文档库 最新最全的文档下载
当前位置:文档库 › 基于自适应变异粒子群算法的铁路空车调配

基于自适应变异粒子群算法的铁路空车调配

基于自适应变异粒子群算法的铁路空车调配
基于自适应变异粒子群算法的铁路空车调配

改进的粒子群优化算法

第37卷第4期河北工业大学学报2008年8月V ol.37No.4JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY August2008 文章编号:1008-2373(2008)04-0055-05 改进的粒子群优化算法 宋洁,董永峰,侯向丹,杨彦卿 (河北工业大学计算机科学与软件学院,天津300401) 摘要粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极 小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计 算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性. 关键词粒子群优化算法;均匀化;变量搜索;初始解;搜索精度 中图分类号TP391文献标识码A A Modified Particle Swarm Optimization Algorithm SONG Jie,DONG Yong-feng,HOU Xiang-dan,Y ANG Yan-qing (School of Computer Science and Engineering,Hebei University of Technology,Tianjin300401,China) Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community. But the standard particle swarm optimization is used resulting in slow after convergence,low search precision and easily leading to local minimum.A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision.The obtained results showed the algorithm computation precision and the astringency are im- proved,and local minimum is avoided.The experimental results of classic functions show that the improved PSO is ef- ficient and feasible. Key words PSO;average;variable search;initial solution;search accuracy 0引言 粒子群优化(Particle Swarm Optimization,PSO)算法是一种基于群体的随机优化技术,最早在1995年由美国社会心理学家James Kennedy和电气工程师Russell Eberhart[1]共同提出,基本思想源于对鸟群觅食行为的研究.PSO将每个可能产生的解都表述为群中的一个微粒,每个微粒都具有自己的位置向量和速度向量,和一个由目标函数决定的适应度,通过类似梯度下降算法使各粒子向适应度函数值最高的方向群游.该算法控制参数少、程序相对简单,因此在应用领域表现出了很大的优越性.由于PSO算法容易理解、易于实现,所以PSO算法发展很快.目前,多种PSO改进算法已广泛应用于函数优化、神经网络训练、模式识别、模糊系统控制以及其他的应用领域. 许多学者对PSO算法进行研究,发现其容易出现早熟、最优解附近收敛慢等现象,并提出了一些改进方案,例如自适应PSO算法、混合PSO算法、杂交PSO算法等[2-4].因此,本文从初始解和收敛精度两个角度出发对PSO算法进行了改进,提高了算法的计算精度,有效的改善了算法的优化性能. 1基本PSO算法 PSO算法是一种基于群体的随机优化技术,基本思想源于对鸟群觅食行为的研究.通过对鸟群飞行时经常会突然改变方向、散开、聚集,但整体总保持一致性,个体与个体间鸟群好像在一个中心的控制 收稿日期:2008-04-17 基金项目:河北省自然科学基金(F2006000109) 作者简介:宋洁(1967-),女(汉族),副教授.

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

高速铁路调度管理体系

第5章高速铁路调度管理体系 高速铁路调度指挥涉及运输组织、机车车辆、通信信号、供电、安全监控、维护救援、旅客服务等多学科,直接影响高速铁路调度指挥模式选择的原因主要是高速铁路的运营模式。国外高速铁路调度指挥模式基本划分为三种类型:一类是以日本为代表,通过构建各专业综合调度系统以适应高速客运专线的特点和需求;第二类为德国模式,其调度系统是以地区为中心建立调度控制中心,而不是以高速线为中心;第三类是以法国和西班牙为代表,以线路为目标建立控制中心,基本沿袭既有铁路的传统模式。 5.1 日本 5.1.1 日本新干线运输组织特点 日本新干线不仅在技术装备上达到了很高的水平,其运输组织也达到了世界一流水平。日本全国的旅客列车时刻表是一个月发布一次,除了大的运行图调整以外,每个月发布的旅客列车时刻表并没有太大的变化。我国的旅客列车时刻表基本上是以年为周期来发布的。这种以月度为单位发布旅客列车时刻表的方式也突破了我们的惯常思维,也就是旅客列车不能随便更改开行时间的思维。实际上,在客运专线上全部运行客车,有一部分旅客列车就和既有线上运行的货车一样,是可以随着客流或者线路的情况而随时变化的,重要的是要做到让旅客了解列车时刻表的变动。要做到以人为本,变化的列车在时刻表中可以单独表示或者以红色、添加星号等显著的方式来表示。 目前,新干线列车已实现了高峰期4分钟追踪连发,而且高峰期可持续两个小时以上。日本新干线运输组织主要有以下几个特点: (1)一是新干线列车采取分段运输的模式,一般不跨线运行; (2)采用规格化运行的运输组织方式; (3)列车编组自由、灵活又相对固定; (4)车站站场规模小但利用率高,列车立折时间短; (5)预留备用线、主要以顺延晚点方式解决列车晚点问题,大力压缩晚点时间,实现高正点率; (6)白天运行,夜间维修,互不干扰。 5.1.2 日本新干线调度指挥系统 日本新干线调度系统的构建适应高速铁路运行的特点,充分考虑了高速行车所伴随的高风险性及行车安全对调度系统的依赖性,突出了安全的重要地位;充分考虑了高速旅客有效利用时间的强烈愿望,把正点作为工作核心。构建了集各专业功能为一体的综合调度系统。该系统以运输计划为龙头,综合了与行车有关的各方面的内容,使整个调度指挥系统全面协调地工作。日本高速铁路采用标准轨,与既有线(窄轨)形成两个独立系统,故其高速铁路调度指挥基本上是采用独立的系统。日本新干线调度指挥系统的构建适应高速铁路运行的特点:充分考虑了高速行车所伴随的高风险性及行车安全对调度系统的依赖性,突出了安全的重要地位;日本新干线按线(东海道山阳)和区域(东日本公司)分别设置单独的调度指挥系统,无国家级统一调度指挥中心;东海道山阳新干线与既有线完全独立,调度系统完全独立,并设立了备用中心;东日本公司的部分高速列车下既有线运行(既有线改造,在既有线

铁路调度系统

NiceE-6100在铁路调度系统中的应用 数字化的铁路调度系统是个全路联网的调度监控系统,采用数字化、网络化、信息化技术突破传统模式,极大的提升了工作效率,大大减轻了调度人员的工作强度。 系统组成: 该系统由主控机NiceE--6100、地面控制单元、信息采集单元、通信单元、显示单元和地面监控单元组成。由主控机向各单元发布指令和回传信息,生成系统输出到显示单元。 系统主要特点: 通过接收车站上报的列车运行信息,绘制实际列车运行图,自动编制、调整、下达阶段计划,并根据列车运行的速度、位置所在等情况对列车运行进行调度指挥,发布调度命令,调整列车速度、排路,精准到站时间。 列车调度员通过电脑作业,调整列车运行图,由计算机自动下达任务,程序将自动运行,包括自动扫绘实际运行图,自动生成、储存、打印行车日志,自动传送调度命令,自动校核车次号等功能。在调度集中区段,系统可远程调度,调度员在调度台上便可直接控制车站的连锁设备,进行远程作业,作到车站的无人值守,配以计算机辅助调度,可以实现按图排路,使整个运输调度工作跨上一个新台阶。 过去以调度命令的形式,调度员与值班员通过对话实施作业;现在列车调度员只需直接在电脑上调整好列车运行图,由计算机自动下达任务。劳动强度大为降低,安全性能和工作效率大为提高。大大减轻了行车调度员和车站值班员工作强度。优化了运输调度指挥管理手段、提高了调度管理水平和运输效率。 在实际应用中,集智达NiceE--6100作为主控机放置在总站调度室,各分站的信息通过的两个以太网口传输,第一个网口连接到主干网络, 与调度中心的网络连接并提供信息交换。第二个网口作为备份,由于信息十分重要, 不容许因中断所造成信息丢失。因此第二个网口连接成为备份网络使用,一旦主干网络断线可立即切换到备份网络。同时,因为所监视的路面和列车范围很广,无法在一个画面上进行实时路况监控和指挥命令下达,通过NiceE--6100预留的PCI插槽,插入一张PCI总线的双独立显示卡 (VGA+DVI) ,加上原本NiceE--6100上所连接的VGA,即可通过双VGA进行实时监看和及时操作。

基于改进粒子群算法的优化策略

收稿日期:2009-12-13 基金项目:国家自然科学基金资助项目(60674021) 作者简介:卢 峰(1982-),男,辽宁抚顺人,东北大学博士研究生;高立群(1949-),男,辽宁沈阳人,东北大学教授,博士生导师 第32卷第9期2011年9月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 32,No.9Sep.2011 基于改进粒子群算法的优化策略 卢 峰,高立群 (东北大学信息科学与工程学院,辽宁沈阳 110819) 摘 要:为提高传统粒子群算法的搜索速度和搜索精度,提出了一种改进的自适应粒子群优化算法 将正则变化函数和慢变函数引入传统位置更新和速度更新公式当中,形成两种新的更新机制:搜索算子和开发算子 在算法运行的初始阶段,种群中大部分个体将按照搜索算子进行更新,搜索算子将有助于种群遍历整个解空间;随着迭代次数的增加,按照搜索算子进行更新的个体将逐渐减少,而按照开发算子进行更新的个体将逐渐增多,开发算子将有效地克服陷入局部最优解的问题 通过典型测试函数的仿真实验,新算法在加快收敛速度同时,提高了算法的全局搜索能力 关 键 词:进化算法;粒子群算法;全局优化;慢变函数;自适应 中图分类号:T G 273 文献标志码:A 文章编号:1005 3026(2011)09 01221 04 Novel Optimization Mechanism Based on Improved Particle Swarm Optimization L U Feng ,GAO L i qun (School of Information Science &Engineering,Northeaster n U niv ersity,Shenyang 110819,China.Corresponding author :LU F eng,E mail:feng.lu.lf @g https://www.wendangku.net/doc/f415966156.html,) Abstract :To accelerate searching speed and optimization accuracy of traditional PSO,an improved particle swarm optimization (PSO )algorithm w as presented.Regularly vary ing function and slow ly varying function were introduced in the position and velocity update formula.New mechanisms such as explorative operator and exploitative operator are formulated.At the beginning,most elements will be updated by explorative operator in the entire search space sufficiently.Within the iterations,more and more particles w ill be handled by ex ploitative operator,which are useful to overcome the deceptions of multiple local optima.It can be seen from the simulation results of the standard benchm ark test functions that the proposed algorithm not only accelerates the convergence process,but also improves g lobal optim ization ability. Key words:evolutionary algorithms;particle sw arm optimization;global optimization;slow ly v arying function;self adaptive 20世纪90年代初,产生了模拟自然生物群体行为的优化方法,被称为群智能优化方法 Dorigo 等人通过模拟蚂蚁的寻径行为,提出了蚁群优化算法(ant colony optimization)[1] ;Eberhart 等人基于对鸟群、鱼群的模拟,提出了粒子群优化算法(particle sw arm optim ization )[2] 作为一种群智能优化方法的代表,粒子群算法通过个体间的协作来寻找最优解,每个个体都被赋予一个随机速度并在整个解空间中搜索,通 过个体之间的合作与竞争来实现个体进化 由于粒子群优化算法运算简单,易于实现,具有良好的解决非线性、不可微和多峰值复杂优化问题的能力,已被广泛应用于科学和工程实际领域[3-5] 但是,粒子群优化算法是根据全体粒子和自身的搜索经验向着最优解的方向进化,在进化后期收敛速度将变得缓慢,同时算法在收敛到一定精度时,容易陷入停滞,无法继续进化更新,因此,存在早熟和陷入局部极值点的现象

数字调度系统在铁路通信中的应用

数字调度系统在铁路通信中的应用 发表时间:2017-06-23T09:55:16.013Z 来源:《基层建设》2017年5期作者:郭磊 [导读] 通过数字调度系统的应用,可以使得铁路系统能够对列车的运行情况进行更为精确的了解和掌握,从而更好的实现对于列车的运行和调度。 齐齐哈尔电务段 摘要:铁路数字调度系统是一种通过利用数字化技术来将铁路沿线中的各个站点和单位的通信业务通过已有的数字通道的形式实现对于各种功能的综合所形成的集成化的铁路通信系统。通过数字调度系统的应用,可以使得铁路系统能够对列车的运行情况进行更为精确的了解和掌握,从而更好的实现对于列车的运行和调度。 关键词:数字调度系统;铁路通信;应用 前言 数字调度系统在继承并实现原有调度系统所有功能的同时,也对原先所使用的各种模拟调度功能进行了良好的简化,从而使得铁路通信系统的结构更为合理、简洁,并使得与铁路沿线中的各个小站点的通信也更为通畅。通过在铁路通信系统中做好数字调度系统的应用,可以有效的提高铁路对于通信服务的质量。 1 铁路数字调度系统的特点 相较于传统的铁路调度系统,数字调度系统具有以下的一些优势:(1)信号传输质量高,铁路数字调度系统使用数字通道来进行信号的传输,相较于普通的模拟信号,数字信号保真效果好、噪音小,通话质量有保障。(2)安全可靠性高,在铁路数字调度系统中大量使用的集成电路并采用分散式的控制方式,并在铁路数字调度系统中采用热备份件作为系统的核心件确保铁路数字调度系统在工作中如发生故障则备份可以投入运行以使得系统能够尽快恢复工作,通过这种自愈环的方式确保铁路通信系统不会造成中断从而使得铁路数字调度系统能够良好的进行工作。(3)铁路数字调度系统兼容性强,接口丰富能够良好的满足现今铁路通信系统中对于组网的要求,从而为后续铁路通信网络的建设打下了良好的基础。在铁路数字调度系统的组网上根据组网特点可以将其分为链状、星状、树状以及其他综合型等,根据铁路数字调度系统应用范围的不同及铁路系统管理中所具有的独特的特点,需要在数字调度系统中采用链状的组网方式。此外,在铁路数字调度系统中,通信系统是其主要的系统,调度系统则为其分系统,铁路数字调度系统通过接入到铁路通信系统中用以完成对于铁路列车实时运行信息的监控并具备使铁路值班人员能够与调度人员完成通话的相关功能。通过将铁路数字调度系统应用于铁路通信中能够极大的提升铁路运行的安全系数,从而有效的降低铁路运行中的安全风险,此外,通过使用铁路数字调度系统可以使得铁路列车的管理与调度更为方便,铁路通信系统也更为完善,使得铁路通信系统的安全性大大提高,此外,铁路数字调度系统所具有的大量的接口也使得其能够完成多样化的业务且拓展性大为提高,使得铁路能够更为安全、高效的运行。 2 铁路数字调度系统在铁路通信中的应用 铁路数字调度系统中的调度电话:铁路数字调度系统中的调度电话主要由调度台、调度分机以及数据通讯连接等部分组成,其中对于列车的调度主要利用的是铁路数字调度系统操作来来实现对于列车各沿线车站值班员进行群呼、组呼等的呼叫并进行相应的通话,对于货运列车则利用专用的系统来实现对于货运列车运行沿线的各车站进行通信,铁路数字调度系统所采用的数字共线方式能够将各区段内的与列车调度相关的各部门连接在一起并进行相应的通信,此外,铁路数字调度系统中还将各区段原先的列调回线并入到铁路数字调度系统中作为备用方案。 铁路数字调度系统中对于区段内的区间通信可以通过拨号呼叫的方式与区段内的每一个站台、调度台等进行呼叫连接,通过设置在各区段内的上、下行电话回线来完成区间内的通信,此外,在铁路数字调度系统还能够将区间的抢险电话接入到铁路数字调度系统中从而完成全区段区间内的通信。 站场通信是铁路通信中的重要的一环,其通过铁路中的调度电话、专用电话等进行联系,对于站场通信主要依靠的是放置在車站内的分系统来加以实现的。铁路数字调度系统在应用的过程中能够实现铁路沿线中的各区间的通信,依靠铁路数字调度系统中所具有的区间转机功能采用电话拨号的方式来与铁路列车运行沿线各值班室中的通话联系,同时也可以依靠铁路数字调度系统来对铁路各分站点、列车值班员等进行呼叫通话,其中电话通信回线接入到列车车站的上行和下行通信系统中的通信接口中,通过利用铁路通信系统中主系统所具有的交换功能完成对于区段内每一区间内的通信连接与列车的调度。在铁路数字调度系统应用于铁路列车调度中时,其主要实现的是对于系统内的行车、客运以及货运的调度,并且在铁路沿线中的各调度台中设置与铁路数字调度系统进行直接连接的调度分机以实现对于铁路列车的合理调度。在各区段的调度台中都设置有相应的单个呼叫、全组呼叫、状态显示等的功能,此外,对于呼叫铁路数字调度系统可以通过分组处理或双通道处理等的方式来予以解决,同时铁路数字调度系统对于呼叫还具备自动或是选择性应答的功能,从而实现与区段内各站点的直接通信以完成形成完备的通信调度网络,铁路数字调度系统的应用取代了原先列车调度所使用的车站电话集中机构建起了对于列车运行完备的调度网络,以便对铁路列车进行更为合理的调度。在铁路数字调度系统中还具有良好的网络管理和维护的功能。 3 铁路数字调度系统的发展趋势 随着技术的进步使得对铁路调度系统中的各支线及枢纽场站的数字化改造的需求日益紧迫,必将推动对于铁路系统中的各支线及枢纽场站的数字化改造。但是现今在铁路列车调度系统中仍然有大量的模拟机在役,如对全线进行数字化改造成本巨大,因此需要选择一种简便、实惠的数字化改造方案来做好铁路数字调度系统在铁路调度中的应用。 在铁路数字调度系统的应用中应当做好铁路干线中的各数字调度设备的更新,将原先铁路沿线中所使用的调度设备更新改造为FAS型数字调度系统,并积极与铁路中的LTE无线通信网络相连接,提升铁路通信系统的通信能力与列车调度能力。做好软交换技术在数字调度通信中的应用,软交换技术是网络演进以及下一代分组网络中的技术核心,通过运用统一开放的平台能够实现语音、数据、视频等的多种数据的信息传输,基于软交换技术的数字调度通信将为铁路调度通信从原先的语音调度向多媒体调度的转变提供良好的基础。 4 结束语 随着技术的不断进步,铁路调度系统正在向着数字化的方向进行转变,现今在各铁路线路的改造中由于资金、技术等改造条件的不同使得铁路调度系统的改进有所差异,现今对于铁路高铁客运线中主要使用的是FAS型数调系统,而对于普通铁路干线中的数字化改进中主要采用的是普通的数调系统,并在数字化改造的过程中配合铁路无线通信系统对其进行相应的改造。文章在分析数字调度系统特点的基础

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

粒子群算法解决函数优化问题

粒子群算法解决函数优化问题 1、群智能算法研究背景 粒子群优化算法(Particle Swarm Optimization,PSO)是由Kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995 年提出的一种群智能算法,其思想来源于人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到优。 PSO算法作为一种新的群智能算法,可用于解决大量非线性、不可微和多峰值的复杂函数优化问题,并已广泛应用于科学和工程领域,如函数优化、神经网络训练、经济调度、模式识别与分类、结构设计、电磁场和任务调度等工程优化问题等。 PSO算法从提出到进一步发展,仅仅经历了十几年的时间,算法的理论基础还很薄弱,自身也存在着收敛速度慢和早熟的缺陷。如何加快粒子群算法的收敛速度和避免出现早熟收敛,一直是大多数研究者关注的重点。因此,对粒子群算法的分析改进不仅具有理论意义,而且具有一定的实际应用价值。 2、国内外研究现状 对PSO算法中惯性权重的改进:Poli等人在速度更新公式中引入惯性权重来更好的控制收敛和探索,形成了当前的标准PSO算法。 研究人员进行了大量的研究工作,先后提出了线性递减权值( LDIW)策略、模糊惯性权值( FIW) 策略和随机惯性权值( RIW) 策略。其中,FIW 策略需要专家知识建立模糊规则,实现难度较大,RIW 策略被用于求解动态系统,LDIW策略相对简单且收敛速度快, 任子晖,王坚于2009 年,又提出了基于聚焦距离变化率的自适应惯性权重PSO算法。 郑春颖和郑全弟等人,提出了基于试探的变步长自适应粒子群算

法。这些改进的PSO算法既保持了搜索速度快的特点, 又提高了全局搜索的能力。 对PSO算法的行为和收敛性的分析:1999 年采用代数方法对几种典型PSO算法的运行轨迹进行了分析,给出了保证收敛的参数选择范围。在收敛性方面Fransvan den Bergh引用Solis和Wets关于随机性算法的收敛准则,证明了标准PSO算法不能收敛于全局优解,甚至于局部优解;证明了保证收敛的PSO算法能够收敛于局部优解,而不能保证收敛于全局优解。 国内的学者:2006 年,刘洪波和王秀坤等人对粒子群优化算法的收敛性进行分析,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力,提出混沌粒子群优化算法。 2008 年,黄翀鹏和熊伟丽等人分析惯性权值因子大小对PSO算法收敛性所带来的影响,对粒子群算法进行了改进。2009 年,高浩和冷文浩等人,分析了速度因子对微粒群算法影响,提出了一种基于Gaussian 变异全局收敛的粒子群算法。并证明了它能以概率 1 收敛到全局优解。 2010 年,为提高粒子群算法的收敛性,提出了基于动力系统的稳定性理论,对惯性权重粒子群模型的收敛性进行了分析,提出了使得在算法模型群模型收敛条件下的惯性权重和加速系数的参数约束关系,使算法在收敛性方面具有显著优越性。在PSO算法中嵌入别的算法的思想和技术。 1997年,李兵和蒋慰孙提出混沌优化方法; 1998年,Angeline在PSO算法中引入遗传算法中的选择算子,该算法虽然加快了算法的收敛速度,但同时也使算法陷入局部优的概率大增,特别是在优化Griewank 基准函数的优值时得到的结果不理想; 2004 年,高鹰和谢胜利将混沌寻优思想引入到粒子群优化算法中,首先对当前群体中的优粒子进行混沌寻优, 再用混沌寻优的结果随机替换群体中的一个粒子,这样提出另一种混沌粒子群优化算法。

铁路综合调度控制仿真教学系统

铁路综合调度控制仿真教学系统 系统概述 本系统集合了现代通信和信息、计算机、电子及信号联锁等现代技术手段,实现了行车调度指挥与实物沙盘列车控制相结合,具备区间运行调度模拟、车站作业模拟及驼峰作业模拟等功能,并实现了多人多机网络协同制定列车运行调整计划。系统可自动集中控制沙盘车站进路、信号联锁设备及列车运行过程,自动信息采集,能够完成各种列车控制模式下的铁路行车调度指挥的演练。 系统网络

主要功能模块 铁路系统沙盘 铁路模拟沙盘能在实验室环境下模拟建立轨道交通系统运行的实物模型,包括道岔、信号机和列车等,并可通过系列教学实验系统软件对平台进行控制,实现对铁路运输生产作业过程的控制,可完成各类调度指挥操作,并可直观的展示车站的各种信号、道岔等设备及其相关联锁闭塞关系,表现各种铁路运输设备和各类作业过程,可满足车站值班员、信号员、调度员、调车长等相关运输作业人员的认知学习和综合演练要求。基本功能 1)可直观演示轨道交通运输作业过程,并与铁路综合调度与列车运行控制仿真教学系统联动,同步仿真演示,实现调度系统的模拟实训功能; 2)可模拟各种铁路站场设备,在仿真联锁系统及控制电路的控制下,能仿真道岔的转换、轨道电路、信号显示等; 3)可根据信号及列控系统要求控制列车运行,列车可前进、后退、鸣笛等,并能够按要求速度运行; 4)沙盘车站的接发车进路可根据教学仿真系统下达计划自动储存、排序、执行、回馈;5)可进行库内调车模拟、信号故障演示等操作。

沙盘参数及特点 1)元器件及设备的接口统一接到单独接口转换箱(或控制箱)里,要求开放数据接口(包含接口硬件格式及软件接口),以便于采用其他控制器调试和实现故障的检测。2)具备良好的模块化特性,易于维护更换; 3)选用材料满足室内环境应用标准,且安全可靠; 4)沙盘尺寸和车站个数均可定制; 5)配动车车辆模型,可以自动调节车辆运行速度,采用前后电机双驱动,车辆的运行状况由微机和信号等控制,车辆可以连挂多辆车辆运行。

FAS基本原理及数字调度通信系统

《FAS基本原理及数字调度通信系统》讲座提纲 前言 FAS和数调是同一设备,只是在不同的使用场合,配置有所不同,称谓也就不同,在GSM-R 网络中称为FAS,所谓FAS即固定用户接入交换机的英文:Fixed users Access Switching的缩略语。在非GSM-R网络中称为数调,所谓数调即数字调度通信系统的简称。 本讲座内容分两部分:第一部分 FAS基本原理,第二部分数字调度通信系统。 第一部分 FAS基本原理 第一章概述 第一节铁路调度通信 为指挥列车运行,保证运输安全,铁路历来有一套完善的调度指挥系统。铁路调度系统按机构可分为铁道部调度和铁路局调度两级,如下图所示。

铁道部调度是铁道部指挥各铁路局,协调完成全国铁路运输计划,按调度业务性质分行调、客调、军调、特调、车流、集装箱、机车、车辆、电力、工务、电务调度等。其调度通信网络结构以铁道部为中心对各铁路局,呈一点对多点的星型复合网络,我们习惯上称之为干线调度,简称干调。 铁路局调度是铁路局指挥局内相关站段,协调完成全局铁路运输计划,铁路局调度有两种类型:一是以局运输指挥中心对全局相关站段的调度指挥,与相邻铁路局也有业务往来,同时接受铁道部的调度指挥,按调度业务性质分客调、军特调度、蓬布调度、计划调度、车流、机车、车辆、工务、电务调度,他们有的归属局总调室,有的归属相关业务处,各铁路局不尽相同,这一类调度既是干调分机,又是局线调度,仍简称局调。其调度通信网络结构,有的用专线组成星型调度通信网络,有的用铁路自动电话拨号呼叫进行联络。二是铁路局总调室(或业务处)调度员仅指挥一段铁路线上的各车站(段、所、点),按业务性质分列车调度、货运调度、电力牵引调度(供电调度)、红外线调度等,列调、货调隶属于局总调室,电调、红外线调度隶属于相关业务处,对这一类调度,我们习惯上称之为区段调度。其通信结构取决于业务性质和地理位置,基本上以共线型为主的调度通信网络。 此外,还有以站段为中心组成的调度系统,在大型车站及站场内车站调度员对各值班员之间调度通信,称之为站调。车务、工务、电务、水电等段调度员对所辖各工区(站)之间通信,统称为公务专用电话系统。其通信网络结构:站调采用星型通信网络,公务专用电话系统有共线型和自动电话两种方式。 综上所述,对铁路调度通信业务可归纳如下表所示: 表1 铁路调度通信业务分类

铁路专用数字调度及调度监督系统说明

铁路专用数字调度系统说明 一、概述: 本工程共有4个站点,其中屯兰、马兰、东曲和西曲均设置通信设备。 在屯兰、马兰、东曲、西曲的通信机械式设置传输设备、数字调度设备、光电综合柜及通信电源设备。在屯兰调度室设置传输设备、光电综合柜、通信电源及调度台。 传输设备为数字调度设备、调度监督设备、微机监测设备及站场监控等设备提供E1通道。数字调度设备为公司提供调度通信、专用通信、站场通信、道口通信等业务。光电综合柜提供光接口、电接口,包括光配线架、数字配线架及模拟配线架等。通信电源外接220VAC电源,为通信设备提供-48VDC电源。 二、系统构成 1.传输系统 马兰、屯兰和东曲通信机械室新设SDH622Mbit/s传输接入设备各1套,西曲预留。传输接入网关设于屯兰站通信机械室内,屯兰调度室通信机械室新设SDH155Mbit/s传输接入设备1套,纳入马兰至东曲的传输接入网系统。 2.铁路专用通信系统 屯兰站通信机械室新设数调设备中心主系统1套;马兰和东曲站通信机械室新设数调设备站场分系统各1套,接入屯兰站数调设备主系统,西曲站预留。屯兰调度室设控制盒2台,屯兰、马兰、东曲设控制盒各1台,西曲行车室预留。 3.站间行车电话及区间通话柱 站间行车电话纳入到新设的铁路专用数字通信系统,光传输为主用回路,电缆线路为备用回路。区间通话柱纳入新设的铁路专用数字通信系统。 4. 通信电源、防雷及接地装置 1)通信电源 新增光传输设备和数调设备均采用-48V中间站电源柜和阀控

式铅酸蓄电池组设备。 2)接地方式及接地装置 利用既有通信机械室地线。 三、主要系统功能 1、实现整个区间内调度通信、站间通信、站场通信、道口通信、数据传输等业务。 2、网管系统实现对调度主机及全线车站分系统的监测与管理。录音系统实现对调度台进行全程录音。 3、电源系统保证在市电停电情况下可靠供电八小时以上。 FH98-G 工程界面图说明:所示线缆由佳讯公司提供 所示线缆由相应厂家单位提供 所示线缆由工程单位提供

高速铁路行车调度系统运行风险分析及调整优化方法

高速铁路行车调度系统运行风险分析及调整优化方法 高速铁路行车调度系统的正常运转是保证列车安全、准时、高效运行的重要保障之一,是整个高铁调度指挥系统中不可或缺的子系统。因此,加强对行车调度指挥系统的风险研究,掌握影响该系统运作的“机+环境”两方面危险因素的风险特性及行车调度人员的行为的可靠性,能够进一步提高对维持系统稳定性的认识。其次,运行图的调整、运行冲突的疏解是行车调度系统的主要核心任务之一,由于设备故障、恶劣自然环境等造成线路通过能力的下降或列车的初始晚点时有发生,及时高效地调整列车运行图,减少列车晚点或晚点的二次延误对系统造成的负面影响,可以高效智能地制定可靠的运行图调整方案,也是保证行车调度人员操作 的可靠性,应对不可避免的危险因素的有效手段。因此,加强对行车调度系统的风险分析及对受干扰情况下行车调整优化方法的研究,对保证高铁调度系统安全, 对提高系统抗风险能力具有深远的意义。 本论文综合分析了国内外在安全系统工程理论及行车优化数学模型等方面 的研究现状,结合我国高速铁路行车调度系统的特点,论证了行车调度系统的地 位及其在高速铁路系统中信息传递的机制,明确了行车调度系统在不稳定状态的演化机理,辨识出系统中“人一机一环”三方面的危险因素,并对其进行风险分析,最后建立了在危险因素干扰下的运行图优化调整模型,以降低风险干扰,保证行 调人员决策的可靠性,快速恢复系统稳定性。具体完成以下研究工作:(1)一方面通过大量阅读文献分析了铁路行车调度指挥系统安全管理、应急处理及行车调度优化等方面理论与方法及不足,明确了论文的研究方法和技术路线。另一方面通过现场调研熟悉我国高速铁路行车调度指挥的任务及作业流程,收集影响行车调度的设备故障、恶劣环境、人为失误、事故等方面的历史数据,为论文的研究工作提供了可靠的数据支撑。(2)根据我国高铁调度指挥系统内信息传递流程、传递途径、传递作用对象等相关方面特点,论证了行车调度系统的核心地位。 将系统中各子部件视为节点,将各子部件相互之间直接联系的信息通道(或 媒介)视为边,利用信息熵理论,依据节点间信息传递属性,建立边长的计算理论,并根据熵扩散原理描述了不确定信息在系统中传递的规律,利用复杂网络理论, 建立对系统中要素、要素之间传递通道及要素之间关联程度判定的理论方法,对调度指挥系统进行拓扑结构分析。证明了高速铁路调度系统以行车调度为主核心,

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

相关文档
相关文档 最新文档