度引用相对误差表示它的准确度,,它反应了仪器综合误差的大小它反应了仪器综合误差的大小。。 电工仪表一般分为7级:0.1,0.2,0.5,1.0,1.5,2.5,5.0。当仪表的准确度等级确定以后,示值越接近量程,示值相对误差越小。所以测量时要注意选择量程,尽量使仪表指示在满度值的2/3以上区域。 二、测量误差的来源 测量误差的来源 1、仪器误差,是测量仪器本身及其附件引入的误差。例如仪器的零点漂移、刻度不准确等引起的误差。 2、影响误差,是指由于温度、湿度、振动、电源电压、电磁场等环境因素和仪表要求条件不一致而引起的误差。 3、方法误差,是指由于测量方法不合理而造成的误差。 4、人身误差,是指测量人员由于分辨力、视力疲劳、不良习惯或缺乏责任心,如读错数字、操作不当等引起的误差。 5、测量对象变化误差,是指由于测量过程中测量对象的变化使得测量值不准确而引起的误差。 三、测量误差的分类 测量误差的分类 按性质可分为三类:系统误差、随机误差、过失误差。 1、系统误差是指在确定的测试条件下,误差的数值(大小和符号)保持恒定或在条件改变时按一定规律变化的误差,也叫确定性误差。系统误差常用来表示测量的正确度系统误差常用来表示测量的正确度系统误差常用来表示测量的正确度。。系统误差越小系统误差越小,,则正确度越高则正确度越高。。

测量误差产生的原因及其避免途径

测量误差产生的原因及其避免途径 作者:葛红 来源:《职业·下旬》2010年第10期 测量工作的实践表明,在任何几何量测量工作中,无论是测角、测高还是测量距,当对同一量进行多次观测时,不论测量仪器多么精密,观测进行得多么仔细,测量结果总是存在着差异,彼此不相等。测量误差的来源与下列因素有关:基准件的误差、测量方法的误差、计量器具的误差、测量环境以及测量人员引起的误差等。 一、基准件的误差 任何基准都不可避免存在误差,当用它作基准时,其误差会带入测量值中。因此,在选择基准件时,一般都希望基准件的精度选高一些。但是,基准件的精度太高也不经济,在生产实践中一般取基准件的误差占总测量误差的1/5~1/3。 二、测量方法误差 方法误差是指测量时选用的测量方法不完善而引起的误差。测量时,采用的测量方法不同,产生的测量误差也不一样。例如,测量大型工件的直径,可以采用直接测量法,也可以采用测量弦长和弓高的间接测量法,其测量误差是不相同的。直接测量与间接测量相比较,前者的测量误差只取决于被测参数本身的计量与测量环境和条件所引起的误差;而后者则取决于被测参数有关的各个间接测量参数的计量器具与测量环境和条件所引起的误差,以及它们之间的计算误差。 三、计量器具的误差 1.理论误差 由于仪器设计时,经常采用近似机构代替理论上所要求的运动机构,用均匀刻度的刻度尺近似的代替理论上要求非均匀刻度的刻度尺,或者仪器设计时违背阿贝原则等,这样造成的误差称理论误差。 2.仪器制造和装配调整误差 仪器零件的制造误差和装配调整误差都会直接引起仪器误差。例如,仪器读数装置中刻度尺、刻度盘的刻度误差和装配时的偏斜或偏心引起的误差;仪器传动装置中杠杆、齿轮副、螺旋副的制造误差以及装配误差;光学系统的制造、调整误差;传动件间的间隙、导轨的平面度、直线度误差等。这些都会影响仪器的示值误差和稳定性。

误差及其表示方法

误差及其表示方法 误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负) 一. 误差的分类 1. 系统误差(systermaticerror )——可定误差(determinateerror) (1)方法误差:拟定的分析方法本身不十分完善所造成; 如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。 (2)仪器误差:主要是仪器本身不够准确或未经校准引起的; 如:量器(容量平、滴定管等)和仪表刻度不准。 (3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起; (4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。如滴定管读数总是偏高或偏低。 特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为可定误差。可以用对照试验、空白试验、校正仪器等办法加以校正。 2. 随机误差(randomerror)——不可定误差(indeterminateerror) 产生原因与系统误差不同,它是由于某些偶然的因素所引起的。 如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。 特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律) 但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理 系统误差——可检定和校正 偶然误差——可控制

只有校正了系统误差和控制了偶然误差,测定结果才可靠。 二. 准确度与精密度 (一)准确度与误差(accuracy and error) 准确度:测量值(x)与公认真值(m)之间的符合程度。 它说明测定结果的可靠性,用误差值来量度: 绝对误差 = 个别测得值 - 真实值 (1) 但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示: (2) (RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。 (二)精密度与偏差(precision and deviation) 精密度:是在受控条件下多次测定结果的相互符合程度,表达了测定结果的重复性和再现性。用偏差表示: 1. 偏差 绝对偏差:(3) 相对偏差:(4) 2. 平均偏差 当测定为无限多次,实际上〉30次时:

测量误差及数据处理技术规范22页word文档

测量误差及数据处理技术规范 JJG 1027—1991 本技术规范对测量误差和数据处理中比较常遇到的一些问题做出统一的规定,以便正确地给出和使用测量结果。 本规范适用于测量不确定度的评定,计量器具准确度的评定,及其评定结果的表达。 本规范所研究的测量结果的方差是有限的例如,在晶振频率的误差中,由于噪声导致理论方差发散,而是非有限的*。除非特别指明,本规范所述处理方法与误差的分布无关。 一测量结果的误差评定 1 一般原理 由于存在一些不可避免对测量有影响的原因,导致测量结果中存在误差。 误差的准确值、总体标准差都是未知的,但可以通过重复条件或复现条件下的有限次数测量列的统计计算或其它非统计方法得出它们的评定值。 计算得到的误差和(或)已确定的系统误差,应尽量消除或对结果进行修正。无法修正的部分,在测量不确定度评定中作为随机误差处理。 2 测量误差的种类 测量误差是指测量结果与被测量真值之差。它既可用绝对误差表示,也可以用相对误差表示。按其出现的特点,可分为系统误差、随机误差和粗大误差。

2.1 系统误差 在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差的分量。按其变化规律可分为两类: a 固定值的系统误差。其值(包括正负号)恒定。如,采用天平称重中标准砝码误差所引起的测量误差分量。 b 随条件变化的系统误差。其值以确定的,并通常是已知的规律随某些测量条件变化。如,随温度周期变化引起的温度附加误差。 2.2 随机误差 在同一量的多次测量过程中,以不可预知方式变化的测量误差分量。它引起对同一量的测量列中各次测量结果之间的差异,常用标准差表征。对标准差以及系统误差中不可掌握的部分的估计,是测量不确定度评定的主要对象。 2.3 粗大误差 指明显超出规定条件下预期的误差。它是统计的异常值,测量结果带有的粗大误差应按一定规则剔除。 3 误差来源及分解 任何详细的误差评定报告,应包括各误差项的完整材料,其中应有评定方法的说明。 3.1 误差来源 设被测量的真值为Y0,而测量结果为Y,则绝对误差ΔY可表示为:ΔY=Y-Y0 (1.1)本条叙述由测量绝对误差ΔY分解成可以评定的误差分量ΔYk的法

建筑工程测量误差的产生与控制方法

建筑工程测量误差的产生与控制方法 摘要:文中笔者根据多年工作经验对影响测量误差的原因进行分析,并提出了控制误差的一些措施。 关键词:建筑工程;测量误差; 一、建筑工程测量误差产生的原因 1.仪器误差 由于仪器精度上的限制和构造不可能十分完美的缺陷,虽然事前已经校正了仪器但尚有误差未完全消除,仪器误差分为设计原理误差和制造误差。 1)设计原理误差:仪器在设计时,经常采用近似的实际工作原理来代替理论的工作原理,其所造成的测量误差,称为设计原理误差。为了减小测量误差,一般在仪器设计时都要求进行修正。2)制造误差:测量仪器一般是由多个零部件构成的,在制造和安装中不可避免的存在误差,这种误差即为制造误差。因此,在测量时,要选择测量误差小的测量器具或带有修正值的测量器具,以减小测量误差。水准仪在构造上有几个轴线,仪器竖轴、圆水准器轴、视准轴、管水准器轴等。这些轴线满足一定的几何关系,水准仪才可以正常使用,水准仪在使用或搬运过程中对这些轴线间的关系造成一系列的影响,使仪器不能满足正确的几何关系,产生仪器误差,而这些误差中对测量影响最大的是视准轴与管水准器轴的平行关系被破坏后产生的误差。这种误差的影响与距离成正比,只要观测时注意使前、后视距离相等,便可消除或减弱此项误差的影响。 2.人为因素产生的误差 目前因为我国建筑市场的活跃,大量人员涌入建筑业谋求生存,导致相关的技术人员,质量不一,很多企业往往招不到专业的测量人员。而在另一些私营企业中,因为资金等因素的原因,在进行项目施工过程中,常常指派其他技术员兼任测量工作,而这些人员有的严重缺乏实地测量的工作经验,造成人为因素产生的误差。人为的测量方法误差主要包括对准误差、测量力误差及定位安装方法误差三个方面。 1)对准误差:观测者操作仪器的熟料度和感觉器官的鉴别能力有一定的局限性,在仪器的照准,观测,读数等观测过程中使观测值产生误差。另还有误读和视差等。而误读常发生在游标尺、分厘卡等量具。游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。若读取尺寸在非垂直于刻度面时,即会产生误差量。对准误差主要原因定位不准确,测量方向偏离被测尺寸所造成的误差,对准误差的大小主要取决于测量人员的技术水平。读数对准误差主要是在读数时,人的视线与测量器具刻度不垂直所引起的偏视误差,

相关文档
相关文档 最新文档