文档库 最新最全的文档下载
当前位置:文档库 › 五年级几何奥数题

五年级几何奥数题

五年级几何奥数题
五年级几何奥数题

例1

1、有一块纸板形状如图(单位:厘米),这块纸板的周长是多少厘米?

例2:用同样大小的小正方形瓷砖铺一个正方形的卧室地面。已知两条卧室地面的对角线铺黑色瓷砖,其他地方铺白色的,如果铺满整个地面要用47块黑色瓷砖,那么卧室中的白色瓷砖有多少块?

例3:有一块长方形广场,沿着它不同的两条边各划出2米准备种树,剩下的部分仍是长方形,且周长为280米。问:种树的面积是多少平方米?

2、一块长方形木板,把长和宽各锯去6厘米,锯掉的面积为396平方厘米。现在这块木板的周长是多少厘米?

例4:一块花圃如图所示,梯形ABCD 中有个直角三角形,AD=10米,BC=14米,AE=6米,DE=8米。阴影部分的面积是多少平方米?

3、图中三角形AED

ABCD中,AD=7厘

米,CF=3厘米。求梯形ABCF的面积。

4、在一个长方形花园中有个走道(图中的阴影部分),长方形的面

积是216平方米,长18米,走道的宽1.2米,走道的面积是多少平方米?

5、图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。

6、在下图中,AD=8厘米,BC=12厘米,CD=10厘米,三角形BCF的面积

比三角形AEF大50平方厘米,AE长多少厘米?

7、如图,正方形ABCD的周长是32厘米,AE长10厘米,BO长多少厘米?

最新五年级数学奥数题

五年级数学奥数题 1、三个连续自然数的和是72,这三个数分别是多少?如果是三个连续偶 数,这三个数又分别是多少? 2、五(1)班有43名同学,现派他们到4个社区参加劳动,每个社区只 能派奇数名同学,你能完成任务吗? 3、456789是质数还是合数?为什么? 4、2011年,东东和妈妈的年龄都是质数,乘积是259,2013年母子各多少 岁?年龄差是多少? 5、下面算式()里的数字各不相同,求这四个数字的积是多少? ()()×()()=546 6、300=2×2×3×5×5,则300一共有多少个不同的因数? 7、一个长方体的铁块,被截成两个完全相同的正方体。两个正方体棱长 之和比原来长方体棱长之和增加了16厘米。求原来长方体的长是多少厘米? 8、李师傅要制作40根长方体的通风管。管口是边长30厘米的正方形, 管长1米。一共需要多少平方米的铁皮? 9、一个正方体木块,把它分成3个大小相同的长方体之后,表面积增加 了36平方厘米,这个木块原来的表面积是多少? 10、一根铁丝长120厘米,先将这根铁丝焊接成一个长方体模型,长是14 厘米,宽和高相等,这个模型的体积是多少立方厘米? 11、有一个长方体的铁块,底面积是32平方厘米,高是4厘米。把它锻造 成一个截面是正方形的长方体,截面边长4厘米。求这个长方体的长是多少 12、一个长方体,表面积是368平方厘米,底面积是40平方厘米,底面周 长是36厘米。求这个长方体的体积。 13、将一个长方体的长减少5厘米,变成了正方体,正方体表面积比原来 表面积减少了60平方厘米。原来长方体的体积是多少立方厘米?14、一个长方体的高如果增加2厘米,就成为一个正方体,这时表面积就 比原来增加了48平方厘米。原来长方体的体积是多少? 15、一条长50厘米,宽40厘米,高40厘米的鱼缸中水深25厘米,放入 几条金鱼后,水面上升了3厘米。这几条金鱼的体积是多少立方厘米? 16、有一个长60厘米,宽32厘米,高22厘米的长方体箱子里,最多可 以装棱长为4厘米的正方体物品多少个? 17、一个底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一 个边长电话20厘米的正方形,那么这个铁箱的体积是多少立方厘米? 18、从一个长方体上截下一个体积是72立方厘米的长方体后,剩下的部分 是一个棱长6厘米的正方体。原来这个长方体的表面积是多少平方厘米? 19、学校的围墙长200米,宽150米,高2米,现外墙要重新粉刷。需要 粉刷的面积是多少平方米?如果每千克涂料可粉刷4平方米,购买1 千克涂料16元,购买涂料要多少元?粉刷外墙人工费每平方米要8 元,粉刷外墙人工费和涂料费共需多少元? 20、幼儿园张阿姨买了4袋同样的糖果,每袋1.5千克。她要把这些糖果

小学奥数 几何计数 专题

1.掌握计数常用方法; 2.熟记一些计数公式及其推导方法; 3.根据不同题目灵活运用计数方法进行计数. 本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想. 一、几何计数 在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成 2 1223(2)2 n n n ++++= ++……个部分;n 个圆最多分平面的部分数为n(n-1)+2;n 个三角形将平面最多分成3n(n-1)+2部分;n 个四边形将平面最多分成4n(n-1)+2部分…… 在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解. 排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关. 教学目标 知识要点 几何计数

二、几何计数分类 数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条 数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形. 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个. 例题精讲 【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小 棍?(4级) 【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三 角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?(4级) 【巩固】用三根火柴可拼成一个小“△”,若用108根火柴拼成如图所示形状的大三角形,请你数一数共有多

六年级上册奥数题及答案

六年级上册奥数题及答案 【篇一:小学六年级奥数题及答案(全面)】 t>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人, 恰是不及格人数的6倍,求参赛的总人数?解: 设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的 就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而 6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也 即是78,参赛的总人数314+78=392 2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收 入增加五分之一,一张电影票原价多少元? 解:设一张电影票价x元 (1+1/5)x这一步是什么意思,为什么这么做 左边算式求出了总收入 (1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成 整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应 该再*(1+5/1),减缩后得到(1+1/5x)} 如此计算后得到总收入,使方程左右相等 3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求乙的存款 答案 取40%后,存款有 4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克 力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案 加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%, 巧克力是奶糖的60/40=1。5倍 再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖 的3倍 增加了3-1.5=1.5倍,说明30颗占1.5倍 奶糖=30/1.5=20颗 巧克力=1.5*20=30颗 奶糖=20-10=10颗

最新人教版六年级数学奥数题

1、人教版六年级数学奥数题 2、育红小学六年级举行数学竞赛,参加竞赛的女生比男生多28 人。根据成绩,男生全部获奖,而女生则有25%的人未获奖。获奖总 2.六年级学生共有多少 人数是42人,又知参加竞赛的是全年级的 5 人? 3、水果批发部里的苹果比梨多20吨,梨比苹果少20%,梨是多少 吨? 4、六年级有学生146人,达到《国家体育锻炼标准》的有124人。 求这个年级的达标率。(百分号前保留一位小数) 5、一种半导体收音机,现在售价165元,比去年降低了85元,降低 了百分之几? 6、甲乙两人分别从A、B两地同时相向而行,4时相遇,这时甲行 了全程的40%。两人继续前进,当乙到达A地时,甲还需行全程的几分之几就可以到达B地了? 7、一个工人由于改进生产技术,生产一个零件的时间由12分减到8分,以前每天生产40个零件,现在的生产效率比以前生产效率提高了百分之几? 8、东乡去年春季植树450棵,成活率为80%,去年秋季植树的成活率为90%,已知去年春季比秋季多死了18棵,这个乡去年一共种活了多少棵树? 9、某校选派360名学生参加夏令营,结果发现男生占40%,为了使男生占50%,又增派了一批男生,问被增派的男生有多少名?

1,第二次用去余下的60%, 10、一根铁丝全长4.8米,第一次用去全长的 3 最后还剩下多少米? 11、修一条长2400米的公路,如果由甲工程队单独修建,需要20天;乙工程队单独修建,需要30天。现在由甲乙两工程队合修,需要多少天? 12、一项工程,由甲单独修做12天可以完成。甲队做了3天后,另有任务,余下的工程由乙队做15天完成,由乙队单独做这项工程要多少天? 13、老刘和小李合做一件工作,要12天完成,如果让老刘先做8天,剩下的工作由小李单独做,小李还要14天才能完成,小李单独做这件工作需几天完成。 14、甲.乙两队开挖一条水渠。甲队独做8天完成,乙队独做12天完成。现在两队同时挖了几天后,乙队调走,余下的甲队在3天内挖完。乙队挖了几天? 15、加工一批零件,甲独做20天完成,乙独做30天完成。现两人合作来完成任务,合作中甲休息了2.5天。乙休息了若干天,这样共14天完工。乙休息了几天? 16、抄一本书稿,甲每天的工作效率等于乙、丙两人每天的工作效率的和;丙的工作效率相当于甲、乙每天工作效率和的1/5;如果3人合作只需要8天就完成了,那么乙一人单独抄需要多少天才能完成? 17、一项工程,甲队单独承建要20天完,乙队单独承建要30天完,如果两队合做,多少天才能完成全部工作的3/4?

五年级奥数平面几何图形的面积计算.

第17讲平面图形的计算(一) 例1.图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米) 例2.计算右图的面积。(单位:厘米) 例3.如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。求四边形ABCD的面积。 例4.右图是两面三刀个相同的直角三角形叠在一起,求阴影部分的面积。(单位:分 米) 例5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?(单位:米)

练习与思考 1.求图中阴影部分的面积。 2.求图中阴影部分的面积。 3.下左图的长方形中,三角形ADE与四边形DEBF和三角形CDF的面积分别相等,求三角形DEF的面积。 4.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。 5.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?

6.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。 7.如图,BC长为5,求画斜线的两个三角形的面积之和。 8.上右图是两个一样的直角三角形重叠在一起,按照图上标出的数,计算阴影部分的面积。 9.右图是一块长方形草地,长方形长为16,宽为12,中间有一条宽为2的道路,求草地(阴影部分)的面积。

简便计算作业(12月23日): 1.996+19.97+199.8 2.89?4.68+4.68?6.11+4.68 75?4.7+15.9?25 平均数问题作业(12月23日): 1.已知九个数的平均数是7 2.去掉一个数之后,余下的数的平均数是78。去掉的数是多少? 2.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵? 3.五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学? 4.把五个数从小到大排列,其平均数是38。前三个数的平均数是27,后三

六年级数学奥赛题汇总附答案

六年级奥数六年级数学难题汇总(解析+答案) 例1.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_______ ?(安徽省1997年小学数学竞赛题) 解:逆向思考:因为225=25X9,且25和9互质,所以,只要修改后的数能分别被25 和9整除,这个数就能被225整除。我们来分别考察能被25和9整除的情形。 由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75. 再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9 + 7+0 + 4 + 5 =25,25 + 2= 27,25 + 7=32. 故知,修改后的六位数是970425. 7.在三位数中,个位、十位、百位都是一个数的平方的共有个。 【答案】48 【解】百位有1、4、9三种选择,十位、个位有0、1、4、9四种选择。满足题意的三位数共有 3X4X4 = 48 (个)。 12.已知三位数的各位数字之积等于10,则这样的三位数的个数是__________ 个. 【答案】6 【解】因为10 = 2X5,所以这些三位数只能由1、2、5组成,于是共有 =6个. 12.下图中有五个三角形,每个小三角形中的三个数的和都等于50,其中A7 = 25,A1 + A2 + A3 + A4 = 74,A9 + A3 + A5 + A10 = 76,那么A2 与A5 的和是多少?

【答案】25 【解】有A1+A2+A8 = 50 , A9+A2+A3 = 50, A4+A3+A5 = 50, A10+A5+A6 = 50, A7+A8+A6 = 50, 于是有A1+A2+A8+A9+A2+A3+A4+A3+A5+A10+A5+A6+A7+A8+A6 = 250 , 即(A1+A2+A3+A4)+(A9+A3+A5+A10)+A2+A5+2A6+2A8+ A7 = 250. 有74+76+A2+A5+2(A6+A8) + A7 = 250,而三角形A6A7A8 中有A6+A7+A8 = 50,其中A7 =25,所以A6+A8 = 50 —25 = 25. 那么有A2+A5 = 250 —74 —76 —50 —25 = 25. 【提示】上面的推导完全正确,但我们缺乏方向感和总体把握性。 其实,我们看到这样的数阵,第一感觉是看到这里5个50并不表示10个数之和,而是这10 个数再加上内圈5个数的和。这一点是最明显的感觉,也是重要的等量关系。 再看问题定方向”,要求第2个数和第5个数的和, 说明跟内圈另外三个数有关系,而其中第6个数和第8个数的和是50-25二25, 再看第3个数,在加两条直线第1、2、3、4个数和第9、3、5、10个数时,重复算到第3 个数, 好戏开演: 74+76+50 + 25+ 第2 个数 + 第5 个数=50X5 所以第2个数+第5个数二25 一、填空题: 1满足下式的填法共有 口口口口-口口口二口口 【答案】4905 【解】由右式知,本题相当于求两个两位数a与b之和不小于100的算式有多少种 a=10时,b在90 99之间,有10种;

小学六年级数学奥数题及答案

六年级数学下册第四、五单元测试卷 内容:统计、数学广角 年级 姓名 书写(4分) 总分 一、仔细阅读,正确填空。(每小题2分,共26分) 1、( )统计图容易看出数量的多少,如果要表示各部分与总数之间的关系,选( )统计图比较合适;既可以表示数量的多少,又可以表示数量的增减变化情况的是( )统计图。 2、袋子里有2个红球,1个黄球,4个白球,如果任意摸一个球,摸到( )球的可能最小;如果要保证摸到白球,至少一次要摸出( )个球。 3、在14个1999年出生的儿童中,至少有( )个人是同一月出生的。 4、时钟5时敲响5下,12秒钟敲完。10时敲响10下,需要( )秒。 5、把7个梨放在4个盘子里,总有1个盘子至少要放( )个梨。 6、气象小组测得上周周一至周五的室外气温,并求出平均气温。请你填出周三的气温。 日期 周一 周二 周三 周四 周五 周六 气温/℃ 25 23 20 19 21.6 7、有趣的摸球游戏。袋子里有红、黄、蓝各10个球,要保证摸出2个同色,至少要摸( )个,从中任意摸一个,摸到红色球的可能性是( )。 8、在一分钟跳绳练习中,小华跳了123次,那么他总有在某秒至少跳了( )次。 二、仔细推荐,认真辨析。(共6分) 1、条形统计图和折线统计图都可以表示出数量的多少。( ) 2、5个白球和5个红球(其他完全相同)的口袋,摸出白球的可能性是 。( ) 3、为清楚地表示出某一年平均气温的变化情况,应该绘制条形统计图。( ) 4、口袋中有10个白球和2个黑球,任意摸出一个球,一定是白球。( ) 5、任意25人中至少有3个人属相相同。( ) 6、张叔叔参加飞镖比赛,投了5标,成绩是41环,他至少有一镖不低于9环。( ) 三、反复比较,慎重选择。(每小题2分,共10分) 1、5个人逛商店共花了301元钱,每人花的钱数都是整数,其中至少有一人花的钱数不低于( )元。 A 、59元 B 、60元 C 、61元 D 、62元 2、某省统计近期H7N9禽流感疫情,既要知道每天患病人数的多少,又能反映疫情变化的情况和趋势,最好选用应选用( )统计图。 A 、条形 B 、折线 C 、扇形 D 、任意选用 3、一个盒子里装有黄色、白色乒乓球各5个,要想使取出的乒乓球一定有2个黄色乒乓球,则至少应取出( )个。 A 、4 B 、5 C 、6 D 、7 4、如果A 的 等于B 的 (A 、B 不为0),那么A:B =( ) A 、1:9 B 、8:3 C 、9:8 D 、8:9 5、一块200㎡的地种了四种作物,100㎡种的是玉米,50㎡种的是花生,40㎡种的是辣椒,10㎡种的是白菜,下面那个示意图能反映各种作物所占的面积百分比。( ) D 、以上都不能反映 四、认真细致,合理计算。(20分) 1、直接写出得数。(8分) 8.12+0.09= - - = ( - _×20= 0.32= 4÷ = ×3÷ = 2- × 698×51= 2、怎样简便就怎样样。(12分) - × + ÷( + × ) 0.6×4.7+5.3×60% ÷[ ×(1- )] 亲爱的同学,只有平时努力,考试认真,书写端正,这张试卷一定会带给你又一次成功的享受。 2 1 324 3 7161351384151 54543 1 3152527118785154418583581135211 10

最新2020年度五年级数学有趣经典的奥数题及答案解析【最新】

五年级数学有趣经典的奥数题及答案解析 一、工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时? 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?

天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

小学奥数几何难题

小学奥数几何难题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

小学奥数几何难题 类型一:旋转、对称类 (2011年日本算术奥林匹克大赛高小预赛) 在ABC △中,9cm AB AC ==,120BAC ∠=?.点P 在边BC 上使得6cm CP =,点Q 在边AC 上使得CPQ APB ∠=∠.请求出三角形BPQ 的面 积. Q P C B A 【考点】 图形对称 【答案】 13.52cm 【分析】 方法一:过A 点作AO BC ⊥交BC 于点O ,作P 、Q 关于AO 的对称点'P 、 'Q ,连接''P Q 、'AP 、'P Q ,如下图所示: 【分析】 O P'Q' A B C P Q 【分析】 ∵CPQ APB ∠=∠,又'APB AP C ∠=∠,∴'CPQ CP A ∠=∠,∴ 'PQ P A ∥,∴'APQ P PQ S S =,∴'APC P QC S S =,又∵'P O PO =,∴ 'CP BP =,∴'CP BP =,∴'BPQ P QC APC S S S ==△△△.∵30C ∠=?,∴ 4.5AO =,又∵6CP =,∴APC S △6 4.5213.5=?÷=,∴13.5BPQ S =△. 【分析】 方法二:(供参考)作AD BC ⊥交BC 于点D ,作QE BC ⊥交BC 于点E . 【分析】 E D A B C P Q 【分析】 ∵APB QPC ∠=∠,ABP QCP ∠=∠,∴CQP BAP △∽△,又AD 、QE 分别 是ABP △、QCP △的高,于是有:BP AD CP QE =,即BP QE CP AD ?=?.而又226 4.5213.5BPQ S BP QE CP AD =?÷=?÷=?÷=△. 【总结】 本题没有边之间的比例,只有角度相等,因此尝试做对称来构造出平行线, 解决问题.

小学六年级奥数测试题及答案-小学奥数题100道及答案六年级

小学六年级奥数测试题及答案 奥数(一) 一、填空题: 3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个. 5.图中空白部分占正方形面积的______分之______. 6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______. 7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等. 8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克. 9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______. 10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的 翻动,使七枚硬币的反面朝上______(填能或不能). 二、解答题: 1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度 是多少? 2.数一数图中共有三角形多少个?

3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数. 奥数(一)答案 一、填空题: 1.(1) 3.(6个) 设原两位数为10a+b,则交换个位与十位以后,新两位数为10b+a,两者之差为(10a+b)-(10b+a)=9(a-b)=27,即a-b=3,a、b为一位自然数,即96,85,74,63,52,41满足条件.4.(99) 5.(二分之一) 把原图中靠左边的半圆换成面积与它相等的右半部的半圆,得右图,图 6.(60千米/时) 两船相向而行,2小时相遇.两船速度和210÷2=105(千米/时);两船同向行,14小时甲赶上乙,所以甲船速-乙船速=210÷14=15(千米/时),由和差问题可得甲:(105+15)÷2=60(千米/时).乙:60-15=45(千米/时).

小学五年级数学上册奥数题启蒙(含答案)

五年级上册奥数题启蒙(含答案)1、有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍,大、中、小筐共有苹果多少千克。 解:设小筐装苹果X千克。 4X=2X+16 2X=16 X=8 8×2=16(千克) 8×4=32(千克) 答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克。 2、参加校学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行和一列,则要减少33人,参加团体操表演的运动员有多少人? 解:设团体操原来每行X人。 2X-1=33 2X=34 X=17 17×17=289(人) 答:参加团体操表演的运动员有289人。

3、有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍。问:这两根绳子原来的长各是多少? 1+1=2 1+2=3 解:设原来短绳长X分米,长绳长2X分米。 (X-6)×3=2X-6 3X-18=2X-6 X=12 2X=2×12=24 答:原来短绳长12分米,长绳长24分米。 4、甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少? 解:设甲数为X,乙数为(32-X)。 3X+(32-X)×5=122 3X+160-5X=122 2X=38 X=19 32-X=32-19=13 答:甲数是19,乙数是13。 5、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚?

9角9分=99分 解:设2分硬币有X枚,5分硬币有(30-X)枚。 2X+5×(30-X)=99 2X+150-5X=99 3X=51 X=17 30-X=30-17=13 6、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只? 2.60元=260分 解:设搬运中打碎了X只。 3×(100-X)-5X=260 300-3X-5X=260 8X=40 X=5 答:搬运中打碎了5只。 7、弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍? 解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍。 (25-X)×2=17+X 50-2X=17+X

小学奥数-几何计数-专题

几何计数 知识框架图几何计 数8计数综合7-7 教学目标 .掌握计数常用方法;1熟记一些计数公式及其推导方法;2. .根据不同题目灵活运用计数方法进行计数.3本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并 渗透分类计数和用容斥原理的计数思想. 知识要点 一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些条直线最多将平面分成处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n12个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多分2)(nn?n??????223……2成3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分…… 在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解. 排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.

二、几何计数分类 数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条 数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形 也有15个,所以图中共有30个三角形. 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个. 例题精讲 【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层, 共用了多少根小棍?(4级) 【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?(4

六年级数学奥数题

1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块.两人原来各有多少钱?书多少钱? 设丽丽有x元钱家家有y元钱得出: 3/5x=2/3y 2/5x=1/3y+5 (丽丽剩下2/5 家家剩下1/3) 解2元一次方程得x=50 y=45 即丽丽50元家家45元书30元一本 2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克? 8除4/5=10(km/) 4/5除8=0.1(kg) 3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时? 30÷1/2=60千米1÷60=1/60小时 4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书? 原来有x名同学,女生数不变,所以(1-4/7)x=(x-5)*12/23 求出x=28 5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的

三分之二,蓝气球有24只,红气球和黄气球各有多少只? 62-24=38(只) 3/5红=2/3黄 9红=10黄红:黄=10:9 38/(10+9)=2 红:2*10=20 黄:20*9=18 6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生? 原有女生:36×4/9=16(人) 原有男生:36-16=20(人) 后有总人数:20÷(1-3/5)=50(人) 后有女生:50×3/5=30(人) 来女生人数:30-16=14(人) 7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少? 2.16/(1+1/11)=1.98(立方米) 8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨? 现在甲乙各有 560÷2=280吨 原来甲有

经典奥数几何四题

1. 在正方形ABCD中(如图所示),E,F分别是所在边的中点,四边形AGCD的面积占正方形面积的几分之几? 解:连接AC。 可以知道G是三角形ABC的3条中线的相交点,就是重心。 所以: S△ACG=S△ABG=S△BCG=1/3*S三角形ABC=1/6*S正方形ABCD。 S四边形AGCD=S△ACG+S△ACD=(1/2+1/6)S正方形ABCD=2/3*正方形ABCD 四边形AGCD的面积占正方形ABCD面积的2/3。 2. 如图所示,直角梯形ABCD的上与高相等,正方形DEFH的边长等于6厘米,阴影部分的面积是________平方厘米。 3. 如图,四边形ABCD是长方形,E、F分别是AB、DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么四边形ABCD的面积是________平方厘米。

解:设长方形ABCD面积为S。 因为F、E是AD和AB的中点,所以S△ABF=S△ADE=S/4 连接AG,同样F、E是AD和AB的中点,所以S△BEG=S△AEG=S△AFG=S△DFG=S△ABF/3=S/12 S四边形BCDG=S-S△ABF-S△DFG=S - S/4- S/12=2 S/3 S=3 四边形BCDG/2=60平方厘米 4. 将正面是红色,背面是白色的纸剪成一个直角三角形ABC(如下图所示),盖在桌面上,然后折叠使A与C重 合。这是红色部分的面积为5.25平方分米,盖住桌面的面积比原来减少了9.375平方分米,BD=4.8分米,折痕的长度是_____分米 解:三角形ABC面积=9.375×2+5.25=24平方厘米 AB=24×2÷4.8=10厘米 假设折痕和AB交于点E,和AC交于点F AE=1/2×10=5厘米 EF=9.375×2÷5=3.75

最新部编人教版六年级数学有趣经典的奥数题及答案解析

六年级数学有趣经典的奥数题及答案解析 【题-001】抽屉原理 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 【题-002】牛吃草:(中等难度) 一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水? 【题-003】奇偶性应用:(中等难度) 桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。 【题-004】整除问题:(中等难度) 用一个自然数去除另一个整数,商40,余数是16.被除数、除数、

商数与余数的和是933,求被除数和除数各是多少? 【题-005】填数字:(中等难度) 请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同. 【题-006】灌水问题:(中等难度) 公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度) 瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓

五年级数学奥数题专题练习题

例题:某小学有366位1995年出生的学生,那么至少有几个同学的生日是在同一天? 分析:1995年有365天,把365天看作365个抽屉,把366个同学看作苹果,366个苹果放进365个抽屉中,一定有一个抽屉里至少有两个苹果。这就说明,至少有两个同学是同一天出生的。 解题的关键是根据抽屉少,苹果多的特点,利用抽屉原理,构造合适的抽屉来解答。 1.某小学有369位1996年出生的学生,那么至少有几个同学的生日是在同一天? 2.3A奥数五年级某班有学员13人,请说明在这13名同学中一定有两个同学是同一星座。 3.有3个不同的自然数,至少有两个数的和是偶数,为什么? 4.4个连续自然数分别被3除后,必有两个余数相同。为什么? 5.在1米长的直尺上标出任意5个点,请你说明这5个点钟至少有两个点的距离不大于25厘米。

6.班上有38个人,老师至少要拿几本书,随意分给大家,才能保证一定有至少一名同学得到两本或两本以上的书? 7.黑、白、黄三种颜色的袜子各有很多只,在黑暗处至少拿出几只袜子袜子就能保证有一双是同一颜色的? 8.某小学五一班有48名同学,至少有几个同学在同一月过生日? 9.有4个运动员练习投篮,一共投进50个球,一定有一个运动员至少投进几个球? 10.布袋中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出多少块,才能保证其中至少有3块颜色相同? 1.有一堆割下来的青草可供45头牛吃20天,那么可供36头牛吃多少天? 2.有一堆割下来的青草可供20头牛吃15天,若一头牛每天的吃草量相当于4头羊的吃草量,那么这堆青草可供120头羊吃多少天?

小学六年级奥数题及答案(全)

小学六年级奥数题及答案 1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数? 解: 设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=392 2.电影票原价每若干元,现在每降低3元出售,观众增加一半,收入增加五分之一,一电影票原价多少元? 解:设一电影票价x元 (x-3)×(1+1/2)=(1+1/5)x (1+1/5)x这一步是什么意思,为什么这么做 (x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入 (1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)} 如此计算后得到总收入,使方程左右相等

3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求乙的存款. 解答:解:设乙存款x元,则甲存款是9600-x元,由题意得: (9600-x)(1-40%)x=(1-40%)x+2×120, 5760-60%x=60%x+240, 60%x+60%x=5760-240, 1.2x=5520, x=4600; 答:乙的存款4600元. 点评:解答此题的关键是根据题意设出未知数,另一个未知数用设出的字母表示,再根据数量关系等式:甲存款的(1-40%)等于乙存款的(1-40%)加上2个120元,列出方程解决问题. 4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案 加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%, 巧克力是奶糖的60/40=1。5倍 再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍 增加了3-1.5=1.5倍,说明30颗占1.5倍 奶糖=30/1.5=20颗 巧克力=1.5*20=30颗 奶糖=20-10=10颗

小学奥数几何(燕尾模型)

燕尾定理: 在三角形ABC 中,AD ,BE ,CF 相交于同一点O , 那么, ::ABO ACO S S BD DC ??= O F E D C B A 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ?和ACO ?的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 通过一道例题 如右图,D 是BC 上任意一点,请你说明:1423:::S S S S BD DC == S 3 S 1S 4S 2E D C B A 【解析】 三角形BED 与三角形CED 同高,分别以BD 、DC 为底,所以有14::S S BD DC =; 三角形ABE 与三角形EBD 同高,12::S S ED EA =; 三角形ACE 与三角形CED 同高,43::S S ED EA =,所以1423::S S S S =; 综上可得, 1423:::S S S S BD DC ==. 例题精讲 燕尾定理

【例 1】 (2009年第七届希望杯五年级一试试题)如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在 BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 . F E D C B A 3332 1F E D C B A A B C D E F 【解析】 方法一:连接CF , 根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标 所以55 1212 DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到11 33ABD ABC S S ==△△, 1121 2233 ADE ADC ABC S S S ==?=△△△,所以 11ABD ADE S BF FE S ==△△, 1111111 22323212DEF DEB BEC ABC S S S S =?=??=???=△△△△, 而211323CDE ABC S S =??=△△.所以则四边形DFEC 的面积等于5 12 . 【巩固】如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积 . 【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步 判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线, (法一)连接CF ,因为BD DC =,2EC AE =,三角形ABC 的面积是30, 所以1103ABE ABC S S ==△△,1 152 ABD ABC S S ==△△. 根据燕尾定理,12ABF CBF S AE S EC ==△△,1ABF ACF S BD S CD ==△△, 所以1 7.54 ABF ABC S S ==△△,157.57.5BFD S =-=△, 所以阴影部分面积是30107.512.5--=. (法二)连接DE ,由题目条件可得到1 103 ABE ABC S S ==△△, 112 10223 BDE BEC ABC S S S ==?=△△△,所以 11ABE BDE S AF FD S ==△△,

六年级数学奥数知识竞赛试题

a 大于或等于2003。() 2、1 100?101=( 8?9+ + 6?7+ 7?8 + 3、 1+?? 1-?? 1+?? 1-?? ? 1+?=() ?? 1- ()。1、 1 2 千克的是1千克的()。 A、 3 5 B、 10 C、 6 D、64 2、 2 7 ×8÷ 7 ×8的计算结果为()。 A、1 B、5 11 49 C、 7 ,剩下的比用去的多( A、 3 7 B 7 C、 9、圆的周长缩小为原来的,那么圆的面积是原来的()。 ( 12、8米增加米是()米,8米增加12.5%是()米。 4= 35 = 2:():()。 4 + 4 × 4 =3÷×3=3-100%=8×÷×8= 7 - 7 ÷4= 5 ×÷ 5 = 15、甲数的比乙数少2,甲数的2是乙数的 5,甲数与乙数的和为。 (1)60%x÷ 6 25 = 4 (2)×(x+ 2 )= 4 +12×175%)÷ 8 (2)80%×+÷ 六年级数学奥数知识竞赛试题 班级姓名得分 一、填空。(共20分,每1分/空) 1、1+2×3+4×5+……+98×99结果为()数。填奇数或偶数) 111 ) ?1??1??1??1??1??1? ?2??2??3??3??99??99? 11() 4、鸡的只数是鸭的,鹅的只数是鸡的,鹅的只数为鸭的 23 5、在含盐为5%的盐水中,盐与水的比是()。 6、一个圈的半径为8厘米,半个圆的周长为()厘米,半圆面积为()平方厘米。 7、甲数:乙数=5:4,则甲数比乙数多()%,乙数比甲乙两数的和少()%。 8、一辆汽车从甲城开往乙城,原来要5小时,现在只用4小时,现要行驶的速度比原来提高了()%。 1 2 10、把25.12米长的铁丝围成一个圆,这个圆的面积为()平方米。 11、0.5米:5分米化成最简单整数比为():()5、a是自然数,2003÷1 三、选择题。(共10分,每小题2分) 3 5 35 2 5 6 3、半径为5分米的圆与半径为5厘米的圆相比()。 A、半径为5分米的圆周率大于半径为5厘米的圆周率 B、半径为5分米的圆周率小于半径为5厘米的圆周率 C、半径为5分米的圆周率与半径为5厘米的圆周率相等 4、一桶油用去 2 )。 54 7 5、从A城到B城,甲车要10小时,乙车要8小时,甲车速度比乙车()。 A、快25% B、慢20% C、慢80% 四、计算题。(30分) 1、直接写出得数。(共5分,每题0.5分) 1 8175%+ 1 10÷10%=36× 34 6×1%= 13、11 3 131111 399 14、一个长方形的周长是48厘米,长与宽的比是5:3,这个长方形的面积为()平方厘米。44412 5 114 3 二、判断题。(共5分)2、解方程。(9分) 5113 84 1、甲乙两数之积为1,则甲乙两数都是倒数。() 2、梯形不是轴对称图形。() 3、一种商品先提价20%,后又降价20%,这时的价格是最初价格的99% 4、一个数(0除外)乘真分数的积一定比这个数除以真分数的商小。3、简算。(9分) (1)(28× 721215 334

相关文档
相关文档 最新文档