文档库 最新最全的文档下载
当前位置:文档库 › 2014年高中数学复习方略课时作业:7.6空间直角坐标系、空间向量及其运算(人教A版·数学理·浙江专用)]

2014年高中数学复习方略课时作业:7.6空间直角坐标系、空间向量及其运算(人教A版·数学理·浙江专用)]

2014年高中数学复习方略课时作业:7.6空间直角坐标系、空间向量及其运算(人教A版·数学理·浙江专用)]
2014年高中数学复习方略课时作业:7.6空间直角坐标系、空间向量及其运算(人教A版·数学理·浙江专用)]

温馨提示:

此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。

课时提升作业(四十五)

一、选择题

1.已知点B是点A(3,7,-4)在xOz平面上的射影,则|OB|等于( )

(A)(9,0,16) (B)25

(C)5 (D)13

2.在下列条件中,使M与A,B,C一定共面的是( )

(A)=2--

(B)=++

(C)++=0

(D)+++=0

3.已知向量a=(1,-1,1),b=(-1,2,1),且k a-b与a-3b互相垂直,则k 的值

是( )

(A)1 (B) (C) (D)-

4.(2013·台州模拟)如图,在底面为平行四边形的四棱柱

ABCD - A1B1C1D1中,M是AC与BD的交点,若=a,=b,=c,

则下列向量中与相等的向量是( )

(A)-a+b+c (B)a+b+c

(C)a-b+c (D)-a-b+c

5.有以下命题:①如果向量a,b与任何向量不能构成空间的一个基底,那么a,b的关系是不共线;②O,A,B,C为空间四点,且向量,,不构成空间的一个基底,那么点O,A,B,C一定共面;③已知{a,b,c}是空间的一个基底,则{a+b,a-b,c}也是空间的一个基底.其中正确的命题是( )

(A)①② (B)①③ (C)②③ (D)①②③

6.设A,B,C,D是空间不共面的四个点,且满足

·=0,·=0,·=0,则△BCD的形状是( )

(A)钝角三角形 (B)直角三角形

(C)锐角三角形 (D)无法确定

7.(2013·济宁模拟)设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为( )

(A)(,,) (B)(,,)

(C)(,,) (D)(,,)

8.(2013·武汉模拟)二面角α-l-β为60°,A,B是l上的两

点,AC,BD分别在半平面α,β内,AC⊥l,BD⊥l,且

AB=AC=a,BD=2a,则CD的长为( )

(A)2a (B) a (C)a (D) a

9.正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为( )

(A) a (B) a (C) a (D) a

10.(能力挑战题)已知ABCD为四面体,O为△BCD内一点(如图),

则=(++)是O为△BCD的重心的( )

(A)充分不必要条件

(B)必要不充分条件

(C)充要条件

(D)既不充分又不必要条件

二、填空题

11.(2013·焦作模拟)已知空间四边形ABCD的对角线为AC,BD,设G是

CD的中点,则+(+)等于.

12.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ= .

13.已知G是△ABC的重心,O是空间与G不重合的任一点,若++=

λ,则λ= .

14.(2013·长沙模拟)空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,

∠OAC=45°,∠OAB=60°,则OA与BC所成角的余弦值等

于.

三、解答题

15.已知a=(1,-3,2),b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).

(1)求|2a+b|.

(2)在直线AB上,是否存在一点E,使⊥b(O为原点).

16.(能力挑战题)如图所示,已知空间四边形ABCD的每条边和对

角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:

(1)·.

(2)EG的长.

(3)异面直线EG与AC所成角的大小.

答案解析

1.【解析】选 C.由题意得点B的坐标为(3,0,-4),故|OB|==5.

2.【解析】选C.++=0,即=-(+),所以M与A,B,C共面.

3.【解析】选 D.∵k a-b=(k+1,-k-2,k-1),a-3b=(4,-7,-2),(k a-b)⊥(a-3b),

∴4(k+1)-7(-k-2)-2(k-1)=0,

∴k=-.

【变式备选】已知向量a=(2,-3,5)与向量b=(3,λ,)平行,则λ= ( )

(A)(B)

(C)-(D)-

【解析】选C.由a∥b得,==,解得λ=-.

4.【解析】选A.=+=+

=c+(-)=c+(b-a)

=-a+b+c.

【变式备选】已知正方体ABCD - A1B1C1D1中,点E为上底面A1C1的中心,若=+x+y,则x,y的值分别为( )

(A)x=1,y=1 (B)x=1,y=

(C)x=,y= (D)x=,y=1

【解析】选C.

如图,=+

=+=+

(+),

所以x=,y=.

5.【解析】选C.对于①,“如果向量a,b与任何向量不能构成空间向量的一个基底,那么a,b的关系一定是共线”,所以①错误.②③正确.

6.【思路点拨】通过〃,〃,〃的符号判断△BCD各内角的大小,进而确定出三角形的形状.

【解析】选C.〃=(-)〃(-)

=〃-〃-〃+2

AB>0,

AB=2

同理〃>0,〃>0.故△BCD为锐角三角形.

7.【解析】选A.=+

=+×(+)

=+[(-)+(-)]

=(++),

由OG=3GG1知,==(++),

∴(x,y,z)=(,,).

8.【解析】选A.∵AC⊥l,BD⊥l,

∴<,>=60°,且〃=0,〃=0,

∴=++,

∴||=

==2a.

9.【思路点拨】建立空间直角坐标系,利用向量的坐标运算解决. 【解析】选A.以D为原点建立如图所示的空间直角坐标系Dxyz,

则A(a,0,0),C 1(0,a,a),N(a,a,).

设M(x,y,z).

∵点M在AC1上且=,

∴(x-a,y,z)=(-x,a-y,a-z),

∴x=a,y=,z=.

于是M(,,),

∴||=

= a.

10.【解析】选 C.若O是△BCD的重心,则=+=+×

(+)=+(+)=+(-+-)=(++),

若=(++),

则-+-+-=0,

即++=0.

设BC的中点为P,则-2+=0,

∴=-2,即O为△BCD的重心.

11.【解析】因为G是CD的中点,连接AG,BG.

∴=(+),

∴+(+)

=+=.

12.【解析】由题意设c=t a+μb=(2t-μ,-t+4μ,3t-2μ),

∴∴

答案:

13.【解析】因为+=,+=,

+=,且++=0,

所以++=3.

答案:3

14.【解析】由题意知〃=〃(-)=〃-〃

=8×4×cos45°-8×6×cos60°=16-24.

∴cos<,>===.

∴OA与BC所成角的余弦值为.

答案:

【误区警示】本题常误认为<,>即为OA与BC所成的角.

【变式备选】已知点A(1,2,1),B(-1,3,4),D(1,1,1),若=2,则||的值是.

【解析】设P(x,y,z),则=(x-1,y-2,z-1),

=(-1-x,3-y,4-z),

由=2知x=-,y=,z=3,

故P(-,,3).

由两点间距离公式可得||=.

15.【解析】(1)2a +b =(0,-5,5), ∴|2a +b |==5.

(2)令=t (t ∈R).

=

+=

+t

=(-3,-1,4)+t(1,-1,-2) =(-3+t,-1-t,4-2t). 若

⊥b ,则

〃b =0得

-2(-3+t)+(-1-t)+(4-2t)=0. ∴t=. ∴存在点E,使得⊥b .此时E 点坐标为(-,-,). 16.【解析】设

=a ,=b ,

=c ,

则|a |=|b |=|c |=1,

===60°,==c -a ,

=-a ,=b -c .

(1)〃

=(c -a )〃(-a )

=-a 〃c +212

a =-+=.

(2)=

++

=+(-)+(

-)

=-+

+=-a +b +c

∴2

EG =(-a +b +c )2

=(222++a b c -2a 〃b -2a 〃c +2b 〃c )=,

∴||=,即EG 的长为.

(3)由(2)知,

〃=(-a +12

b +

c )〃b

=-a 〃b +212

b +

c 〃b =,

∴cos<

,>=

=

=.

故异面直线EG 与AC 所成的角为45°.

【方法技巧】用向量法解题的常见类型及常用方法 1.常见类型

利用向量可解决空间中的平行、垂直、长度、夹角等问题. 2.常用的解题方法 (1)基向量法

先选择一组基向量,把其他向量都用基向量表示,然后根据向量的运算解题. (2)坐标法

根据条件建立适当的空间直角坐标系,并求出相关点的坐标,根据向量的坐标运算解题即可.

关闭Word 文档返回原板块。

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

空间直角坐标系整理

2.3.1 空间直角坐标系 一、教材知识解析 1、空间直角坐标系的定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴和z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy 平面、yOz 平面和xOz 平面。 2、右手直角坐标系及其画法: (1)定义:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方 向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。教材上所指的都是右手直角坐标系。 (2)画法: 将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样,三条轴上的单位长度在直观上大体相等。 3、空间中点的坐标表示:点在对应数轴上的坐标依次为x 、y 、z ,我们把有序实数组(x , y ,z )叫做点A 的坐标,记为A (x ,y ,z )。 二、题型解析: 题型1、在空间直角坐标系下作点。 例1、在空间直角坐标系中,作出M(4,2,5). 解:法一:依据平移的方法,为了作出M(4,2,5), 可以按如下步骤进行:(1)在x 轴上取横坐 标为4的点1M ;(2)将1M 在xoy 平面内沿与y 轴平行的方向向右移动2个单位,得到 点2M ;(3)将2M 沿与z 轴平行的方向向上 移动5个单位,就可以得到点M (如图)。 法二:以O 为一个顶点,构造三条棱长分别为4,2,5的长方体,使此长方体在点O 处的三 条棱分别在x 轴的正半轴、y 轴的正半轴、z 轴的正半轴上,则长方体与顶点O 相对的顶点即为所求的点M 。 法三:在x 轴上找到横坐标为4的点,过此点作与x 垂直的平面α;在y 轴上找到纵坐标为2 的点,过此点作与y 垂直的平面β;在z 轴上找到竖坐标为5的点,过此点作与z 垂直的平面γ;则平面αβγ,,交于一点,此交点即为所求的点M 的位置。 【技巧总结】:(1)若要作出点M 000(,,)x y z 的坐标有两个为0,则此点是坐标轴上的点,可 直接在坐标轴上作出此点; (2)若要作出点M 000(,,)x y z 的坐标有且只有一个为0,则此点不在坐标轴上,但在某一坐 标平面内,可以按照类似于平面直角坐标系中作点的方法作出此点。 (3)若要作出点M 000(,,)x y z 的坐标都不为0,则需要按照一定的步骤作出该点,一般有三 种方法:①在x 轴上取横坐标为0x 的点1M ;再将1M 在xoy 平面内沿与y 轴平行的方向向左(00y <)或向右(00y >)平移0||y 个单位,得到点2M ;再将2M 沿与z 轴平

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

知识讲解空间直角坐标系基础

空间直角坐标系 【学习目标】 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式. 【要点梳理】 要点一、空间直角坐标系 1.空间直角坐标系 从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 3.空间点的坐标 空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标 1.空间直角坐标系中点的坐标的求法 通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标. 特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .

2.空间直角坐标系中对称点的坐标 在空间直角坐标系中,点(),,P x y z ,则有 点P 关于原点的对称点是()1,,P x y z ---; 点P 关于横轴(x 轴)的对称点是()2,,P x y z --; 点P 关于纵轴(y 轴)的对称点是()3,,P x y z --; 点P 关于竖轴(z 轴)的对称点是()4,,P x y z --; 点P 关于坐标平面xOy 的对称点是()5,,P x y z -; 点P 关于坐标平面yOz 的对称点是()6,,P x y z -; 点P 关于坐标平面xOz 的对称点是()7,,P x y z -. 要点三、空间两点间距离公式 1.空间两点间距离公式 空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离 ||d AB == 特别地,点(),,A x y z 与原点间的距离公式为OA = 2.空间线段中点坐标 空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++?? ???. 【典型例题】 类型一:空间坐标系 例1.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,建立空间直角坐标系,求点E 、F 的坐标。 【答案】11,0,2E ? ? ???,11,,122F ?? ??? 【解析】 法一:如图,以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

空间向量的基本运算

第六节 空间向量 1. 空间向量的概念:在空间,我们把具有 和 的量叫做向量。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线 或 ,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ, 使a = 。 4. 共面向量 (1)定义:一般地,能平移到同一 内的向量叫做共面向量。 说明:空间任意的两向量都是 的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y ,使 。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使 。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个 的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作

建立空间直角坐标系的几个常见思路

建立空间直角坐标系的几种常见思路 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ??? ,,、133022C ?? ? ?? ?,,. 设302E a ?? ? ??? ,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,,

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

空间向量的坐标运算

空间向量的坐标运算 第一课时空间直角坐标系 教学目标: ㈠知识目标: ⒈空间直角坐标系; ⒉空间向量的坐标表示; ⒊空间向量的坐标运算; ⒋平行向量、垂直向量坐标之间的关系; 5.中点公式。 ㈡能力目标: ⒈掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; ⒉掌握空间向量坐标运算的规律; 3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。 教学重点:空间右手直角坐标系,向量的坐标运算 教学难点:向量坐标的确定 教学方法:讨论法. 教具准备:多媒体投影. 教学过程: 复习回顾 空间向量基本定理 探索研究 1、空间右手直角坐标系的概念 ⑴单位正交基底如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用{i,j,k}表示。 ⑵空间直角坐标系O-xyz 在空间选定一点O和一个单位正交基底{i,j,k},以点O 为原点,分别以i、j、k的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们说建立了一个直角坐标系O-xyz,点O叫做原点,向量i,j,k叫做坐标向 量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面,yOz平面,zOx平面。 ⑶空间直角坐标系的画法作空间直角坐标系O-xyz 时,一般使∠xOy=135°(或45°),∠yOz=90°。 注:在空间直角坐标系O-xyz中,让右手拇指指向x轴 的正方向,食指指向y轴的正方向,如果中指能指向z轴的正 方向,则称这个坐标系为右手直角坐标系。 ⑷空间向量的坐标表示给定一空间直角坐标系和向

向量的直角坐标运算设a=(a 1,a 2,a 3),b=(b 1,b 2,b 3),则a+b=(a 1+b 1,a 2+b 2,a 3+b 3) a -b=(a 1- b 1,a 2-b 2,a 3-b 3)λa=(λa 1,λa 2,λa 3) a ?b=a 1 b 1+a 2b 2+a 2b 2 a//b a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R)a ⊥b a 1b 1+a 2b 2+a 3b 3=0设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则 AB =OB -OA =(x 2-x 1,y 2-y 1,z 2-z 1)  量a ,且设i,j,k 为坐标向量(如图),由空间向量基本定理,存在唯一的有序实数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,可简记作a =(a 1,a 2,a 3)。 在空间直角坐标系O -xyz 中,对于空间任一点A ,对应一个向量OA ,若 ,k z j y i x OA ++=则有序数组(x,y,z)叫做点A 在 此空间直角坐标系中的坐标,记为A(x,y,z),其中x 叫做A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标,写点的坐标时,三个坐标间的顺序不能变。 ⑸空间任一点P 的坐标的确定 过P 分别作三个与坐标平面平行的平面(或垂面),分别交坐标轴于A 、B 、C 三点,|x|=|OA|,|y|=|OB|,|z|=|OC|,当OA 与i 方向相同时,x >0,反之x <0,同理可确定y 、z (如图) 例1已知ABCD -A 1B 1C 1D 1是棱长为2的正方体,E 、F 分别是BB 1和DC 的中点,建立如图所示的空间直角坐标系,试写出图中各点的坐标。 分析:要求点E 的坐标,过点E 与x 轴、y 轴垂直的平面已存在,只要过E 作平面垂直于z 轴交E ‘ 点,此时|x|=|,|DA |y|=|,|DC |z|=||'DE ,当DA 的方向与x 轴正向相同时,x >0,反之x <0,同理确定y 、z 的符号,这样可求得点E 的坐标。 解:D(0,0,0),A(2,0,0),B(0,2,0),C(0,0,2), A 1(2,0,2), B 1(2,2,2), C 1(0,2,2),, D 1(0,0,2),E(2,2,1),F(0,1,0) 2、向量的直角坐标运算 注:3 32 21 1i 321321b a b a b a b //a 1,2,3),0(i b ),b ,b ,(b b ),a ,a ,(a a = = ? =≠==则若

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高考试题分类考点空间直角坐标系空间向量及其运算

高考试题分类考点空间直角坐标系空间向量及其运算

————————————————————————————————作者:————————————————————————————————日期:

考点37 空间直角坐标系、空间向量及其运算 一、解答题 1.(2012·北京高考理科·T16)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图 2. (1) 求证:A 1C ⊥平面BCDE ; (2) 若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3) 线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 【解题指南】(1)利用线面垂直的判定定理证明;(2)(3)找出三个垂直关系, 建系,利用向量法求解. 【解析】(1)//,,DE BC AC BC DE AC ⊥∴⊥Q ,1,DE A D DE CD ∴⊥⊥, 111 ,,A D CD D DE ACD DE AC =∴⊥∴⊥Q I 面 又11,,AC CD CD DE D AC BCDE ⊥=∴⊥Q I 面. (2)由(1)可知,1,,CB CD AC 两两互相垂直,分别以它们为x 轴、y 轴、z 轴 建立空间直角坐标系,则1(0,0,23)A ,(0,1,3),(0,1,3),(1,2,0),M CM BE ==-u u u u r u u u r 1(3,0,23)A B =-u u u r ,设平面1A BE 的法向量为1111(,,)n x y z =u r , 由 1111111203230n BE x y n A B x z ??=-+=???=-=??u r u u u r u r u u u r ,令11x =,得113(1,,)22 n =u r , A B C D E C B E D A M 图图

建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =-- , ,,(010)CD =- ,,. 设1BC 与CD 所成的角为θ, 则11cos 17BC CD BC CD θ== . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1 .已知AB =BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB ,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0, )、B 1(0,2,0) 、102c ?-???? ,、1302C ???? ?,,. 设0E a ????? ,且1322a -<<, 由EA ⊥EB 1,得10EA EB = ,

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

相关文档 最新文档