文档库 最新最全的文档下载
当前位置:文档库 › 染料敏化太阳能电池的发展综述

染料敏化太阳能电池的发展综述

染料敏化太阳能电池的发展综述
染料敏化太阳能电池的发展综述

课程论文

课程名称

论文题目

姓名学号专业年级学院年月日

总分

染料敏化太阳能电池的发展综述

【摘要】由于染料敏化太阳能电池具有优良的稳定性和高转换效率,它具有极大的应用前景。本文就染料敏化太阳能电池的原理、各电池组成结构的优化等,对国内外学者的研究工作做以综述评论。

【关键词】太阳能染料敏化电极TiO2薄膜

1前言

在能源危机日益加深的今天,由于化石能源的不可再生;氢能利用中的储能材料问题依然没有解决;风能、核能利用难以大面积推广;太

阳能作为另一种可再生清洁能源足以引起人们的重视。利用太阳能,已经

是各相关学科一个很重要的方向。

1991年之前,人们对太阳能的利用停留在利用半导体硅材料太阳能电池上,这种太阳能电池虽然已经达到了超过15%的转化效率,但是它的光电转化

机理要求材料达到高纯度且无晶体缺陷,再加之硅的生产价格居高,这种

电池在生产应用上遇到了阻力。

1991年,瑞士的Gr' tzel教授小组做出了染料敏化太阳能电池,他们的电池基于光合作用原理,以羧酸联吡啶钌配合物为敏化染料,以二氧

化钛纳米薄膜为电极,利用二氧化钛材料的宽禁带特点,使得吸收太阳光

激发电子的区域和传递电荷的区域分开,从而得到了7.1%的高光电转换效

率,这种电池目前达到最高的转换效率是10.4%。由于这种电池工艺简单,

成本低廉(约为硅电池的1/5~1/10),并且可选用柔质基材而使得应用范

围更广,最重要的是,它具备稳定的性质,有高光电转换效率,这无疑给

太阳能电池的发展带来了巨大的变革。

正因为染料敏化电池的上述优点,许多学者就它的机理、各个组成部分的优化等相关内容作了一系列实验,这篇论文将就这些方面做以综

述简介,并加以分析和评论。

2,染料敏化太阳能电池工作原理

2.1染料敏化太阳能电池的选材

TiO2材料具备稳定的性质,且廉价易得,是理想的工业材料。由于它的禁带宽度是3.2eV ,超过了可见光的能量(1.71eV~3.1eV),所以需要用

光敏材料对其进行修饰。其中的染料敏化剂指多由钌(Ru)和锇(Os)等

过渡金属与多联吡啶形成的配合物;实验证明,只有吸附在TiO2表面的单

层染料分子才有有效的敏化作用,所以人们往往采用多孔纳米TiO2薄膜,利用其大的比表面积吸附更多染料分子,利用太阳光在粗糙表面内的多次

反射从而被染料分子反复吸收提高电池效率;电解质随染料的不同而有不

同的选择,总的来说,以含I-/I3 -离子对的固态或液态电解质为主。由

于电解质状态的不同,染料敏化太阳能电池分为液相电解质的湿化学太阳

能电池和固相电解质的固态太阳能电池。

2.2湿化学染料敏化太阳能电池结构及原理

主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物

(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为DSC的负极。

对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对

-/I-。

的电解质,最常用的是I

3

(1)染料分子受太阳光照射后由基态跃迁至激发态(D*)[2];

(2) 处于激发态的染料分子将电子注入到半导体的导带中;

电子扩散至导电基底,后流入外电路中;

(3) 处于氧化态的染料被还原态的电解质还原再生;

(4) 氧化态的电解质在对电极接受电子后被还原,从而完成一个循环;

(5) 和(6) 分别为注入到TiO2 导带中的电子和氧化态染料间的复合及导带上的电子和氧化态的电解质间的复合

研究结果表明:只有非常靠近TiO2表面的敏化剂分子才能顺利把电子注入到TiO2导带中去,多层敏化剂的吸附反而会阻碍电子运输;染料色激发态寿命很短,必须与电极紧密结合,最好能化学吸附到电极上;染料分子的光谱响应范围和量子产率是影响DSC的光子俘获量的关键因素。到目前为止,电子在染料敏化二氧化钛纳米晶电极中的传输机理还不十分清楚,有Weller等的隧穿机理、Lindquist等的扩散模型等,有待于进一步研究。

3染料敏化太阳能电池的特点

染料敏化太阳能电池与传统的太阳电池相比有以下一些优势:

⑴寿命长:使用寿命可达15-20年;

⑵结构简单、易于制造,生产工艺简单,易于大规模工业化生产;

⑶制备电池耗能较少,能源回收周期短;

⑷生产成本较低,仅为硅太阳能电池的1/5~1/10,预计每蜂瓦的电池的成本在10元以内。

⑸生产过程中无毒无污染;

经过短短十几年时间,染料敏化太阳电池研究在染料、电极、电解质等各方面取得了很大进展。同时在高效率、稳定性、耐久性、等方面还有很大的发展空间。但真正使之走向产业化,服务于人类,还需要全世界各国科研工作者的共同努力。

这一新型太阳电池有着比硅电池更为广泛的用途:如可用塑料或金属薄板使之轻量化,薄膜化;可使用各种色彩鲜艳的染料使之多彩化;另外,还可设计成各种形状的太阳能电池使之多样化。总之染料敏化纳米晶太阳能电池有着十分广阔的产业化前景,是具有相当广泛应用前景的新型太阳电池。相信在不久的将来,染料敏化太阳电池将会走进我们的生活。

4染料敏化剂

染料光敏化剂的性质是将直接影响染料敏化纳米晶太阳能电池的光电转换效率。对敏化染料分子的一般要求是:

(1) 能紧密吸附在TiO2 表面,要求染料分子中含有羧基、羟基等极

性基团;

(2) 对可见光具有吸收性能好;

(3) 激发态能级与TiO2导带能级匹配,激发态的能级高于TiO2导带

能级,保证电子的快速注入;

(4) 其氧化态和激发态要有较高的稳定性和活性;

(5) 激发态寿命足够长,且具有很高的电荷传输效率。

在近20年染料研究中,人们合成了近千种染料,其中只有少数具有良好的光电敏化性能。这一类染料主要是钌的多联吡啶络合物。除了钌的

多联吡啶络合物系列染料外,其他几类染料也具备一定的应用价值和潜力。

这包括:

(1)有机类染料;紫菜碱和酞菁类有机物首先引起了研究者的注意。

(2)复合染料;为了最大限度的吸收可见光,近红外光波段的太阳光

能,除了研究像钌的多联吡啶络合物那样的全黑染料以外,还有一种途径

就是把两种或多种在不同光谱段有敏化优势的染料嫁接在一起,形成一种

综合了各种嫁接染料优势在可见,近红外全波段均有较强光响应的复合染

料。之前,已有研究者把紫菜碱和酞菁染料嫁接在一起, 并敏化到纳米晶

TiO2电极表面,结果显示该复合染料叠加了两种染料的敏化优势。

(3)半导体量子点染料;此类染料是由PbS或者InAs这类

II,VI,III,V族窄禁带的纳米半导体颗粒组成。

(4)天然染料;从自然界提取天然叶绿素用作染料也是一种途径.研究

表明,Cu叶绿素敏化纳米晶TiO2膜在630nm处,能达到10%的光电转换效

率,用它制得的太阳能电池总的光电转换效率为2.6%。

(5)透明染料;能源科学家们都有一个共同的理想,就是用太阳能电池

板做窗玻璃.这在传统的硅太阳能电池领域简直不可思议,但是具备与窗

玻璃实现一体化的潜力。

5存在的问题及发展趋势

目前,染料敏化型太阳能电池已引起全世界范围内研究者的广泛兴趣和重视,但它的发展仍有一些制约因素,如染料和电解质。目前这种电池

研究方向主要有以下几个方面。

1. 电极的制备,寻找简易、适于批量生产的制备工艺,制备出性能优

异的TiO2纳米晶多孔膜;其纳米粒子具有合适的尺寸、形状、晶体结构、表面结构和能级。

2.染料分子的光点化学反应机理和染料的设计合成。研究和改善分子

结构,提高电荷分离效率.

3.双敏化.为了使敏化剂具有更好的与太阳光相匹配的吸收光谱,人们也在探索使用双敏化剂。两种敏化剂在可见光区有不同的吸收范围,他们共同修饰可使TiO2电极在可见光区的光谱吸收和光电流响应具有更宽的范围.

4.固态空穴传输材料.寻找合适的固态空穴传输材料来代替液态电解质,制备全固态的染料敏化太阳能电池也是重要的研究方向.

5研究纳米多孔电极与燃料间能量传递及电子转移的微观本质.

6结语

总体看来,染料敏化太阳能电池具备的低成本、高效率优点非常吸引人, 但目前若想实现大批量生产, 还有几个核心技术问题。随着各学科的快速发展,新材料、新技术的涌现,打开思路,综合技术,有理由相信,染料敏化电池是会有光明的前景的.

参考资料:

杨术明,《染料敏化纳米晶太阳能电池》【M】, 郑州大学出版社,2007, 方靖淮,等.双染料共敏化的纳米晶二氧化钛多孔电极的光伏特性研究[J].太阳能学报,1997,l8(2):164-167.

百度—百度百科

染料敏化太阳能电池

染料敏化太阳能电池 物理科学与技术学院化学物理学交叉培养班张玲玲 2011213434 摘要染料敏化太阳电池主要是模仿光合作用原理,研制出来的一种新型太阳电池,其主要优势是原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。本文主要从染料敏化太阳能电池的原理和电解质来进行介绍。 关键词染料敏化太阳能电池原理制备 一、染料敏化太阳能电池的基本结构 染料敏化太阳能电池主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为染料敏化太阳能电池的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对的电解质,最常用的是I3/I-。 图1染料敏化太阳能电池的基本结构 二、染料敏化太阳能电池的工作原理 当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并最终回到对电极上。而由于染料的氧化还原

电位高于氧化还原电解质电对的电位,这时处于氧化态的染料分子随即被还原态的电解质还原。然后氧化态的电解质扩散到对电极上得到电子再生,如此循环,即产生电流。电池的最大电压由氧化物半导体的费米能级和氧化还原电解质电对的电位决定。 图2 染料敏化太阳能电池的工作原理示意图 2.1纳米晶多孔薄膜 作为太阳能电池半导体材料,首要条件为光照下性能稳定。考虑到只有禁带宽度Eg ﹥ 3eV 的宽带隙半导体才满足这一条件,因此可以用作DSC 半导体材料的禁带宽度必须大于3eV 。TiO2禁带宽度为3. 2eV ,是性能最优、使用最广泛的DSC 半导体电极材料。所有的太阳能电池都是依靠光电效应将光能转化为电能. 半导体的截止波长由下式计算: g E 1240g =λ 式中: Eg 为半导体禁带宽度,λg 为半导体的截止吸收波长. 则禁带宽度为3eV 半导体材料截止波长为413 nm ,而太阳光主要分布在可见光区域,而可见光光谱范围为390 ~770 nm ,因此基本不能被吸收. 为了使宽带隙半导体材料能够吸收可见光,必须通过某种方法将截止波长红移至红外区. 吸附于半导体表面的染料可以使半导体的吸收边强烈红移。 2.2染料分子

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

精选钙钛矿太阳能电池研究综述资料

精品文档 钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr和CHNHPbI为光敏化剂。这成功地跨出了钙钛矿太阳能电池发3333展的第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CHNHPbI为光敏化剂,通过改善工艺及优化原料333组分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。 精品文档. 精品文档 2012年,Snaith 等[7]利用CHNHPbICl作为光吸收剂,并且将结构中的233TiO层用AlO层进行替代,最终电池的效率增加到10.9%。钛矿太阳能电池逐322渐引起了科研人员的广泛关注,进入了高速发展阶段。 2013 年,钙钛矿太阳能电池在结构以及性能上,都得到了进一步的优化。Gratzel 等[8]制备了光电转化效率为15% 的钙钛矿太阳能电池,所采用的方法是两步连续沉积法。同年,Snaith 等[9]采用双源蒸镀法成功制备了平面异质结钙钛矿太阳能电池,其光电转换效率为15. 4%。 2014 年,Han 等[10]采用全印刷的手段来制备无空穴传输层,同时用碳电极取代金属电极,成功制备了光电转化效率为11. 60%的钙钛矿太阳能电池。Kelly 等

染料敏化太阳能电池

新能源课程 染料敏化太阳能电池(DSSC)装置的制作教学实验报告 电气01 王平09041020 4/22 Monday

《染料敏化太阳能电池(DSSC)装置的制作》教学实验 一、研究背景: 随着工业发展和技术进步,人类对能源的需求与日俱增。因此开发新的绿色能源,减少对环境的冲击影响,是迫切需要研究的课题。绿色能源种类很多,本实验将针对染料敏化太阳能电池(DSSC)进行实验制作,以了解其设计原理及机制。 二、实验目的: 了解染料敏化太阳能电池(DSSC)发电原理,掌握DSSC基本制作方法和的电池性能测定;理解决定DSSC性能的材料方面的影响因素,实验比较不同燃料、不同光线对电池性能的效果。 三、实验技能: 学习研磨制样、材料的选择、万用电表的使用、涂布coating及组装、测试太阳能电池。 四、工作原理: 本实验所制备的染料敏化太阳能电池(DSSC),是一个电化学反应过程装置。由正极、负极、电解质液组成。其中正极为涂布有石墨的导电玻璃;负极为涂布有二氧化钛的导电玻璃;二氧化钛为多孔纳米结构,吸附有染料或光敏剂;电解液为含碘化合物,能够产生I2/I-,被填充在正、负极之间。 DSSC太阳能电池是由一系列电子传递过程完成光能-电能转换的。当光线照在负极侧,染料吸收光能发生电子跃迁,染料被氧化,电子经二氧化钛半导体传导,流动到负极的导电玻璃片进入外电路;电子到达正极后,电解液中的I2/I-氧化还原作用使得染料被还原到原始状态。这样构成电子回路,产生电。 五、实验准备: 1.材料: A.导电玻璃:具有高透过率、导电率,如ITO、FTO B.正极:导电能力强、有一定催化活性,如炭、铂 C.二氧化钛:具有催化能力,高活性、比表面积大、分散均匀

染料敏化太阳能电池工艺以及研究现状

染料敏化太阳能电池工艺以及研究现状张安玉1309050319

染料敏化太阳能电池工艺以及研究现状 张安玉 摘要:染料敏化太阳能电池是一种新型的太阳能电池,由于其制作工艺简单,制造成本低廉,有着广泛的应用前景,是太阳能电池的重要发展方向。其中,染料敏化剂是太阳能电池的重要组成部分,已成为研究的热点。本文主要介绍染料敏化太阳电池的组成结构和工作原理,综述了染料敏化太阳能电池的研究现状,论述了光阳极上半导体薄膜的制备、改性方法;阐述了敏化染料和氧化还原电解质的要求、特点和分类。指出高性能半导体薄膜、光谱响应宽稳定性好的敏化染料以及高效全固态电解质的研发与应用是今后的主要研究方向。并对未来的发展趋势和前景进行展望。 关键词: 染料敏化太阳能电池;光阳极;敏化染料 太阳能是一种取之不尽、用之不竭的清洁能源,如何有效地将太阳能转化为电能或其他可利用的能源是物理和化学界的重大课题.其中太阳能电池是研究的热点项目,目前发展最成熟的是硅基太阳能电池,该类型电池实验室光电转换效率已接近25%,与理论值的29%非常接近。但是它对材料的纯度要求较高,制作工艺复杂,成本昂贵,这极大地限制了它的广泛应用。 目前发展成熟的太阳能电池是硅基太阳能电池,单晶硅太阳能电池的效率已达到25% 以上[1],但是它对材料的纯度要求高、制作工艺复杂、成本昂贵,这极大地限制了它的广泛应用。1991 年,瑞士洛桑高等工业学院的Gratzel 教授及其小组报道了染料敏化纳米晶太阳能电池(dye-sensitized solar cells,DSSC)的光电转化效率为7.1%[2],从此由于它简单的制作工艺、相对高的光电转化效率、低廉的成本等优点迅速成为广大科学家及科学工作者的研究热点与重点。1染料敏化太阳能电池(DSSC)的结构与原理 1.1结构 DSSC 的结构是典型的“三明治”结构,光敏染料太阳能电池的构造和原理如图1,一般是由光阳 极、敏化染料、氧化还原电解质以及对电极(通常为铂电极)组成。其中光阳极包括:透明导电基底(这里为导电玻璃)、纳米多孔半导体。 图 1 染料敏化太阳能电池的结构与工作原理示意图

染料敏化太阳能电池关键材料的制备与表征

实验一 染料敏化太阳能电池关键材料的制备与表征 在众多新能源中,太阳能因具有清洁、环保、无污染、取之不尽、用之不竭等诸多优点,被认为是未来最有希望的新能源之一。太阳能电池是通过光电效应或光化学效应直接把光能转化成电能的装置。太阳能电池产业,已成为世界主要国家抢占新一轮经济和科技发展制高点的重大战略之一。 在众多太阳能电池中,硅基太阳能电池技术最为成熟,但制作工艺复杂、价格昂贵、设备要求较高而不适合开展大学生实验。纳米二氧化钛(TiO 2)晶体太阳能电池是最近发展起来的一种新型太阳能电池,其优点在于其低廉的成本、简单的工艺以及相对稳定的性能。其光电效率稳定在10%以上,而制作成本仅为硅太阳能电池的1/5~1/10,寿命却能达到20年以上。但是TiO 2的禁带宽度为3.2eV ,只能吸收波长小于375nm 的紫外光。为了使其吸收红移至可见光区,增大对全光谱范围的响应,1991年,瑞士洛桑高等工业学院(EPFL )的Gratzel 研究小组开发了染料敏化太阳能电池(Dye Sensitized Solar Cell ,简称DSSC ),它由 吸附了染料光敏化剂(过渡金属钌的有 机化合物)的纳米TiO 2多孔薄膜制成, 其光电转换效率可达7.1%。1993年,他 将光电转换效率提高到了10%,1998年, 该研究组进一步研制出全固态DSSC , 使用固体有机空穴传输代替液体电解质, 单色光光电转化效率达到33%,引起了全世界的科学家对DSSC 的关注。近年来,染料敏化太阳能电池的研究主要集中在阳极材料的改性、染料的改进、电解质的研究、以及阴极对DSSC 的影响等方面。 “染料敏化太阳能电池的制备、组装及测试”实验涵盖材料制备实验(水热反应制备TiO 2纳米颗粒、热解法制备Pt 催化剂、丝网印刷技术制备光阳极薄膜、玻璃工操作、材料热处理等)、仪器分析实验(台阶仪测量薄膜厚度、X 射线衍射仪表征材料的结构与成分、扫描电子显微镜观测形貌、紫外-可见吸收光谱测试光谱吸收效果)等多种实验方法。由于实验步骤繁多、周期较长,因此根据其 图1 Gratzel 研究小组开发的 DSSC

太阳能电池的发展历史

龙源期刊网 https://www.wendangku.net/doc/f416134510.html, 太阳能电池的发展历史 作者:张金晶 来源:《商情》2016年第26期 【摘要】相对于风能、地热能、生物能和潮汐能等新能源,太阳能以污染小、可利用率高、资源分布广泛和使用安全可靠等优点,成为最具有发展前景的能源之一。目前,随着太阳能电池制备技术的不断完善,其技术的开发应用已经走向商业化、大众化,特别是一些小功率、小器件的太阳能电池在一些地区都已经大量生产而且广泛使用。所以谁先开发光电转换效率高、制备成本低的太阳能电池就能在将来的市场抢占先机。 【关键词】太阳能单晶硅薄膜电池 引言:随着社会的飞速发展,能源是影响当今社会进步的重要因素,但是现阶段人类社会发展大部分还是依靠化石能源提供能量。可是化石能源分布极不均衡,并且不可再生,而且燃烧化石能源带来的环境污染、雾霾气候和温室效应严重影响到了人类社会的可持续发展。然而太阳能是一种可再生清洁能源,可以提供充足的能量供人类使用,因此开发新能源,是人类社会薪火相传,世代相传的重要保证。 此外,不可再生能源的过快消耗对当今的环境形势提出了新的挑战。例如如何解决温室效应,臭氧空洞等问题。有限的化石能源以及在开发利用不可再生能源的过程中出现的负面影响,不仅阻碍了人类经济的飞速发展,而且还严重影响到社会的可持续发展。因此,发展一种新型能源已然成为世界各国提升自己综合国力和倡导能源发展的一个重要手段。 1. 第一代太阳能电池 第一代太阳能电池是发展时间最久,制备工艺最为成熟的一代电池,一般按照研究对象我们将其可分为单晶硅、多晶硅、非晶硅电池。按照应用程度来说前两者单晶硅与多晶硅在市场所占份额最多,商业前景最好。 单晶硅太阳电池和多晶硅太阳电池。从单晶硅太阳能电池发明开始到现在,尽管硅材料有各种问题,但仍然是目前太阳能电池的主要材料,其比例约占整个太阳电池产量的90%以上。我国北京市太阳能研究所从20世纪90年代起开始进行高效电池研究,采用倒金字塔表面织构化、发射区钝化、背场等技术,使单晶硅太阳能电池的效率达到了19.8%。多晶硅太阳能电池的研究开发成本较低,稳定性也比较好,这两大优势引起了科研工作者的注意。其光电转换效率随着制备工艺的成熟不断提高,它达到的最高的光电转换效率为21.9%,但是它的电池效率在目前的太阳能电池中仍处于一般水平。 2.第二代太阳能电池

染料敏化太阳能电池的结构与工作原理

染料敏化太阳能电池的结构与工作原理 染料敏化太阳能电池主要由表面吸附了染料敏化剂的半导体电极、电解质、Pt 对电极组成,其 结构如图1-1。 图1-1 染料敏化太阳能电池结构图 当有入射光时,染料敏化剂首先被激发,处于激发态的染料敏化剂将电子注入半导体的导带。氧化态的染料敏化剂被中继电解质所还原,中继分子扩散至对电极充电。这样,开路时两极产生光 电势,经负载闭路则在外电路产生相应的光电流(图1-2)。 图1-2 染料敏化太阳能电池工作原理图 通过超快光谱实验可得出染料敏化太阳能电池各个反应步骤速率常数的数量级[12]: ①染料(S)受光激发由基态跃迁到激发态(S*): S + hυ→S* ②激发态染料分子将电子注入到半导体的导带中: S* →S+ + e-(CB),k inj = 1010~1012s-1 ③I-离子还原氧化态染料可以使染料再生: 3I- + 2S+ →I3 - + 2S,k3 = 108s-1 ④导带中的电子与氧化态染料之间的复合:

S+ + e-(CB) →S,k b = 106s-1 ⑤导带中的电子在纳米晶网络中传输到后接触面(back contact ,BC)后而流入到外电 路中: e-(CB) →e-(BC),k5 = 103~100s-1 ⑥纳米晶膜中传输的电子与进入TiO2 膜的孔中的I3 -离子复合: I3 - + 2e-(CB) →3I-,J0 = 10-11~10-9A cm-2 ⑦I3 -离子扩散到对电极上得到电子使I-离子再生: I3 - + 2e-(CE) →3I-,J0 = 10-2~10-1A cm-2 激发态的寿命越长,越有利于电子的注入,而激发态的寿命越短,激发态分子有可能来不及将 电子注入到半导体的导带中就已经通过非辐射衰减而返回到基态。②、④两步为决定电子注入效率 的关键步骤。电子注入速率常数(k inj)与逆反应速率常数(k b)之比越大(一般大于三个数量级), 电子复合的机会越小,电子注入的效率就越高。I-离子还原氧化态染料可以使染料再生,从而使染料 不断地将电子注入到二氧化钛的导带中。步骤⑥是造成电流损失的一个主要原因,因此电子在纳米 晶网络中的传输速度(k5)越大,电子与I3 -离子复合的交换电流密度(J0)越小,电流损失就越小。步骤 ③生成的I3 -离子扩散到对电极上得到电子变成离子I-(步骤⑦),从而使I-离子再生并完成电流循环。 DSC的结构组成:主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为DSC的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对的电解质,最常用的是I3/I-。 DSC工作原理如下图所示: ⑴染料分子受太阳光照射后由基态跃迁至激发态; ⑵处于激发态的染料分子将电子注入到半导体的导带中; ⑶电子扩散至导电基底,后流入外电路中; ⑷处于氧化态的染料被还原态的电解质还原再生; ⑸氧化态的电解质在对电极接受电子后被还原,从而完成一个循环; ⑹和⑺分别为注入到TiO2 导带中的电子和氧化态染料间的复合及导带上的电子和氧化态的电解质间的复合

(完整版)钙钛矿太阳能电池研究综述

钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr 3和CH 3 NH 3 PbI 3 为光敏化剂。这成功地跨出了钙钛矿太阳能电池发展的 第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CH 3NH 3 PbI 3 为光敏化剂,通过改善工艺及优化原料组 分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。

太阳能电池发展现状及存在的主要问题

太阳能电池发展现状及存在的主要问题 晨怡热管2008-10-17 23:05:45 一、2005年国际太阳能电池产业发展情况 2005年,世界太阳能电池总产量1656MW,其中日本仍居首位,762M W,占世界总产量的46%,欧洲为464M W,占总产量的28%,美国156M W,占总产量的9%,其他274MW,占总产量的17%。 2004年全球前14位太阳能电池公司总产量达到1055MW,占当年世界总产量的88.3%,近五年来,日本Sharp公司一直领先,2004年产量达到324MW,见表1。

以2004年数据分析,各种太阳能电池中硅基太阳能电池占总产量的98%,晶体硅太阳能电池占总产量的84.6%,多晶硅太阳能电池占总量的56%,见表2。

2005年,世界光伏市场安装量1460M W,比2004年增长34%,其中德国安装最多,为837MW,比2004年增长53%,占世界总安装量的57%;欧洲为920MW,占总世界安装量的63%,日本安装量292M W,增幅为14%,占世界总安装量的20%;美国安装量为102MW,占世界总安装量的7%,其他安装量为146M W,占世界总安装量的10%。

至2005年全世界光伏系统累计安装量已超过5GW,2005年一年内投资太阳能电池制造业的资金超过10亿美元。现在,一个世界性的问题是制造太阳能的电池的硅原材料紧缺,尽管2005年全世界硅原材料供应增长了12%,但仍然供不应求,国际上长期供货合同抬价25%。持续的硅材料紧缺将对2006年太阳能电池生产产生较大的影响,预计2006年世界太阳能电池产量的增幅将不限制在10%左右。要解决硅材料的紧缺问题预计将需要5年以上的时间。 根据光伏市场需求预测,到2010年,全世界光伏市场年安装量将在3.2G到3.9GW之间,而光伏工业年收入将达到186美元到231亿美元。 日本和欧美各国都提出了各自的中长期PV发展路线图。 按日本的PV路线图(TV Roadmap 2030),到2030年PV电力将达到居民电力消耗的50%(累计安装容量约为100GW),具体的发展目标见表3和表4。

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

异质结太阳能电池综述

异质结太阳能电池研究现状 一、引言: 进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。而太阳能作为一种可再生能源正符合这一要求。太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小

时。而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。太阳能电池的研制和开发日益得到重视。本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。 二、国外异质结太阳能电池 1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池 2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。 图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池 简图 图2 TCO/TiO2/P3HT/Au电池结构示意图 同时采用了卟啉作为敏化剂吸收光子,产生的电子注入

染料敏化太阳能电池学术发展简史

染料敏化太阳能电池学术发展简史 2016-05-07 13:13来源:内江洛伯尔材料科技有限公司作者:研发部 基于钌化合物的染料敏化太阳能电池 1839年,Becquerel发现氧化铜或卤化银涂在金属电极上会产生光电现象,证实了光电转换的可能。 1960年代,H.Gerischer,H.Tributsch,Meier及R.Memming发现染料吸附在半导体上并在一定条件下产生电流的现象,成为光电化学电池的重要基础。 1980年代, 光电转换研究的重点转向人工模拟光合作用,美国州立Arizona大学的Gust和Moore研究小组成功模拟了光合作用中光电子转换过程,并取得了一定的成绩。Fujihia等将有机多元分子用L B 膜组装成光电二极管,开拓了这方面的工作。 1970年代到90年代,R.Memming,H.Gerischer,Hauffe,H.Tributsh等人大量研究了各种染料敏化剂与半导体纳米晶间光敏化作用,研究主要集中在平板电极上,这类电极只有表面吸附单层染料,光电转换效率小于1%。 1991年,Graetzel M.于《Nature》上发表了关于染料敏化纳米晶体太阳能电池的文章以较低的成本得到了>7%的光电转化效率,开辟了太阳能电池发展史上一个崭新的时代,为利用太阳能提供了一条新的途径。 1993年,Graetzel M.等人再次研制出光电转换效率达10 %的染料敏化太阳能电池, 已接近传统的硅光伏电池的水平。 1997年,该电池的光电转换效率达到了10%-11%,短路电流达到18mA/cm2,开路电压达到720mV。 1998年,采用固体有机空穴传输材料替代液体电解质的全固态Gr?tzel电池研制成功,其单色光电转换效率达到33%,从而引起了全世界的关注。 2000年,东芝公司研究人员开发含碘/碘化物的有机融盐凝胶电解质的准固态染料敏化纳米晶太阳能电池,其光电能量转换率7.3 % 。 2001年, 澳大利亚STA 公司建立了世界上第一个中试规模的DSC 工厂。 2002 年, STA建立了迄今为止独一无二的面积为200m2 DSC 显示屋顶,集中体现了未来工业化的前景;PengWang等人用含 1-methyl-3-propylimidazoliumiodide 和poly(viylidenefloride

太阳能电池的发展与趋势

《物理演示实验》结课论文题目:太阳能电池的发展与趋势 学生姓名: 学号: 专业班级: 2013年 5月25日

摘要:现代社会应是节约型的社会,而社会生活也应是节约能耗的生活。而太阳能作为一种取之不尽的新型环保能源已成为世界各国世界上能源探究工作中的一个重要课题。是我国在经济目前状况下采取的较为简单、经济、环保、可靠的节能办法。近些年,随着我国经济的飞速发展、科技水平的快速提升,太阳能技术已逐渐普及、应用到各个行业领域乃至人们的生活中,而市面上也涌现出了大量的太阳能热水器、太阳能发电设备、太阳能照明器具等产品。其中,太阳能电池的应用,不仅充分发挥了太阳能技术环保、节能、可再生的特点,同时也有效满足了当代社会发展、科技进步的需求。本文就太阳能电池新发展的新概念及新的方向作简要的分析、探讨。 关键字:太阳能新能源太阳能电池 一、引言 太阳内部进行着剧烈的由氢聚变成氦的核反应,并不断向宇宙空间辐射出巨大的能量,可以说是“取之不尽、用之不竭”的能源。地面上的太阳辐射能随时间、地理纬度、气候变化,实际可利用量较低,但可利用资源仍远远大于满足现在人类全部能耗及2100年后规划的能源利用量?。地球上太阳能资源一般以全年总辐射量[kJ/(m^2·年)]和全年日照总时数表示。就全球而言,美国西南部、非洲、澳大利亚、中国西藏、中东等地区的全年总辐射量或日照总时数最大,为世界太阳能资源最丰富地区。我国陆地面积每年接收的太阳辐射总量3.3×10^3~8.4×10^6 kJ/(m^2·年)之间,相当于2.4×10^4亿t标煤,属太阳能资源丰富的国家之一。全国总面积2/3以上地区年日照时数大于2200h,日照在5×10^6kJ/(m^2·年)以上。我国西藏、青海、新疆、甘肃、宁夏、内蒙古高原的总辐射量和日照时数均为全国最高,属太阳能资源丰富地区;除四川盆地、贵州资源稍差外,东部、南部及东北等其他地区为资源较富和中等区,所以在我国太阳能有很大的发展前景。 随着新型太阳能电池的涌现,以及传统硅电池的不断革新,新的概念已经开始在太阳能电池技术中显现,从某种意义上讲,预示着太阳能电池技术的发展趋势。通过对太阳能电池的发展背景、现状进行分析,可将太阳能电池发展的新概念、新方向归纳为薄膜电池、柔性电池、叠层电池、以及新概念太阳能电池。 二、太阳能电池概况 1、太阳能电池定义 太阳能电池就是把太阳光转化为电的一种器件,在一般的情况下(注意条件),太阳能电池 的效率随光强增加而增加的。再进一步说就是太阳能电池效率和安装地的综合气候条件有关系。2、太阳能电池的分类 不同的材料对光的吸收系数不同,禁带宽度也不同,量子效率自然也不同,电池效率自然也 不同了。一般来说,单晶硅/多晶硅对光的系数系数远小于非晶硅的,所以非晶硅太阳能电池厚度仅仅有单晶硅/多晶硅厚度的百分之一即可较好的吸收太阳光。另外理论上讲GaAs太阳能电池的极限效率要大于其他太阳能电池的极限效率,因为GaAs太阳电池的禁带宽度在1.4ev,和地面太阳光光谱能量的最值最为接近。根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池3、功能高分子材料制备的太阳能电池4、纳米晶太阳能电池等。硅是最理想的太阳能电池材料,这是太阳能电池以硅材料为主的主要原因。在以上电池中单晶硅太阳能电池转换效率最高,技术也最为成熟,光电转化效率可达23.3%。随着新材料的不断开发和相关技术的发展,以其它材料为基础的太阳能电池也愈来愈显示出诱人的前景。目前国际成本大规模生产技术的研究主要集中在多晶硅、大面积薄膜非晶硅、CdTe电池、CIS 电池的制造技术、III-V族化合物半导体高效光电池,非晶硅及结晶硅混合型薄膜光电池等方面。 三、太阳能电池发展综述 长期以来,世界各国在大力发展经济的同时,各行业领域的过度生产消耗了大量的能源,倘若继续按照此种趋势发展,在未来的五十年里,能源危机将是影响人类生活、阻碍社会进步的首要问题。目前,不同国家、地区、种类的全部能源中,能够使用的化石能源占90%以上,若是以现阶段世界各国的能源消耗状态发展到二十一世纪的中期,可供使用的能源储备、化石能源所占比例将减少近50%,之后的能源需求必将是以可再生能源、核能为主。基于此种趋势,预计到2100年,在人类所使用的能源中,可再生资源将占有30%以上。可供开发、使用的可再生能源主要有地热能、生

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

太阳能光伏电池论文中英文资料对照外文翻译文献综述

光伏系统中蓄电池的充电保护IC电路设计 1.引言 太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。 2.系统设计与考虑 系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。 免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因

素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。 根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。 3.单元模块设计 3.1充电模块 芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。 该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从

钙钛矿电池和燃料敏化电池综述

CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY 新能源材料(论文) 文献综述 题目:染料敏化太阳能电池与 钙钛矿太阳能电池概述 学生姓名: 学号: 班级: 专业: 指导教师: 2015年1月4日

染料敏化太阳能电池钙钛矿太阳能电池概述 一、引言 进入 21 世纪,世界人口的剧烈增长和环境污染的日益严重,还有能源的枯竭以及生态环境的破坏,使人类对能源尤其是清洁的新能源的开发利用有了更大的需求。太阳能是一种可再生能源,并且具有取之不尽,功率巨大,使用安全等优点,引起了人们极大的关注,而太阳能电池是开发利用太阳能最有效的方法之一。近年来太阳能电池的产量以每年 30%的速度增长。预计到本世纪中叶,它将占世界总发电量的 15~20%。 太阳能电池是利用太阳光和材料相互作用直接产生电能的,是对环境无污染的可再生能源。它的应用可以解决人类社会发展在能源需求方面的问题。太阳能是一种储量极其丰富的洁净能源,太阳每年向地面输送的能量高达 3×1024焦耳,相当于世界年耗能量的 1.5 万倍。因此太阳能电池作为人们利用可持续的太阳能资源,是解决世界范围内的能源危机和环境问题的一条重要途径。 然而,提高太阳能电池的转化效率以及降低成本一直是学者们努力的方向。其中,染料敏化太阳能电池和钙钛矿太阳能电池以其低价的成本和较高的转化效率获得了科学家们的青睐。 摘要: 关键词:染料敏化太阳能电池纳米多孔半导体单一敏化染料准固态电解质固态电解质染料敏化太阳能电池的效率钙钛矿太阳能电池钙钛矿材料

CH3NH3PbX3的制备方法钙钛矿太阳能电池研究进展 二、染料敏化太阳能电池的相关研究 2.1 工作原理 当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并最终回到对电极上。而由于染料的氧化还原电位高于氧化还原电解质电对的电位,这时处于氧化态的染料分子随即被还原态的电解质还原。然后氧化态的电解质扩散到对电极上得到电子再生,如此循环,即产生电流。电池的最大电压由氧化物半导体的费米能级和氧化还原电解质电对的电位决定。 2.2 染料敏化太阳能电池的研究现状 (1)光阳极上纳米多孔半导体的研究进展 DSSC 光阳极上的半导体材料多采用纳米多孔TiO2,它是染料分子的载体,同时分离并传输电荷。目前光阳极的研究重点主要是两方面:①寻找制备半导体光阳极薄膜时,可以增大 TiO2比表面积和改善 TiO2表面活性的方法;②由于电子在TiO2薄膜中电子的传输阻力大,影响电池转换效率的进一步提高,故寻找可以替代 TiO2的其它半导体材料。 制备光阳极纳米多孔薄膜的方法很多,包括溶胶-凝胶法,粉末涂敷法、水热法、液相沉积法、化学气象沉积法、电化学法等。其中粉末涂敷法在工业生产中称为丝网印刷法,具有工艺简单、适合大规模

相关文档
相关文档 最新文档