文档库 最新最全的文档下载
当前位置:文档库 › 碳纳米管特性对天然橡胶_碳管复合材料力学性能的影响_于海涛

碳纳米管特性对天然橡胶_碳管复合材料力学性能的影响_于海涛

碳纳米管特性对天然橡胶_碳管复合材料力学性能的影响_于海涛
碳纳米管特性对天然橡胶_碳管复合材料力学性能的影响_于海涛

碳纳米管特性对天然橡胶/碳管复合材料力学性能的影响Mechanical Properties of Natural Rubber Reinforced With Carbon Nanotubes of Various

structural Characteristics

北京化工大学 于海涛 卢咏来 王 宽 王文才 聂庆超 张立群

[摘要] 通过SEM、Raman光谱等对具有不同结构特征(纯度、管壁厚度、长度)的碳纳米管进行了微观结构的分析,并通过机械混炼法制备了碳纳米管(CNTs)/天然橡胶(NR)复合材料,研究了CNTs的特性对复合材料力学性能的影响,结果表明,纯度为95wt%的CNTs对复合材料力学性能的提高远远优于纯度为99.9wt%的石墨化CNTs;而对同一纯度(95wt%)的CNTs,随着管壁厚度的增大,复合材料性能的提高越差;CNTs长度的影响不明显。由此推断,CNTs与橡胶间的界面结合和接触面积对复合材料的力学性能起主导作用。

关键词:碳纳米管特性复合材料力学性能

[AbsTRACT]It`s analysed of the microstru-ture of carbon nanotubes(CNTs) with various structural characteristics(purity,wall thickness,length) by SEM and Raman spectroscopy, then prepared into natural rubber(NR) by mechanical mixing method. The resulting of the CNTs` characteristics to the mechanical properties of the composite materials is researched. It showed that the purity of 95wt% of CNTs is far better than the purity of 99.9wt% of graphitized CNTs for improving the mechani-cal properties.As the wall thickness increases,the modulus of the composites became much lower.Length is not obvi-ous.So it`s concluded that the interface bonding and con-tact area between CNTs and rubber plays an important role on the mechanical properties of the composites.

Keywords: CNTs characteristics Composites Mechanical properties

自1991年日本电镜学家Iijima发现了具有特殊结构的管状物后,对于碳纳米管的基础研究及其应用方兴

未艾。碳纳米管(carbon nanotubes,CNTs)是由六边形的石墨片层卷曲而成的中空管状物质。碳纳米管具有独特的拓扑结构,以及稳定性高、比强度高、轴向膨胀系数低、独特的导热性能和导电性能等[1]。正是基于这些结构和特点,碳纳米管成为聚合物基复合材料理想的补强填料[2]。

橡胶是一种室温下具有高弹性的聚合物材料,在众多橡胶品种中,尤以天然橡胶的使用历史最为悠久,使用量最大。但其诸多性能(包括拉伸强度、硬度、耐磨性、抗疲劳性等)在不经过增强是无法达到应用要求的[3],所以通常需要在橡胶中添加增强相(炭黑、二氧化硅等)来提高其性能。随着科技的发展及橡胶应用方面越来越苛刻的要求,碳纳米管因其优良的性能使得成为橡胶增强的又一重要选择。目前有关CNTs/橡胶复合材料方面的研究已经取得了一定的进展[4-6]。但是,CNTs在提高复合材料的力学性能方面尚未发挥出理想的应用效果[7]。由于目前市场上碳管种类繁多,如何在橡胶补强方面选择最优质的的碳管,从而达到最佳效果,国内外文献在这方面鲜有报道。本文以七种不同的碳纳米管为实验材料,通过机械混炼的方法制备了碳纳米管(CNTs)/天然橡胶(NR)纳米复合材料,系统的研究了具有不同结构特性(纯度、管壁厚度、长度)的碳纳米管对复合材料力学性能的影响。

1 实验部分

1.1 主要原材料

多壁碳纳米管,中国科学院成都有机化学有限公司。CNTs的内径基本相同,纯度、管壁厚度、长度等各不相同,具体编号及结构特性参数如表1所示。天然橡胶,云南天然橡胶股份有限公司。其他小料:氧化锌,硬脂酸,促进剂D,促进剂DM,促进剂TMTD,防老剂

1076

4010NA,硫黄S等均为市售。

1.2 试验配方

1.3 试样制备

采用机械混炼法制备天然橡胶NR/碳纳米管CNTs 复合材料。首先将开炼机辊距调至最小,将100g的天然橡胶薄通塑炼3次。依次加入氧化锌、硬酯酸,硫化促进剂,防老剂,碳纳米管及硫磺。混炼均匀,下片。混炼时间严格控制在12min以内,混炼温度低于50℃,防止橡胶过炼。待混炼完毕后,将胶料停放24h。采用北京环峰化工机械厂生产的P3555 B2型硫化仪测得t90.使用平板硫化仪对混炼胶进行硫化,硫化条件为143℃×T90。

1.4 测试分析

1.4.1 Raman光谱分析

采用英国雷尼绍公司生产的inVia型激光Raman 光谱仪,采用514.5nm的氩离子激发源,激光功率为4.7mW。扫描范围在1000~3000个波数。1.4.2 扫描电子显微镜SEM分析

采用日本日立公司生产的s-4700型扫描电子显微镜对样品的微观结构进行观察。

1.4.3 力学性能测试

采用深圳新三思材料检测有限公司型号为CMT4104的电子拉力机,对复合材料进行力学性能测试。将厚度约为2mm硫化胶样片裁成中间宽为6mm的哑铃状样条。使用电子拉力机对橡胶的力学性能(包括定伸应力、拉伸强度、断裂伸长率)进行测试,测试条件根据国标GB/ T528-1998,其中拉伸速率为500mm/min。

2 结果与讨论

2.1 碳纳米管的表征分析

1077

1078

图1 不同管壁厚度碳纳米管的扫描电镜图

Fig.1 SEM of CNTs with different wall thickness 图1所示为1#和3#两种不同管壁厚度的碳纳米管在相同放大倍数下的扫描电镜图。由图示可以明显的看出,相比于3#CNTs 而言,1#CNTs 明显要细很多。对于相同质量的CNTs,管壁厚度越小,碳管的数目就越多,比表面积就越大,这就导致CNTs 与橡胶的接触面积越大。

拉曼光谱是进行碳材料表面研究的有力手段,对于了解碳材料的结构及其物理内涵具有重要作用[8]。多壁碳纳米管存在两个主要的峰:位于1580cm -1附近的G 峰和位于1350cm -1附近的D 峰。其中D 峰是由于碳纳米管中的结构缺陷或者无定形物质引起的无序杂化峰,G 峰是由于碳纳米管的碳原子以sp 2

杂化构成的完整的六边形结构。D 峰和G 峰的积分强度比ID/IG 能够表征碳纳米管中无

定形结构的含量。ID/IG 越低,说明该碳纳米管的石墨化程度越好,无定形碳杂质越少。图2所示为1#高纯碳纳米管和4#石墨化碳纳米管的Raman 光谱分析,从图中可以看出,1#碳纳米管存在很高的D 峰,通过积分计算得知,1#碳纳米管的ID/IG=1.40,4#碳纳米管的ID/IG=0.43,石墨化程度很好。由此可知,1#碳纳米管表面有机的一层无定形结构的含量较高,这将赋予它与橡胶间良好的界面结合作用。2.2 复合材料的力学性能

在力学性能方面,由于构成碳纳米管网格的主要是自然界最强的价键C-C 共价键,所以碳纳米管具有极高的强度与刚度。其轴向的弹性模量可以达到1TPa,约为钢的5倍,密度只有钢的1/6。由于碳纳米管为中空的结构,因此在外应力的作用下可以产生直径或体积的变化,而不会呈现直接的脆性断裂。所以将碳纳米管作为复合材料的增强相能有效地承受应力传递,从而使基体材料在强度、弹性以及抗疲劳性等各个方面得到不同程度的改善。正是基于这些结构和特点,碳纳米管成为聚合物基复合材料理想的补强填料。

由于可操作性强,简单易行,并能实现填料的均匀分散,机械共混法是制备橡胶复合材料最常用的方法。虽然CNTs 具有易团聚的特点,但据文献报道[9-10],机械共混下的高剪切力可以克服CNTs 间的静电力和范德华作用力,从而可以将每根碳管分离开来,较好的达到了碳管均匀分散的目的。

表3为七种碳纳米管制备的复合材料的力学性能数据表。由于天然橡胶是一种拉伸结晶橡胶,其复合材

料的拉伸强度和扯断伸长率是由橡胶本身的特性决定

表3 天然橡胶/碳纳米管复合材料力学性能表

图2 不同纯度碳纳米管的Raman光谱图

Figure 2 Raman spectra of CNTs with different purity

I n t e n s i t y /a .u .

Raman Shift/cm

-1

1079

的,因此,我们主要考察CNTs 对复合材料模量(定伸应力)的影响。

2.2.1 纯度的影响

Strain (%)

S t r e s s (M P a )

图3 不同纯度碳管/天然橡胶复合材料应力应变曲线Fig.3 Curve of stress-strain of NR/CNTs composites

with different purity 图3为不同纯度1#和4#CNTs 制备的复合材料的应力应变曲线,其中#后面的数字代表填充份数phr。可明显的观察到,无论是填充5phr 甚至10phr 的CNTs 下,纯度为99.9wt%的4#石墨化CNTs 对天然橡胶在定伸应力方面的提高程度有限。而1#CNTs 在对复合材料定伸应力方面的提高就很明显,甚至是填充5phr 的1#CNTs 比填充10phr 的4#CNTs 还要高很多,在300%定伸应力上提高了64.3%。对比于表3其他碳管(2#和5#,3#和6#)也能发现类似的规律。这主要是由于CNTs 的主要作用是作为结构增强材料,然而,这种作用取决于CNTs 在基体中载荷从基体到CNTs 的传递。当碳管、橡胶两相间的界面结合较弱时,载荷不能传递到CNTs,CNTs 不能硬化或强化复合材料,CNTs 相当于孔洞或纳米结构缺陷,导致局部应力集中,失去了CNTs 的良好特性。在炭黑白炭黑增强橡胶方面,王振华等提出[11],纳米增强剂粒子在拉伸过程中诱导产生橡胶分子链的平行伸直链结构是其对橡胶产生显著增强的主要原因。增强剂粒子表面必须具备物理吸附一定量橡胶分子链的能力,这种吸附必须能抵抗一定的外力作用,并且能产生适度的滑移,以便于粒子诱导产生伸直链或平行排布链。过弱的界面结合容易导致过早和过快的滑脱。而对于碳管增强橡胶,我们也能发现类似的规律。由此可见,相对于天然橡胶/碳管复合材料而言,不一定是碳管表面越纯越好,

反而是碳管表面一层有机的无定形物质,赋

予了碳管与橡胶间良好的界面结合作用,提高了复合材料的模量。

2.2.2 管壁厚度的影响

Strain (%)

S t r e s s (M P a )

图4 不同管壁厚度碳管/天然橡胶复合材料应力应变

曲线

Fig.4 Curve of stress-strain of NR/CNTs composites

with different wall thickness 图4为填充10phr 高纯多壁碳纳米管制备的复合材料的应力应变曲线,由图可得出,随着碳纳米管管壁厚度的减小,相应的复合材料的定伸应力也得到了极大程度的提高。这主要是因为相同质量的CNTs,管壁厚

度越小,CNTs 的数量越多,而依据刘军等人[12]

提出的纳米填料增强橡胶机理“分子链滑移取向理论”,要想在拉伸过程中产生由粒子诱导的伸直链或平行链,粒子间就必须接近到一定的距离,以保证单根分子链(或者交联的分子链)的一部分至少搭接在2个粒子的表面上。而这个粒子间的距离首先决定于增强剂的用量,其次与粒子大小关系很密切。当粒子间距离很大,由于分子链无法跨越两个粒子,因而,分子链通过滑移产生很多的平行排列的伸直结构就无法实现,强度就会很低。相对于碳纳米管而言,管壁厚度越小,粒子间距就越小,橡胶分子链更容易搭接在碳管表面,从而提高了力学性能。

图5为填充10phr 石墨化的多壁碳纳米管制备的复合材料的应力应变曲线。除在定伸应力方面远没有高纯碳管提高那么明显之外,管壁厚度对复合材料补强的效果也基本上没有得到体现。Nah 等人[13]通过将碳纳米管/天然橡胶复合材料弯曲变形后的表面置于扫描电镜下观察,结果发现碳纳米管在一段时间后逐渐地在表面突显出来。而当撤去形变再次观察同样的表面

1080

时,发现碳纳米管又重新缩回基体的内部,由此得出碳纳米管与橡胶间相当弱的界面结合。当碳管表面尤为纯净时,即使碳管数量再多,也无法较大的提高模量,这进一步验证并且强调了两相间界面结合的作用。2.2.3 长度的影响

Strain (%)

S t r e s s (M P a )

图6 不同长度碳管/天然橡胶复合材料应力应变曲线

Figure 6 Curve of stress-strain of NR/CNTs composites

with different length 图6为在CNTs 其他结构特性相同的条件下,不同碳管长度制备的复合材料应力应变曲线。可以发现,在填充10phrCNTs 条件下,二者的曲线基本是重合的。

Fei Deng 等人提出[15],

实际对复合材料起增强作用的,只是其中所谓“persistence length”的直的碳纳米管才能真正有效。通过对复合材料混炼胶做透射电镜分析并对碳管进行长度统计得知,经过双棍开炼机这种强剪切力的作用,碳管基本破碎为400~600nm 的长度,其中所谓的保留长度更加相近,因此长度对力学性能的增强效果不明显。

张立群等人[11-13]在炭黑白炭黑这种球状粒子增强橡胶的研究中提出了一些橡胶增强设计上的新观点,并指出界面相互作用和增强粒子的尺寸等对复合材料强度提高的影响,通过本文的实验研究我们发现,对于碳纳米管这种管状结构的纳米粒子增强橡胶,同样具有类似的规律。

3 结论

利用具有采用不同特性的碳纳米管制备了CNTs/NR 的复合材料,对其力学性能进行对比分析后发现:

(1)纯度为95wt%的CNTs 对复合材料模量的提高远远优于纯度为99.9wt%的石墨化CNTs;

(2)而对同一纯度(95wt%)的CNTs,随着管壁厚度的增大,碳管与橡胶的接触面积越小,复合材料性能的提高越差;

(3)CNTs 长度的影响不明显。由此推断,CNTs 与橡胶间的界面结合和接触面积对复合材料的力学性能起主导作用。

参 考 文 献

[1] Iijima S. Helical microtubules of graphitic carbon.Nature, 1991,354:56-58.

[2] Zdenko S, Dimitrios T, Konstantinos P,et al. Carbon nanotube-polymer composites:Chemistry,processing,mechanical and electrical properties. Progress in Polymer Science,2010,35:357-401.

[3] 张立群,吴友平,王益庆,等.橡胶的纳米增强及纳米复合技术.合成橡胶工业,2000,23(2):71-77.

[4] Liliane Bokobza.Mutiwall carbon nanotube elastomeric composites:A review.Polymer,2007,48:4907-4920.

[5] 隋刚,梁吉,朱跃峰,等.碳纳米管/天然橡胶复合材料的结

构与性能.合成橡胶工业,2005,28(1):40-43.

[6] Zheng Peng , Chunfang Feng, Yongyue Luo,et al. Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques. Carbon ,48(15): 4497-4503.

[7] Dongmei Yue,Yunfang Liu,Zengmin Shen,et al.Study on preparation and properties of carbon nanotubes/rubber.J.Mater.Sci,2006,41(8):2541-2544.

[8] 郑瑞廷,程国安,赵勇,等. 碳纳米管阵列拉曼光谱的对比研究.光谱学与光谱分析,2006,26(6):1071-1075 .

[9] Dong Wang, So Fujinami, Ken Nakajima,et al. Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon ,48(13): 3708-3714.

Strain (%)

S t r e s s (M P a )

图5 不同管壁厚度碳管/天然橡胶复合材料应力应

变曲线

Figure 5 Curve of stress-strain of NR/CNTs

composites with different wall thickness

[10] Li YJ, Shimizu H. Toward a stretchable, elastic, and

electrically conductive nanocomposite: morphology and properties

of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled

carbon nanotube composites fabricated by high-shear processing.

Macromolecules,2009;42:2587–93.

[11] 张立群,王振华,吴友平,等.橡胶纳米增强中的逾渗行为

及其机理.合成橡胶工业,2008,31(4):245-250.

[12] Jun Liu, Yangyang Gao, Liqun Zhang et al. Nanoparticle

dispersion and aggregation in polymer nanocomposites: a molecular

dynamics simulation. Langmuir, 27, 7926, 2011.

[13] Zhenhua Wang, Jun Liu, Sizhu Wu, et al. Novel percolation

phenomena and mechanism of strengthening elastomers by nanofillers.

Physical Chemistry Chemical Physics, 12, 3014, 2010.

[14] Nah C, Lim JY, Cho BH,et al. Reinforcing rubber with carbon

nanotubes.Journal of Applied Polymer Science, 2010,118(3):1574-1581.

[15] Fei Deng,Masaei Ito,ToruNoguchi,et al.Elucidation of the

Reinforcing Mechanism in Carbon Nanotube/Rubber Nanocomposites. ACS

Nano, 2011, 5 (5):3858–3866.

1081

黑磷详细性能参数

黑磷性能参数 黑磷性能参数,这是大家很关心的内容。科学研究从未停止对于新材料的研究,比如石墨烯材料,自发现以来就被应用于多种电子产品的生产,被称之为奇迹材料。而如今,科学家们又发现黑鳞,与石墨烯相比,特点就是低成本的制造工艺,在生产生活中有很多优势,也被预测也会取代石墨烯。下面就由先丰纳米简单的介绍黑磷性能参数。 二维晶体是由几层单原子层堆叠而成的纳米厚度的平面晶体,比如石墨烯。但是石墨烯没有半导体带隙,也就是说它难以完成导体和绝缘体之间的转换,不能实现数字电路的逻辑开与关。而同样由单原子层堆叠而成的黑磷,则具有一个半导体带隙。 研究人员把黑磷做成纳米厚度的二维晶体后,发现它有非常好的半导体性质,这样就有可能用在未来的集成电路里。黑磷二维晶体有良好的电子迁移率,还有非常高的漏电流调制率,是石墨烯的10000倍,与电子线路的传统材料硅类似。 除了电性能外,黑磷的光学性能同包括硅和硫化钼在内的其他材料相比也有优势。它的半导体带隙是直接带隙,即电子导电能带底部和非导电能带顶部在同一位置,实现从非导到导电,电子只需要吸收能量,而传统的硅或者硫化钼等都是间接带隙,不仅需要能量,还要改变动量。这意味着黑磷和光可以直接耦合,这个特性让黑磷成为未来光电器件的一个备选材料。可以检测整个可见光到近红外区域的光谱。 这些初步的研究结果,远没有达到黑磷性能的极限,还有极大的拓展空间。黑磷还只是一个刚刚被发现的材料,现在其前景作任何的推断都还太早。这个材料的很多特性还有待发掘。

如果想要了解更多关于黑磷的内容,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米管的特性及应用_孙晓刚

作者介绍:孙晓刚(1957-),男,吉林人,江西金世纪冶金(集团)股份有限公司高级工程师,长期从事碳纳米管制备工 艺的研究,并对碳纳米管的工业化生产进行了广泛深入的研究和商业策划工作。 收稿日期:2001-02-21 修回日期:2001-05-08 碳纳米管的特性及应用 孙晓刚1,曾效舒2,程国安2 (1.江西金世纪冶金(集团)股份有限公司,江西南昌 330046; 2.南昌大学,江西南昌 330029) 摘 要:介绍了巴基球及碳纳米管的发现和历史,重点介绍 了碳纳米管的基本性能和晶体结构,描述了碳纳米管电传导 和热传导的机理。文中还介绍了碳纳米管的主要生产方法 和各自的优点。根据全球碳纳米管应用研究的方向,对碳纳 米管的应用领域进行了探讨,展望了碳纳米管的应用前景及 商业开发价值。 关键词:碳纳米管;性能;制备;应用 中图分类号:T B383 文献标识码:A 文章编号:1008-5548(2001)06-0029-05 1 碳纳米管简介 仅仅在十几年前,人们一般认为碳的同素异形 体只有两种:石墨和金刚石。1985年,英国Sussex 大学的Kroto教授和美国Rice大学的Sm alley教授 进行合作研究,用激光轰击石墨靶以尝试用人工的 方法合成一些宇宙中的长碳链分子。在所得产物中 他们意外发现了碳原子的一种新颖的排列方式,60 个碳原子排列于一个截角二十面体的60个顶点,构 成一个与现代足球形状完全相同的中空球,这种直 径仅为0.7nm的球状分子即被称为碳60分子。此 即为碳晶体的第三种形式。 1991年,碳晶体家族的又一新成员出现了,这 就是碳纳米管。日本NEC公司基础研究实验室的 Iijima教授在给《Nature》杂志的信中宣布合成了一 种新的碳结构。它由一些柱形的碳管同轴套构而 成,直径大约在1~30nm之间,长度可达到1μm。 进一步的分析表明,这种管完全由碳原子构成,并可 看成是由单层石墨六角网面以其上某一方向为轴, 卷曲360°而形成的无缝中空管。相邻管子之间的 距离约为0.34nm,与石墨中碳原子层与层之间的距 离0.335nm相近,所以这种结构一般被称为碳纳米 管。这是继C60之后发现的碳的又一同素异形体, 是碳团簇领域的又一重大科研成果。 碳纳米管由层状结构的石墨片卷曲而成,因卷 曲的角度和直径不同,其结构各异:有左螺旋的、右 螺旋的和不螺旋的。由单层石墨片卷成的称为单壁 碳纳米管,多层石墨片卷成的称为多壁碳纳米管。 碳纳米管的径向尺寸较小,管的外径一般在几纳米 到几十纳米;管的内径更小,有的只有1nm左右。 而碳纳米管的长度一般在微米量级,长度和直径比 非常大,可达103~106,因此,碳纳米管被认为是一 种典型的一维纳米材料。 碳纳米管、碳纳米纤维材料一直是近年来国际 科学的前沿领域之一。仅就碳纳米管而言,自从 1991年被人类发现以来,就一直被誉为未来的材 料。 2 基本性能 碳纳米管的性质与其结构密切相关。就其导电 性而言,碳纳米管可以是金属性的,也可以是半导体 性的,甚至在同一根碳纳米管上的不同部位,由于结 构的变化,也可以呈现出不同的导电性。此外,电子 在碳纳米管的径向运动受到限制,表现出典型的量 子限域效应;而电子在轴向的运动不受任何限制。 无缺陷金属性碳纳米管被认为是弹道式导体,其导 电性能仅次于超导体。根据经典电阻理论和欧姆定第7卷第6期 2001年12月 中 国 粉 体 技 术 China Powder Science and Technology Vol.7No.6 December2001

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

碳纳米管的性能综述

碳纳米管的性能综述 摘要 碳纳米管因为性能多方面并且应用广泛而受到很多研究员的关注,本文将对碳纳米管的几个性能的研究进行综述,包括碳纳米管的碳纳米管/FeS类Fenton催化剂催化性能、纳米连接性能、碳纳米管增强复合材料风机叶片性能、碳纳米管稳定性能分析、碳纳米管机械强度、碳纳米管吸附特性的综述。 关键字:碳纳米管性能催化剂催化性能连接性能稳定性能纤维的性能吸附特性 碳纳米管/FeS类Fenton催化剂催化性能 杨明轩等以浮动催化热分解法制备碳纳米管( CNTs) ,采用氧化-还原-硫化的方法制备了CNTs /FeS催化剂,采用X射线衍射( XRD) 透射电子显微镜( TEM) 和热重( TG) 分析等技术对催化剂进行了结构表征。将CNTs /FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2O2 浓度CNTs /FeS催化剂的投加量环丙沙星浓度及pH等因素对催化降解性能的影响。结果表明,CNTs /FeS类Fenton催化反应在H2O2 浓度为20mmol /L和CNTs /FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3 ~8) ,同时,CNTs /FeS类Fenton 催化剂在使用寿命方面也具有一定的优势.结论是采用碳纳米管原始样品制备了CNTs /FeS 类Fenton催化剂,并应用于环丙沙星的催化降解反应中,在pH=3 ~8范围内可保持较高去除率( 可达89%) ; 当H2O2 浓度为20mmol /L时,去除率最高( 可达90%) ; CNTs /FeS催化剂催化降解环丙沙星反应过程符合表观一级动力学方程。CNTs /FeS类Fenton催化反应在固液比1 ∶2的情况下,循环使用4次后仍然保持较高的催化降解效率。 碳纳米管的连接性能 2002年,Derycke等采用恒定的电流施加于Au电极结果表明,在焦耳热作用下,单壁碳纳米管( SWCNTs) 与金电极接触处的氧气等吸附物发生脱附,并获得了较低的接触电阻。 2006年,Chen等提出一种新颖的超声纳米焊接技术该技术使用超高频微幅振动的压头,成功地将CNTs压焊到金属电极上,形成可靠的电接触结果表明,焊接后的结构具有较高的机械强度和较低的接触电阻采用这种超声纳米焊接技术,能极大地改善基于CNTs的场效应晶体管性能。目前的纳米连接技术主要包括局部焦耳热法高温退火法电子束焊接法超声纳米焊接和原子力显微镜操纵法。 2011年,Karita等研究了多壁碳纳米管( MWCNTs) 和金电极间的电接触,并在接触处施加电流结果表明,当电流密度达到108A /cm2时,金表面沿着MWCNTs端开始熔化当电流密度提高2倍时,观察到接触区域的金表面结构发生显著性改变,从而减少了接触阻抗该研究组还针对开口和封口CNTs与金电极的纳米连接进行了研究发现,在与Au电极接触的区域中,采用开口CNTs所获单位面积电导率约为封口CNTs电导率的4倍但同时观测到,采用局部焦耳热法时,所产生的大电流引起连接区域材料过度熔化及表面形貌的改变,进而影响器件的性能。 碳纳米管的稳定性能

碳纳米管对环氧树脂力学性能的影响

收稿日期:2004-10-18 基金项目:2004年度湖北省教育厅优秀中青年科技创新团队资助计划项目;武汉科技大学优秀中青年科技创新团队资助计划项目作者简介:袁观明,1978年出生,硕士研究生,主要从事碳纳米管改性及其树脂基复合材料的研究工作 碳纳米管对环氧树脂力学性能的影响 袁观明 李轩科 张铭金 吕早生 张光德 ( 武汉科技大学,武汉 430081) 文 摘 用浇铸成型法制备了碳纳米管/环氧树脂复合材料,研究了其力学性能,并探讨了该材料的微观结构与性能之间的关系。结果表明,碳纳米管对环氧树脂具有明显增强增韧作用。在碳纳米管加入量为3.0%(质量分数)时,复合材料的综合性能较好,拉伸强度、拉伸模量及断裂伸长率较纯树脂分别提高了90%~100%、60%~70%、150%~200%。 关键词 碳纳米管,环氧树脂,复合材料 Effect of Car bon N anotubes on t heM echanical Properti es of Epoxy Resi n Yuan Guan m ing Li Xuanke Zhang M ing jin L üZaosheng Zhang G uangde (W uhan Unive rsity o f Sc i ence &T echno logy ,W uhan 430081) Abst ract Carbon nano t u be /epoxy co m posit e s a r e prepa r ed by cast -m o l d i n g m ethod .The m echan ica l pr oper -ties of the co m posit e s and the r e lationship bet w een the pr operties and the m icrostr ucture o f the co m po sites a r e inve s -tigated .The results sho w that str ength and toughness of epoxy resin a r e obviousl y i m proved w ith t h e addition of car -bon nano t u bes i n resin .The tensil e str ess -strain curves indicate t h at t h e m echan ica l pr ope rty of co m posit e s is be tter t h an tha t o f pu r e resin m atrix .The co m posit e w ith 3.0w t %car bon nano tube conten t has m uch higher value t h an t h at of pure r esi n ,90%~100%,h i g he r in tensile streng th ,60%~70%h i g he r in tensile m odalus and 150%~200%higher i n breaking e longa tion .SE M i m ages ana l y ses of the frac t u re section o f the co m posite disp l a y tha t the add ition concen tration of carbon nanotubes in resin has a close rela tion w ith t h e m echan ica lp r opert y o f car bon nano -t u be /epoxy r e sin co m posit e s . K ey w ords Carbon nano t u bes ,Epoxy r esi n ,Co m po site 1 前言 碳纳米管自从1991年被日本学者Iiji m a 发现以来 [1] ,10多年来一直是世界科学研究的热点之 一[2] 。碳纳米管在理论上是复合材料理想的功能和增强材料,其超强的力学性能和热稳定性可以极大地改善聚合物基复合材料的强度和韧性。近年来,碳纳米管/聚合物纳米复合材料的研究已成为碳 纳米管应用研究的一个新热点[3,4] 。 固化后的环氧树脂通常较脆,耐疲劳性、耐热性、耐冲击性比较差,使其应用受到了一定的限制,因此对环氧树脂进行各种改性已成为该领域的重要研究课题[5~7] 。目前,国外已有不少关于用碳纳米 管改善环氧树脂性能的报道。如A llaou i [8] 、Scha -dle r [9] 、B reton [10] 等用共混法制得了碳纳米管/环氧 树脂复合材料,发现添加碳纳米管可以提高基体的 力学性能,但是由于碳纳米管的分散性问题未能得

碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学 前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。 一、碳纳米管的性能 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。力学性能 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 导电性能 碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。传热性能 碳纳米管具有良好的传热性能,CNTs 具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。 二、碳纳米管电子学的应用 碳纳米电子管(eNTs是一种具有显著电子、机械和化学特性的独特材料。其导电能力不同于普通的导体。性能方面的区别取决于应用,也许是优点,也许是缺点,也许是机会。在一理想纳米碳管内,电传导以低温漂轨道传播的,如果电子管能无缝交接,低温漂是计算机芯片的优点。诸如电连接等的混乱极大地修改了这—行为。对十较慢的模拟信号的处理速度,四周环绕着平向球分子的碳纳米管充当传播者已被实验让实。在后门将有碳的纳米管穿过两根金导线证明了场效应分子晶体管,近来证实逻辑电路的难题 遇到了静电掺杂碳纳米管。碳纳米管的掺杂质可使用化学方法来完成。CMOS类型变极器有 n型和p型掺杂两种。这项工作用达到10A5的开关比率且具有高增益的晶体管电阻逻辑以实验证明了变极器和或非电路的性能。显然,通过适当地排列碳纳米管晶体管顺序可实现与、

六方氮化硼微片详细性能参数

六方氮化硼微片性能参数 六方氮化硼微片性能参数,大部人可能都不大了解。那什么是氮化硼?氮化硼是由氮原子和硼原子所构成的晶体(BN),其化学组成为43.6%的硼和56.4%的氮。氮化硼按晶型分,氮化硼被分为六方氮化硼、立方氮化硼、菱方氮化硼和纤锌矿氮化硼。下面就由先丰纳米简单的介绍六方氮化硼微片性能参数。 六方氮化硼性能参数: 1、高耐热性:3000℃升华,其强度1800℃为室温的2倍,1500℃空冷至室温数十次不破裂,在惰性气体中2800℃不软化。 2、高导热系数:热压制品为33W/M.K和纯铁一样,在530℃以上是陶瓷材料中导热最大的材料。 3、低热膨胀系数:2×10-6的膨胀系数仅次于石英玻璃,是陶瓷中最小的,加上其具有高导热性,所以抗热震性能很好。 4、优良的电性能:高温绝缘性好,25℃为1014Ω-cm,2000℃还可以达到103Ω-cm,是陶瓷中的高温绝缘材料,介电常数为4,可透微波和红外线。 5、良好的耐腐蚀性:与一般金属(铁、铜、铝、铅等)、贵重金属,半导体材料(锗、硅、砷化钾),玻璃,熔盐(水晶石、氟化物、炉渣)、无机酸、碱不反应。 6、低的摩擦系数:U为0.16,高温下不增大,比二硫化钼,石墨耐高温,氧化气氛可用到900℃,真空下可用到2000℃。 7、高纯度含硼高:其杂质含量小于10PPM,而含硼大于43.6%。

8、可机械加工性:其硬度为莫氏2,所以可用一般机械加工方法加工成精度很高的 零部件制品。 如果想要了解关于更多的六方氮化硼内容,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米管

碳纳米管“太空天梯” 未来的“太空天梯” 碳纳米管是由石墨分子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。其直径一般在一到几十个纳米之间,长度则远大于其直径。1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了这一特别的分子结构。 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。作为人类发现的力学性能最好的材料,碳纳米管有着极高的拉伸强度、杨氏模量和断裂伸长率。例如,碳纳米管的单位质量上的拉伸强度是钢铁的276倍,远远超过其他任何材料。 目前碳纳米管的研究现状 自从1991年碳纳米管被正式报道以来,为了提高其长度,全世界的碳纳米管研究者进行了大量艰辛的探索。然而一直到2009年,碳纳米管的最大长度只有18.5厘米,直到目前成功制备出单根长度达到半米以上的碳纳米管。这种有限的长度极大地限制了碳纳米管的实际应用。 碳纳米管的优点。 (1)界面层的存在和界面层厚度的增大均降低

碳纳米管和界面层的应力传递效率随长径比的变化了应力传递效率和纤维的饱和应力, 但同时增大了碳纳米管纤维的有效长度。所以界面层比较明显地承担了应力载荷, 则在碳纳米管复合材料中应该考虑界面层存在和界面层厚度的影响。 (2)碳纳米管的长径比只在较小时影响有效长度和应力传递效率。 长径比所影响的具体范围不同, 对碳纳米管有效长度为小于50 , 而对于应力传递效率则小于10 。 (3)碳纳米管的应力传递效率要远比界面层的应力传递效率大。 在碳纳米管复合材料中虽应要考虑界面层的影响, 但应力载荷的最主要承担者仍是碳纳米管纤维。对碳纳米管复合材料的应力场、纤维的饱和应力和应力传递效率以及有效长度的分析, 为碳纳米管复合材料力学性能的分析、结构优化和功能化设计以及寿命预测等做好必要的准备。 碳纳米管的缺点 (1)如何实现高质量碳纳米管的连续批量工业化生产。 碳纳米管的制备现状大致是:MWNTs能较大量生产,SWNTs多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多。 (2)有限的长度极大地限制了碳纳米管的实际应用。 提高了碳纳米管的长度,唯一的途径就是尽可能地提高其催化剂活性概率。对于碳纳米管的生长而言,在其生长过程中催化剂失活从而使其停止生长是一个不可逆转的规律,从而造成了超长碳纳米管很难达到很长的长度,并且也使其单位宽度上的生长密度急剧下降。 (3) 对人体的毒害作用 碳纳米管对人体存在一定的毒性作用,目前研究主要集中在肺脏毒性和细胞毒性,表现为可引起肺脏炎症、肉芽肿和细胞凋亡、活力下降、细胞周期改变等。其毒力大小与碳纳米管的特性有关,如结构、长度、表面积、制备方法、浓度、

石墨烯纳米片详细性能参数

石墨烯纳米片性能参数 石墨烯纳米片性能参数,这是我们在购买前需要了解的事情。石墨烯纳米片具有优良 的导电,润滑,耐腐,耐高温等特性。制备的石墨烯纳米片厚度在4~20nm,微片大小在5~10μm,小于20层。石墨烯纳米片在导热方面显示了它优异的特性,应用在导热胶,导热高分子复合材料,散热材料中。同时在导电橡胶,导电塑料,抗静电材料方面有广阔的 应用前景。下面就由先丰纳米给大家简单的介绍石墨烯纳米片性能参数。 性能: 1、具有高比表面积和发达的中孔,孔隙结构分布合理。 2、具有优异的吸波防辐射屏蔽性能,可有效降低内阻,屏蔽辐射。, 3、石墨烯除了有很好的导电性能外,还具备优异的机械性能及导热性能,是导电涂料添加剂 4、石墨烯的导热系数高,将其用于导热涂料可有效传导材料的内部温度,增强导热效果。 应用领域: 1、导电涂料,纳米导电复合材料、纳米电子器件、塑料、橡胶和锂离子电池等方面具 有广泛的应用前景。 2、防屏蔽涂料,石墨烯具有优异的吸波,防辐射屏蔽功能,可直接应用于防屏蔽涂料,军工等防辐射材料。 3、塑料里掺入百分之一的石墨烯,能将它们转变成电导体,且增强抗热和机械性能。

如果想要了解更多关于石墨烯纳米片的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米管材料结构与性能的研究

碳纳米管材料结构与性能的研究 中文摘要 英文摘要 关键词 绪论 研究背景 碳纳米管是20世纪90年代发现的一种碳材料的一维形式,具有优良的物理化学性能。纳米材料由于其尺寸处在原子簇和宏观物体交界的过渡区域,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特性,展现出独特的电学、光学和机械特性,碳纳米管在物理、化学、信息技术、环境科学、材料科学、能源技术、生命及医学科学等领域均具有广阔的应用前景。正是由于碳纳米管这种潜在的价值和广泛的应用前景,使有关碳纳米管材料的研究成为最受关注的研究领域之一。纳米材料这一概念形成以后,世界各国都给予了极大关注,它所具有的独特性质,给物理、化学、材料、生物、医药等领域的研究带来了新的机遇。

碳纳米管材料的分类 碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管,Single-walled Carbon nanotubes, SWCNTs)和多壁碳纳米管(或多层碳纳米管,Multi-walled Carbon nanotubes, MWCNTs)。 碳纳米管依其结构特征可以分为三种类型:扶手椅形纳米管(armchair form),锯齿形纳米管(zigzag form)和手性纳米管(chiral form)。碳纳米管的手性指数(n,m)与其螺旋度和电学性能等有直接关系,习惯上n>=m。当n=m时,碳纳米管称为扶手椅形纳米管,手性角(螺旋角)为30o;当n>m=0时,碳纳米管称为锯齿形纳米管,手性角(螺旋角)为0o;当n>m≠0时,将其称为手性碳纳米管。根据碳纳米管的导电性质可以将其分为金属型碳纳米管和半导体型碳纳米管:当n-m=3k(k为整数)时,碳纳米管为金属型;当n-m=3k ±1,碳纳米管为半导体型。 按照是否含有管壁缺陷可以分为:完善碳纳米管和含缺陷碳纳米管。 按照外形的均匀性和整体形态,可分为:直管型,碳纳米管束,Y型,蛇型等。 碳纳米管的制备

碳纳米管表征

碳纳米管材料的结构形态表征 摘要碳纳米管(CNTs)不仅具有独特的一维管状纳米结构,同时也是迄今为止发现的唯一同时具备超高机械力学性能、热性能和电性能的先进材料。本文首先总结了碳纳米管的结构特点,接着对X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对碳纳米管结构形态的表征作了简要的阐述。 关键词碳纳米管结构形貌XRD SEM TEM 1前言 碳纳米管,又名巴基管,主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管组成,是1991年由日本电镜学家饭岛发现的。一经发现,便在各个领域掀起了碳纳米管的研究热潮,研究的内容包括:碳纳米管的制备、性能及应用。通过研究人们发现气相沉积法可以大规模地合成碳纳米管,使得碳纳米管的成本得到有效的降低,这也为碳纳米管的应用提供了坚实的基础。 碳纳米管(CNTs)不仅具有独特的一维管状纳米结构,同时也是迄今为止发现的唯一同时具备超高机械力学性能、热性能和电性能的先进材料。作为一种高性能的纳米材料,碳纳米管在材料科学、传感技术和生物医学等方面具有广泛的应用前景,如作为工程材料的增强相、制作各种分子器件仞、生物、化学传感器、分子探针阎以及作为储氢、储能材料等。但是由于CNTs之间强烈的范德华力存在以及CNTs大的长径比以及它的单空位缺陷,使得CNTs往往集结成束,而且由于CNTs本身所具有的难溶性和难处理性,使用完整的CNTs来构筑先进的器件仍然是一个难题。近年来,越来越多的科研人员开始从事碳纳米管的功能化的相关工作,研究探讨碳纳米管的表征就显得相当重要。 2碳纳米管的结构及其XRD表征 2.1碳纳米管的原子结构 碳纳米管是一种具有特殊结构的一维量子材料,可看作是由片层结构的石墨卷成的无缝中空的纳米级同轴圆柱体,两端由半个富勒烯分子封项。根据碳纳米管管壁的层数,碳纳米管可分为单壁碳纳米管和多壁碳纳米管,单壁碳纳米管可看成是由单层片状石墨卷曲而成的圆柱结构,而多壁碳纳米管可理解为多个不同直径的单壁碳纳米管相互嵌套而成,各管壁间间距约0.34 nm。另外,根据石墨层的卷曲方式的不同,单壁碳纳米管可分为扶手椅型纳米管(armchair)、锯齿型纳米管(zigzag)和手性纳米管(chiral),如图1.1所示。

碳纳米管性质及应用

碳纳米管性质及应用 摘要:碳纳米管的发现是现代科学界的重大发现之一。由于碳纳米管具有特殊的 导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰。本文简单综述碳纳米管的基本性质及应用。 关键词:碳纳米管;结构;制备;性质;应用 1 碳纳米管的发现 1991年,日本NEC科学家Lijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。 2 碳纳米管的结构 碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。 3碳纳米管的制备 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等。 3.1电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作.T. W. Ebbeseo在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备

相关文档