文档库 最新最全的文档下载
当前位置:文档库 › 2024铝合金的熔铸及时效时间对其性能的影响 4

2024铝合金的熔铸及时效时间对其性能的影响 4

2024铝合金的熔铸及时效时间对其性能的影响 4
2024铝合金的熔铸及时效时间对其性能的影响 4

2024铝合金的熔铸及时效时间

对其性能的影响

一、实验目的与任务 (2)

二、基本要求 (2)

三、实验材料与实验方法 (2)

3.1 原材料介绍 (3)

3.2 实验所需仪器设备 (3)

3.3 实验原理 (4)

3.4 技术路线 (5)

3.5 合金的熔铸 (6)

3.6 试样的制备 (6)

3.7 测试方法 (6)

四、实验结果与分析 (6)

五、结论与心得体会 (10)

5.1 实验结论 (10)

5.2心得体会 (11)

附录:参考文献 (11)

一、实验目的

本综合实验是在金属材料本科生完成相关专业理论课之后的一次全面综合试验训练,通过铝合金材料设计与选择,制备到性能检测的全程训练,使学生了解铝合金材料及加工的生产全过程,所学基础理论和专业理论来解释实验中的各种现象,培养学生的动手能力和综合分析问题的能力,特别是学生的独立设计实验方案及创新能力。

二、基本要求

了解课程所研究铝合金材料设计方法;初步掌握铝合金材料制备和试样加工基本技能;熟悉铝合金材料生产的过程,了解与掌握材料科学与工程研究的基本步骤及思维方法,所用的仪器设备及操作使用;学会整理数据,运用知识解释实验中现象,理论联系实际,培养动手能力,采集并分析数据的综合能力。

三、实验材料与实验方法

3.1原材料介绍

原材料:铝锭、镁锭、铜丝

铝,是一种化学元素。它的化学符号是Al,它的原子序数是13。银白色轻金属。有延性和展性。商品常制成棒状、片状、箔状、粉状、带状和丝状。在潮湿空气中能形成一层防止金属腐蚀的氧化膜。铝粉和铝箔在空气中加热能猛烈燃烧,并发出眩目的白色火焰。易溶于稀硫酸、硝酸、盐酸、氢氧化钠和氢氧化钾溶液,不溶于水。相对密度2.70熔点660℃沸点2327℃。铝元素在地壳中的含量仅次于氧和硅,居第三位,是地壳中含量最丰富的金属元素。航空、建筑、汽车三大重要工业的发展,要求材料特性具有铝及其合金的独特性质,这就大大有利于这种新金属铝的生产和应用。应用极为广泛。

铜,是一种化学元素,它的化学符号是Cu(拉丁语:Cuprum),它的原子序数是29,是一种过渡金属。铜呈紫红色光泽的金属,密度8.92克/立方厘米。熔点1083.4±0.2℃,沸点2567℃。常见化合价+1和+2。电离能7.726电子伏特。铜是人类发现最早的金属之一,也是最好的纯金属之一,稍硬、极坚韧、耐磨损。还有很好的延展性。导热和导电性能较好。铜和它的一些合金有较好的耐腐蚀能力,在干燥的空气里很稳定。但在潮湿的空气里在其表面可以生成一层绿

色的碱式碳酸铜Cu2(OH)2CO3,这叫铜绿。可溶于硝酸和热浓硫酸,略溶于盐酸。容易被碱侵蚀

镁,银白色的金属,密度1.738克/厘米3,熔点648.9℃。沸点1090℃。化合价+2,电离能7.646电子伏特,是轻金属之一,具有延展性,金属镁无磁性,且有良好的热消散性。镁具有比较强的还原性。

3.2实验所需的仪器设备

3.21中频熔炼炉:本设备是一种把三相工频电流变换成单相中频电流的变频装置,通过电磁感应使金属产生涡流损耗,而达到发热熔化的目的。

【设备基本参数】

3.22电阻炉:广泛用于陶瓷、金属化瓷片、冶金、电子、玻璃、化工、机械、五金、模具、磁性材料、煤炭灰分检测、塑胶灰分检测、复合材料、耐火材料、新材料开发、特种材料、发热机片、建材等领域。采用P909微电脑全自动控制,可编程多段升、保、降温曲线,全自动升温、保温、降温和超温保护,每一段功率限制,可控硅移相调压控制加热,程序运行结束自动停止,无须值守。升温快、环保节能、精度高、性能稳定、保温效果好。炉膛采用洁净碳化硅开模而成,保温性能好,抗热震,耐高温、耐急冷急热。炉体温度接近室温。

【设备基本参数】

3.23电脑温度控制器:

生产厂家:湘潭市仪器仪表有限公司

3.24金相试样抛光机:

【设备基本参数】

洛氏硬度计:

【设备基本参数】

3.3实验原理

本实验根据合金熔铸的基本原理,利用中频熔炼炉,对铝锭、镁锭、纯铜丝进行金属熔铸,根据实验要求配比制造2024铝合金。将铝合金试样均分为四块,取其中三块进行相同的固熔处理,采用相同的淬火工艺,第四块不作处理。对固熔处理过的三个试样进行时效处理,采用不同的时效时间,相同的时效温度,相同的淬火工艺,对三个试样进行热处理。最后,利用洛氏硬度计来检测合金性能的差异,找到2024铝合金最佳时效时间和找时效时间对合金性能影响的一般规律,从而希望能应用工业生产中。

3.4技术路线

3.5合金的熔铸

1、试样加入顺序

按照熔点的大小先加入铜,再加入铝,最后加入镁。

铜的熔点为1083.4℃,铝的熔点为660.37℃,镁的熔点为648.8℃。按照熔点由高到低的顺序加入各原材料,保证所有材料都能充分熔化,使获得的合金成分均匀,性能稳定,符合技术要求。

2、熔炼发生在中频熔炼炉中,为使熔炼充分,熔炼的温度要求高于浇注温度,这样才能保证所浇注出的试样在性能上符合要求,成分满足2024铝合金的标准。为下一步对性能的测定做好准备。

3.6试样的制备

制备过程:

石膏模制作——→合金溶液的熔炼——→浇注成型——→取样深加工

——→抛光备用

石膏模广泛用于浇注成型,具有熔点低、热稳定性高、流动性好、脱蜡温度低等特点,具有自身的吸水性和脱模性。然而石膏模也存在自身的弱点,这就是强度低,耐用性不十分理想。可将复杂整体件分离成数件简单件,分别制出熔模,再用胶结剂在室温下将熔模快速胶结组装在一起为整体件,用流体石膏混合料灌浆成型,石膏铸型经干燥、脱蜡、焙烧后浇注。可适用于铸造大型、薄壁、复杂的整体铝铸件。可广泛用于航天、航空、兵器、电子、仪表工业中。

制备的主要过程为试样的熔炼。按照上述正确操作将合金溶液浇注在石膏模中,冷却成型后,再经过后期剪切,抛光及打磨成型后即可用于实验。

3.7测试方法

对于该次试验获得的2024铝合金的性能测试,不做过高要求,只需要对试样的硬度进行测试即可。采用洛氏硬度计的硬度测试方法。按照洛氏硬度计的操作要求,将试样正确安放的平台上,每个试样测试5次,记录测试数值。

四、实验结果与分析

性能测试中,对硬度测试值记录如下表所示:

4.1结果分析:

为充分而全面的研究时效时间对2024铝合金性能的影响,我们先熟悉2024铝合金的性能:

2024铝合金是一种高强度硬铝,可进行热处理强化,在淬火和刚淬火状态下塑性中等,点焊接良好,用气焊时有形成晶间裂纹的倾向,合金在淬火和冷作硬化后其可切削性能尚好,退火后可切削性低;抗腐蚀性不高,常采用阳极氧化处理与涂漆方法或表面加包铝层以提高其抗腐蚀性能。

其中一些元素的加入和处理工艺对合金的影响如下:

高纯高强铝合金的时效时间和温度对其性能的影响很大,尽可能地增加时效时间是提高该类铝合金综合性能的一个有效途径。

过高的时效温度或过长的时效时间,将导致过时效,脱溶相尺寸过大,并与基体完全脱离共格关系,形成平衡相,此时位错环绕质点所需切应力小于切割质点的应力,从而形成位错环,强度、硬度下降。

铝合金工件加热后的冷却时间必须很短,一避免在固熔处理前工件局部或整

体温度下降。工件从出炉到进入固熔处理槽的间隔时间要严格控制,延迟时间过长将导致工件温度下降,发生部分固熔体分解,析出粗大疏松相,产生组织偏析,从而降低时效强化效果。

4.2误差分析:

由以上数据和资料得知时效时间对铝合金硬度影响的原因,并且的出时间为六小时时硬度最大,但,仅凭一次实验并不能就此下结论说2024铝合金最佳时效时间为6小时,实验存在它的局限性和不准确性,必须经过反复研究和多方论证才能的出一个实验结果。并且,从数据上看,同一时间段的硬度数据却相差很大,这说明此次实验是不够准确的。经分析出现错误或误差可能的原因有:

1.设定的时间范围太窄,没让合金的硬度性质完全体现出来

2.加热的温度不均匀,导致数据相差较大,影响了准确度

3.合金的组织不均匀,也导致同一时效时间的合金各孔数据相差较大

4.操作不规范,没到相应时间或超过相应时间才将合金取出

5.石膏莫做的不好,透气孔不够多或大,导致合金内部有气孔,测出的硬度数据部准

6.试样抛光的两端面不平行,测硬度时读数不准确,操作不够规范,打孔的太密集,没隔3到5厘米的距离

综合以上实验数据分析,我们得到:只有在修正实验参数,以及在正确操作和理想环境下,才能得到有参考价值的实验数据。本次实验数据存在技术偏差,不能客观反应2024铝合金的性能规范。需要在多次大量的实验操作后重新评估2024铝合金中固熔温度对其组织性能的影响。但是也不排除本次试验数据的现实意义,有可能该数据对纠正前人错误观点有所帮助,但是不能仅仅凭借一次实验草率做出判断,需要以后更多的实验来分析论证。

五、实验心得体会

5.1实验结论:

初步根据实验数据得到的信息是:在本次试验所取的时间梯度范围内,随着时效时间的加长,2024铝合金硬度上升。时效时间为6小时时,2024铝合金硬度最大。时效时间超过6小时后,随着时间的加长,硬度反而下降。

5.2心得体会:

一个实验,听上去或看上去觉得简单并且没多大意思,因为做的都是人家已经有了结论的实验。但实际动起手来,才发现,实验的意义是挺重大的,没动手之前觉得自己理论知识掌握的还行,但真正做的时候就发现跟记知识完全是两码事。首先,做石膏模就把我难住了,不能太软也不能太硬,软了

做出来的模型等干了会开裂,硬了又不能使模型成型,孔不能钻的太大又不能太少,太大了浇铸时液体会流入孔内使得模型难以处理,少了烘干时难以干燥和合金试样出现气泡孔,影响测出的硬度数据。

再就是实验时的谨慎性,因为固溶时有水淬的过程,就想当然以为时效处理时也要水冷,结果在四小时时取出一个合金试样放进水里冷却,导致实验结果出了比较大偏颇。从实验数据来看,未作处理的本应该与时效四小时的硬度差不多,但结果却相差很大,这其中的原因有很多,多半是由实验失误引起的,这说明我们还需要更严谨的实验态度和更缜密的思维及思路。表面氧化处理也是一个要下功夫的过程,由于磨晶相的时候不是很用功,所以在做表面氧化处理的时候也难倒了我,老是把一个面磨出七八个面,搞得两个面不平行,最后还是在老师和同学的帮助下才把任务完成。这一个过程让我知道了什么叫做孰能生巧和没有真才实学便寸步难行。

什么东西都是看上去简单但实际操作起来却困难重重,但一关关客服下来最后又能迎刃而解,所以凡是不能太轻狂,多动手,但是于不能浮躁和气馁,更不能半途而费。最后的一点也是最重要的一点就是要有团队精神,要懂得合作和包容,更应该为团队添力,而不是打酱油,要有责任感,真正把它当成自己的一份工作来对待,把团队当成工作圈,真诚对待每个人和每项任务。

光做这一个实验来探究铝合金的浇铸和时效时间对其性能影响研究是远不够,还需要我们的进一步探究,这也是实验精神,永远都在探索中,并收获每一次!最后就是必须感谢指导老师的殷殷关切和不辞辛苦的指点,每次都是老师一个人坚守在最后一刻,谢谢老师!

六.参考文献:

[1]. 王尔德,李志民,李志超,张国锋.《亚微晶2024铝合金的制备及组织性能研究》.《塑性工程学报》.1997年第4卷第3期.第82-85页。

[2]. 吴承建,陈国良等.《金属材料学》.冶金工业出版社.第185-187页。

[3]. https://www.wendangku.net/doc/f4324801.html,.

[4]. 黄光杰.《热处理对2024铝合金组织和性能的影响》.重庆大学学报.2000年第23卷第4期.第99页。

[5]. 宁爱林,曾苏民.《固溶处理对高纯高强铝合金组织和性能的影响》.《金属热处理》.2004年第29卷第4期.第14页。

[6]. 李晗《2024铝合金薄板的热处理工艺与性能的研究》。《西北工业出版社》第20-21页

铝合金热处理原理

铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu 合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的

铝合金及热处理

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。

二、热处理方法1、退火处理 退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火 淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理 时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。 合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3

废铝熔炼铝锭的工艺操作规范

再生铝熔炼工艺特点? 再生铝是以回收来的废铝零件或生产铝制品过程中的边角料以及废铝线等为主要原材料,经熔炼配制生产出来的符合各类标准要求的铝锭。这种铝锭采用回收废铝,而有较低的生产成本,而且它是自然资源的再利用,具有很强的生命力,特别是在当前科技迅猛发展,人民生活质量不断改善的今天,产品更新换代频率加快,废旧产品的回收及综合利用已成为人类持续发展的重要课题,再生铝生产也就是在这样的形式下应运而生并具有极好的前景。? 由于再生铝的原材料主要是废杂铝料,废杂铝中有废铝铸件(以Al-Si合金为主)、废铝锻件(Al-Mg-Mn、Al-Cu-Mn等合金)、型材(Al-Mn、Al-Mg等合金)废电缆线(以纯铝为主)等各种各样料,有时甚至混杂入一些非铝合金的废零件(如Zn、Pb合金等),这就给再生铝的配制带来了极大的不便。如何把这种多种成分复杂的原材料配制成成分合格的再生铝锭是再生铝生产的核心问题,因此,再生铝生产流程的第一环节就是废杂铝的分选归类工序。分选得越细,归类得越准确,再生铝的化学成分控制就越容易实现。? 废铝零件往往有不少镶嵌件,这些镶嵌件都是些以钢或铜合金为主的非铝件,在熔炼过程中不及时地扒出,就会导致再生铝成分中增加一些不需要的成分(如Fe、Cu等)因此,在再生铝熔炼初期,即废杂铝刚刚熔化时就必须有一道扒镶嵌件的工序(俗称扒铁工序)。把废杂铝零件中的镶嵌件扒出,扒得越及时、 越干净,再生铝的化学成分就越容易控制。扒铁时熔液温度不宜过高,温度的升高会使镶嵌件中的Fe、Cu元素溶入铝液。?

各地收集来的废杂铝料由于各种原因其表面不免有污垢,有些还严重锈蚀,这些污垢和锈蚀表面在熔化时会进入熔池中形成渣相及氧化夹杂,严重损坏再生铝的冶金质量。清除这些渣相及氧化夹杂也是再生铝熔炼工艺中重要的工序之一。采用多级净化,即先进行一次粗净化,调整成分后进行二级稀土精变,再吹惰性气体进一步强化精炼效果,可有效的去除铝熔液中的夹杂。? 废铝料表面的油污及吸附的水分,使铝熔液中含有大量气体,不有效的去除这些气体就使冶金质量大大下降,强化再生铝生产中的除气环节以降低再生铝的含气量是获得高质量再生铝的重要措施。? 再生铝原材料组成? 1、废杂铝来源? 目前我国再生铝厂利用的废杂铝主要来源于两方面,一是从国外进口的废杂铝,二是国内产生的废杂铝。? 进口废杂铝? 最近几年国内大量从国外进口废杂铝。就进口废杂铝的成分而言,除少数分 类清晰外大多数是混杂的。一般可以分为以下几大类:? ①单一品种的废铝? 此类废铝一般都是某一类废零部件,如内燃机的活塞,汽车减速机壳、汽车轮毂、汽车前后保险栓。铝门窗等。这些废铝在进口时已经分类清晰,品种单一,且都是批量进口,因此是优质的再生铝原料。?

铝合金最佳固溶时效强化工艺参数的研究

实验十铝合金最佳固溶时效强化工艺参数的研究 —Al—Si-Cu-Mg-Mn系合金最佳固溶时效强化工艺参数的测定 一、实验目的: 通过Al—Si-Cu-Mg-Mn的成分配制—合金的熔炼—合金的固溶时效—显微组织分析—机械性能测定,最终测得最佳的铝合金固溶与时效温度及热处理时间的工艺参数。 二、原理概述: 从过饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚焦区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。具有这种转变的最基本条件是,合金在平衡状态图上有固溶度的变化,并且固溶度随温度降低而减少,如图1所示。如果将C0成分的合金自A单相α固溶体状态缓慢冷却到固溶度线(MN)以下温度(如T3)保温时,β相将从α相中脱溶析出,α相的成分将沿固溶度线变化为平衡浓度C1,这种变化可表示为:α(C0)→α(C1)+β。β为平衡相,可以是端际固溶体,也可以是中间相,反应产物为(α+β)双相组织,将这种双相组织加热到固溶度线以上某一温度,(如T1)保温足够时间,将获得均匀的单相固溶体α相,这种处理称为固溶处理。 图1固溶处理与时效处理的工艺过程示意图 若将经过固溶处理的C0成分合金急冷,抑制α相分解,则在室温下获得亚稳的过饱和α相固溶体。这种过饱和固溶体在室温或在较高温度下等温保持时,亦将发生脱溶,但脱溶往往不是状态图中的平衡相,而是亚稳相或溶质原子聚焦区。这种脱溶可显著提高合金的强度和硬度,称为沉淀强化或时效强化,是强化合金材料的重要途径之一。 固溶加时效是提高合金强度的一种重要途径,它不同于钢材的强化,钢在淬火后可立即获得很高的硬度和强度。铝合金淬火后,硬度和强度并不立即升高,但塑性较高,但把这种淬火后的铝合金放置一些时间(4~6天)后,强度和硬度显著提高,而塑性明显降低。人们把淬火后的铝合金性能随时间而发生显著提高的现象称为时效。时效可以在室温发生,也可以在高于室温的某一温度范围(100~200℃)内发生。前者称自然时效,后者称人工时效。 本实验采用Al—Si-Cu-Mg-Mn进行温时效,在不同的温度下等温,然后测定合金的硬度,绘制时效硬化曲线。 Al—Si-Cu-Mg-Mn系合金经熔炼,金属模铸造,固溶时效处理后,合金强度为460~500MPa,同时还具有良好的流动性和优良的铸造性能。本合金基本成分为9.5%Si、4%Cu、0.5%Mg、0.5%Mn,由于这种合金不像Al-Cu及Al—Zn-Cu高强度铸造铝合金那样受到热裂

变形铝合金时效热处理相关知识汇总精品

【关键字】台阶、方法、条件、机制、有效、深入、继续、尽快、平衡、良好、加深、发现、了解、研究、措施、稳定、基础、倾向、制度、作用、标准、结构、关系、形成、满足、强化、调整、改善、加快、取决于、提高、转变、减轻、有序化 变形铝合金时效热处理相关知识汇总(1)时效 aging 经固溶处理或冷变形后的合金,在室温或高于室温下,组织和性能随时间延续而变化,硬度、强度增高,塑性、韧性降低的现象。在室温下发生时效称自然时效。高于室温发生时效称人工时效。时效现象除铝铜合金外,在钢、铜合金,铁基、镍基、钴基高温合金中普遍存在,是提高合金强度的重要方法。低碳钢冷变形后在常温长时放置即出现屈服强度提高。硬铝合金经高温(520℃)淬火后在100~200℃时效,可获得最佳的强化效果。马氏体时效钢,沉淀硬化不锈钢,铁基、镍基、钴基高温合金均可在固溶处理后选择不同温度时效处理,可以从中获得最佳的组织和性能。 (2)时效处理 aging treatment 过饱和固溶体合金在室温或加热至一定温度保温,使溶质组元富集或析出第二相的热处理工艺。常温下时效称自然时效。高于室温加热时效称人工时效。时效析出第二相获得强化的现象称时效强化。低于或高于强化峰值温度的时效分别称为亚时效与过时效处理。形变后时效称形变时效或直接时效。在应力下时效称应力时效。强化效果取决于析出第二相的类型、数量、尺寸、形态、稳定性等因素。广泛用于铝合金、钛合金、高温合金、沉淀硬化钢、马氏体时效钢等。铝合金时效硬化峰值出现在溶质组元的富集G-P区(Ⅱ)末期。时效处理是强化合金的有效方法,可显著提高合金的强度和硬度,调整时效温度、时间可使合金的组织、性能满足使用要求,获得高的屈服强度、

铝合金热处理工艺

铝合金热处理工艺 铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G?P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(Ⅰ)区。G?P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化-形成G?P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G?P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G?P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时

6063铝合金熔炼生产工艺手册

6063铝合金熔炼生产工艺手册 本文由全球铝业网 (https://www.wendangku.net/doc/f4324801.html,) 编辑,转载请注明出处,十分感谢! 一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0.35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。 6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和 Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si 越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在 500℃时为1.05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。 在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1.73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择 6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。 另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。 2.杂质元素的影响

铝合金时效过程

铝合金时效过程85-3 顾景诚 一、前言 铝合金时效现象是在1906年由德国的Wilm发现的。他在九月一个星期六的上午将Al-4%Cu-0.5%Mg合金于水中淬火后,下午进行硬度测定,过了星期天,星期一上午继续测定硬度,发现硬度显著增加,原以为硬度计失灵,但是,反复验证结果总是一样。Wilm将此结果于1911年以《含镁铝合金的物理冶金学研究》为题发表出来。从此以后,人们对铝合金时效现象做了大量研究工作。时效处理已成为铝合金强化的重要手段。今天,铝合金材料应用这样广泛,成为仅次于钢铁,而且正以它无与伦比的优点来代替木材、铜材、钢铁等,都应当归功于时效现象的应用。 经过半个多世纪,各国学者共同努力,对各种铝合金系的析出行为、析出理论、析出与合金性能的关系,做了大量研究工作。尤其是随着现代科学技术的发展、电子显微技术、电子微区分析、热差分析、X射线衍射技术的应用,对析出相的形核、成长、长大做出了定量研究,使我们对时效现象的本质有了进一步认识。最近,日本高桥恒夫等用高能电子显微镜对铝铜合金的时效过程的晶格直接摄影,摄取了G P(1)区和G P(2)区的结构。但是,从各国开发新结构铝合金材料来看,利用时效现象来提高时效硬化型铝合金的性能也并非顺利,这说明对铝合金时效现象本质应做进一步探讨。 作者于1983年7月在沈阳听了日本高桥恒夫教授关于铝合金时效析出问题的讲座。高桥先生介绍了他们试验室的最新研究成果和有关铝合金时效析出的现代理论。结合其他一些文献现将讲座主要内容介绍如下。 二、过饱和固溶体的结构

在变形铝合金范围内,合金成分基本上处在α-Al的固溶体范围内。对于时效型变形铝合金,它们的成分在室温和略高温度下都稍微超过它的固溶极限,而在高于某一温度却小于固溶极限,也就是说在这一温度之上呈固溶状态。将高温的固溶状态通过强制冷却,在常温下仍保持固溶状态,这种做法称之为固溶处理。所得到的固溶体称为过饱和固溶体。 过饱和固溶体是一种不稳定的组织,不仅溶质原子呈过饱和状态,而空位也呈过饱和状态。这些过饱和空位,有的同溶质原子结合形成科垂耳气团,有的向晶界逃逸,有的互相结合,塌陷后形成位错环。 以过饱和形式存在于铝基体中的溶质原子更容易发生偏聚。例如,在Al-Cu 合金中,Cu原子容易发生“Knot”偏聚,其形式有各种各样,同时,在热力学上也是不稳定的,时而形成,时而解散。但是,将在有利于形成CuAl 的位置上 2 出现“Knot”的几率高。 时效处理之前,由于溶质原子扩散,将在最易析出的晶面上沿某一晶体方向生成所谓“Knot”的原子集团,而在“Knot”周围发生晶格畸变,这就引起固溶硬化,也使电阻增加。这个“Knot”有时也称为原子群(group)或原子链(cluster),目前也有称之为集合体(complex)的[1]。浓度起伏所引起的这些溶质原子的集合体可能成为时效时GP区和析出粒子的核心。 过饱和固溶溶质原子的偏聚与空位浓度有关,而过饱和空位在铝基体中的分布也是遵循数理统计规律的。空位浓度也存在起伏。一般说来,在溶质原子周围的空位浓度高于其他地方,同时,在空位浓度大的地方也易于富集溶质原子,因为溶质原子的富集是通过扩散来实现的,扩散就是原子位移,而位移是通过同铝原子或空位交换位置来实现的,与空位交换位置是容易的。因此,淬火固定的过饱和空位的浓度以及它的分布状态对过饱和固溶体的稳定性和时效处理时GP区和析出相粒子的大小、弥散性和分布状态影响很大。 总之,过饱和固溶体的组织存在溶质原子的过饱和及空位的过饱和,由于溶

影响6系铝合金机械性能的重要因素

影响6系铝合金机械性能的重要因素 6063、6063A、6A02、6061铝合金多用于生产建筑材、工业材、家俱材、梯具材。多数客户对特殊用途的产品抗拉强度、延伸率的要求越来越高,因此根据多年来的实践经验对常用的6系铝合金如何获得更好的机械性能做如下分析: 1)铝合金锭坯的化学成分:6063、6063A是以Mg2Si为强化相的合金,所以首先应确定强化相的含量,一般当Mg2Si的量在0.71%----1.03%范围内时,其抗拉强度随Mg2Si量的增加近似线性的提高,但变形抗力也跟着提高,加工变得困难,但Mg2Si量小于0.72%时,对于挤压系数偏小(小于或等于30)的制品,抗拉强度值有达不到标准要求的危险,当Mg2Si量超过0.9%时,合金的塑性有下降趋势。确定了强化相的量后再确定Mg的含量,Mg是易燃金属,熔炼操作时会有烧损,在确定Mg的控制范围时要考虑烧损所带来的误差,但不能放得太宽,以免合金性能失控,Mg的波动范围应在0.04%之内,T5型材取0.47--0.53%,T6型材取0.57----0.60%。当Mg的范围确定后,可用Mg/Si比来确定硅,Si可与其它元素形成化合物如:AlFeSi,所以Si应在原基础上补约0.09---0.13%,Mg/Si应控制在1.18----1.32之间。6061、6A02合金其Mg2Si量应控制在1.4%左右,为加强其延伸率,Cu的含量约为0.2---0.4%。其维氏硬度大于或等于15 2)铝合金锭坯均匀化:均匀化处理可改善锭坯的塑性,提高其工艺性能,改善制品组织异向性能,消除金属内部的残余应力。(无条件公司可不进行均匀化处理) 3)铝型材挤压温度和速度:6063、6063A其淬火温度不得低于500度,所以挤压温度一般控制在470---490度,6061、6A02其交货状态一般为T6,淬火温度比6063略高约510----520度。具体挤压温度和挤压速度应根据型材壁厚、挤压特性和模具状况等因素来适当调整,坚持高温低速、低温高速的挤压原则。但其出口温度不得低于产品淬火温度。 4)铝型材淬火效果:淬火是为了将在高温下固溶于基体金属中的Mg2Si在出模后经快速冷却到室温而被保留下来,冷却速度常和强化相含量成正比,因其淬火敏感性增高,在Mg2Si 为0.8%的6063合金,从454度冷却至204度的临界冷却温度范围内,最小冷却速度为38度/分钟,而含Mg2Si为1.4%的6061合金在上述临界冷却温度范围的冷却速度不应小于65度/分钟,因此,6063可以用风冷淬火,6061必须用水冷淬火。均匀良好的淬火效果可有效的提高产品机械性能。 5)铝型材人工时效:6063、6061合金型材在刚挤出来的状态下的抗拉强度等于或大于140兆帕,在快速冷却到室温后8小时内加以人工时效可以使其抗拉强度增强至240兆帕以上,人工时效一般采用190---200度保温1--2小时。6061、6A02一般采用180---190度保温4---6时。

铝合金的熔炼、铸锭与固溶处理

铝合金的熔炼、铸锭与固溶处理

————————————————————————————————作者:————————————————————————————————日期: ?

铝合金的熔炼、铸锭与固溶处理 一、实验目的: 掌握铝合金熔炼的基本原理,并应用在熔炼的实践中。熔炼是使金属合金化的一种方法,它是采用加热的方式改变金属物态,使基体金属和合金组元按要求的配比熔制成成分均匀的熔体,并使其满足内部纯洁度、铸造温度和其他特定条件的一种工艺过程。熔体的质量对铝材的加工性能和最终使用性能产生决定性的影响,如果熔体质量先天不足,将给制品的使用带来潜在的危险。因此,熔炼又是对加工制品的质量起支配作用的一道关键工序。而铸造是一种使液态金属冷凝成型的方法,它是将符合铸造的液态金属通过一系列浇注工具浇入到具有一定形状的铸模(结晶器)中,使液态金属在重力场或外力场(如电磁力、离心力、振动惯性力、压力等)的作用下充满铸模型腔,冷却并凝固成具有铸模型腔形状的铸锭或铸件的工艺过程。铝合金的铸锭法有很多,根据铸锭相对铸模(结晶器)的位置和运动特征,可将铝合金的铸锭方法分类如下: 二、实验内容: 铝铜合金熔炼基本工艺流程

三、实验要求 严格控制熔化工艺参数和规程 1. 熔炼温度 ?熔炼温度愈高,合金化程度愈完全,但熔体氧化、吸氢倾向愈大,铸锭形成粗晶组织和裂纹的倾向性愈大。通常,铝合金的熔炼温度都控制在合金液相线温度以上50~100℃的范围内。从图1的Al-Cu相图可知,Al-5%Cu的液相线温度大致为660~670℃,因此,它的熔炼温度应定在710(720)℃~760(770)℃之间。浇注温度为730℃左右。

铝合金时效处理相关

铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si 系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。 二、热处理方法1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3种。1)不完全人工时效:把铸件加热到150-170℃,保温3-5h,以获得较好抗拉强度、良好的塑性和韧性,但抗蚀性较低的热处理工艺;2)完全人工时效:把铸件加热到175-185℃,保温5-24h,以获得足够的抗拉强度(即最高的硬度)但延伸率较低的热处理工艺;3)过时效:把铸件加热到190-230℃,保温4-9h,使强度有所下降,塑性有所提高,以获得较好的抗应力、抗腐蚀能力的工艺,也称稳定化回火。

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

铝合金熔炼工艺流程和操作工艺

铝合金熔炼工艺流程和操作工艺(一) 装料 熔炼时,装入炉料的顺序和方法不仅关系到熔炼的时间、金属的烧损、热能消耗,还会影响到金属熔体的质量和炉子的使用寿命。装料的原则有: 1、装炉料顺序应合理。正确的装料要根据所加入炉料性质与状态而定,而且还应考虑到最快的熔化速度,最少的烧损以及准确的化学成分控制。 装料时,先装小块或薄片废料,铝锭和大块料装在中间,最后装中间合金。熔点易氧化的中间合金装在中下层。所装入的炉料应当在熔池中均匀分布,防止偏重。 小块或薄板料装在熔池下层,这样可减少烧损,同时还可以保护炉体免受大块料的直接冲击而损坏。中间合金有的熔点高,如AL-NI和AL-MN合金的熔点为750-800℃,装在上层,由于炉内上部温度高容易熔化,也有充分的时间扩散;使中间合金分布均匀,则有利于熔体的成分控制。 炉料装平,各处熔化速度相差不多这样可以防止偏重时造成的局部金属过热。 炉料应进量一次入炉,二次或多次加料会增加非金属夹杂物及含气量。 2、对于质量要求高的产品(包括锻件、模锻件、空心大梁和大梁型材等)的炉料除上述的装料要求外,在装料前必须向熔池内撒20-30kg粉状熔剂,在装炉过程中对炉料要分层撒粉状熔剂,这样可提高炉体的纯洁度,也可以减少损耗。 3、电炉装料时,应注意炉料最高点距电阻丝的距离不得少于100mm,否则容易引起短路。 熔化 炉料装完后即可升温。熔化是从固态转变为液态的过程。这一过程的好坏,对产品质量有决定性的影响。 A、覆盖 熔化过程中随着炉料温度的升高,特别是当炉料开始熔化后,金属外层表面所覆盖的氧化膜很容易破裂,将逐渐失去保护作用。气体在这时候很容易侵入,造成内部金属的进一步氧化。并且已熔化的液体或液流要向炉底流动,当液滴或液流进入底部汇集起来时,其表面的氧化膜就会混入熔体中。所以为了防止金属进一步氧化和减少进入熔体的氧化膜,在炉料软化下塌时,应适当向金属表面撒上一层粉状熔剂覆盖,其用量见表。这样也可以减少熔化过程中的金属吸气。 覆盖剂种类及用量 炉型及制品电气熔炼煤气炉熔炼 覆盖剂用量普通制品特殊制品普通制品特殊制品 (占投量) /% 0.4-0.5 0.5-0.6 1-2 2-4 覆盖剂种类粉状熔剂 Kcl:Nacl按1:1混合 B、加铜、加锌 当炉料熔化一部分后,即可向液体中均匀加入锌锭或铜板,以熔池中的熔体刚好能淹没住锌锭和铜板为宜。 这时应强调的是,铜板的熔点为1083℃,在铝合金熔炼温度范围内,铜是溶解在铝合金熔体中。因此,铜板如果加得过早,熔体未能将其盖住,这样将增加铜板的烧损;反之如果加得过晚,铜板来不及溶解和扩散,将延长熔化时间,影响合金的化学成分控制。 电炉熔炼时,应尽量避免更换电阻丝带,以防脏物落入熔体中,污染金属。 C、搅动熔体 熔化过程中应注意防止熔体过热,特别是天然气炉(或煤气炉)熔炼时炉膛温度高达1200℃,在这样高的温度下容易产生局部过热。为此当炉料熔化之后,应适当搅动熔体,以使熔池里各处温度均匀一致,同时也利于加速熔化.

各国铝合金牌号对照表及铝合金不同时效方法比较

各国铝合金牌号对照表及铝合金不同时效方法比较 1.各国铝合金牌号对照表 2.几种高性能铝合金简介 7075:锌是7075中主要合金元素,向含3%-7.5%锌的合金中添加镁,可形成强化效果显著的MgZn2,使该合金的热处理效果远远胜过于铝-锌二元合金。提高合金中的锌、镁含量,抗拉强度会得到进一步的提高,但其抗应力腐蚀和抗剥落腐蚀的能力会随之下降。经受热处理,能到达非常高的强度特性。7075材料一般都加入少量铜、铬等合金,该系当中以7075-T651铝合金尤为上品,被誉为铝合金中最优良的产品,强度高、远胜任何软钢。此合金并具有良好机械性及阳极反应。代表用途有航空航天、模具加工、机械设备、工装夹具,特别用于制造飞机结构及其他要求强度高、抗腐蚀性能强的高应力结构体。 6061:该合金的主要合金元素是镁与硅,并形成Mg2Si相。若含有一定量的锰与铬,可以中和铁的坏作用;有时还添加少量的铜或锌,以提高合金的强度,而又不使其抗蚀性有明显降低;导电材料中还有少量的铜,以抵销钛及铁对导电性的不良影响;锆或钛能细化晶粒与控制再结晶组织;为了改善可切削性能,可加入铅与铋。在Mg2Si固溶于铝中,

使合金有人工时效硬化功能。 6061-T651是6061合金的主要合金,是经热处理预拉伸工艺生产的高品质铝合金产品,其强度虽不能与2XXX系或7XXX系相比,但其镁、硅合金特性多,具有加工性能极佳、优良的焊接特点及电镀性、良好的抗腐蚀性、韧性高及加工后不变形、材料致密无缺陷及易于抛光、上色膜容易、氧化效果极佳等优良特点。 代表用途包括航天固定装置、电器固定装置、通讯领域,也广泛应用于自动化机械零件、精密加工、模具制造、电子及精密仪器、SMT、PC板焊锡载具等等。 2024铝合金属Al-Cu-Mg系铝合金,主要特征及应用范围:这是一种高强度硬铝,可进行热处理强化,在淬火和刚淬火状态下塑性中等,点焊焊接良好,用气焊时有形成晶间裂纹的倾向,合金在淬火和冷作硬化后其可切削性能尚好,退火后可切削性低:抗腐蚀性不高,常采用阳极氧化处理与涂漆方法或表面加包铝层以提高其抗腐蚀能力。用途主要用于制作各种高负荷的零件和构件(但不包括冲压件锻件)如飞机上的骨架零件,蒙皮,隔框,翼肋,翼梁,铆钉等150℃以下工作零件。 3.铝合金的基本状态 4.T细分状态代号说明与应用

变形铝合金时效热处理相关知识汇总

变形铝合金时效热处理相关知识汇总(1)时效 aging 经固溶处理或冷变形后的合金,在室温或高于室温下,组织和性能随时间延续而变化,硬度、强度增高,塑性、韧性降低的现象。在室温下发生时效称自然时效。高于室温发生时效称人工时效。时效现象除铝铜合金外,在钢、铜合金,铁基、镍基、钴基高温合金中普遍存在,是提高合金强度的重要方法。低碳钢冷变形后在常温长时放置即出现屈服强度提高。硬铝合金经高温(520℃)淬火后在100~200℃时效,可获得最佳的强化效果。马氏体时效钢,沉淀硬化不锈钢,铁基、镍基、钴基高温合金均可在固溶处理后选择不同温度时效处理,可以从中获得最佳的组织和性能。 (2)时效处理 aging treatment 过饱和固溶体合金在室温或加热至一定温度保温,使溶质组元富集或析出第二相的热处理工艺。常温下时效称自然时效。高于室温加热时效称人工时效。时效析出第二相获得强化的现象称时效强化。低于或高于强化峰值温度的时效分别称为亚时效与过时效处理。形变后时效称形变时效或直接时效。在应力下时效称应力时效。强化效果取决于析出第二相的类型、数量、尺寸、形态、稳定性等因素。广泛用于铝合金、钛合金、高温合金、沉淀硬化钢、马氏体时效钢等。铝合金时效硬化峰值出现在溶质组元的富集G-P区(Ⅱ)末期。时效处理是强化合金的有效方法,可显著提高合金的强度和硬度,调整时效温度、时间可使合金的组织、性能满足使用要求,获得高的屈服强度、蠕变强度、疲劳性能等。含铜4%的铝合金经自然时效后强度为400MPa,比退火状态强度大一倍。时效硬化合金使用时,使用温度不应超过其时效温度。

(3)时效硬化 age hardening 经固溶处理的过饱和固溶体在室温或室温以上时效处理,硬度或强度显著增加的现象。原因是过饱和固溶体在时效过程中发生沉淀、偏聚、有序化等反应的产物,增加了位错运动的阻力形成的。位错与析出产物交互作用下硬化机制有位错剪切析出相粒子,基体与粒子间相界面积增加,使外力转变为界面能; 析出相与基体的层错能差异; 基体与析出粒子的切变模量不同。另外,析出相与基体共格应变场交互作用;参数不匹配;有序共格沉淀硬化作用;位错运动产生反相畴界,使位错不能通过析出相而弯曲绕过形成位错环也可产生硬化。控制时效温度、时间等条件可使合金获得不同的组织结构和强化效果。 (4)自然时效 natural aging 过饱和固溶体(主要是某些铝合金) 在室温(10~40℃)停放一段时间的过程称为自然时效。在室温下停放时,强度随时间的延续缓慢上升,达到一定数值后趋于稳定; 与此同时,合金的塑性逐渐减小。在硬度及强度明显增大前的一段时间内,塑性也较高,可进行成型加工及矫正等工序,然后再自然时效一段时间,待硬度(强度) 达稳定值后即可投入安装使用。对明显硬化前的时间间隔较短的合金,还可采用冷冻方法延迟时效过程,以便进行加工及矫正。自然时效倾向较小的合金则需采用人工时效进行强化。 (5)人工时效 Artificial ageing 将经过固溶处理的合金加热到低于溶解度曲线的某一温度保温一段时间,使第二相在该温度下发生脱溶,合金的强度和硬度升高。人工时效所需时间较短,但强化效果较差。在工业上比自然时效应用更加广泛。

相关文档
相关文档 最新文档