文档库 最新最全的文档下载
当前位置:文档库 › 试听4款极品电容

试听4款极品电容

试听4款极品电容
试听4款极品电容

试听4款极品电容

andy999 三越论坛

分别是MCAP油浸银膜、JENSEN铜箔纸管、JENSEN铜箔铜管、Cardas金箔电容。毴j取瓈肊!

可以说,基本云集了世界顶级品牌电容,也是大家都可以买得起的。鎜b ?-*

这次试听活动,先对每种电容实行直流老化48小时,然后再加信号煲48小时,最后再试听。并邀请了两位本地资深烧友一同打分评判,保证结果的客观准确。( /OO \ 8

首先申明,此次试听完全是个人行为,同时我也不主张DIY的时候堆砌这些极品电容,在线路和工艺达到一定水准的时候,某些关键位置应用这些电容,效果还是立杆见影的。莫?y鎲c^

如果大家感兴趣,我会出个较长篇幅的评测报道,以帮助大家在挑选的时候心里有谱,搭配起来有的放矢,不走弯路。7

先讲讲MCAP油浸银膜。

引述一些资料,先:

特殊的銀箔卷绕技术,能消除一般电容器难以消除的电感量(影响高及超高频的再生),SILVER/OIL高純度銀箔灌油电容,反映在声音的表現上,超高频和极低频的两端无限延伸,且具有重量感,能將声音的厚度完美展現,极重的銀箔和紙质灌油技术,能彻底消除不当的震动,及麦克风效应所帶來的影响音质不佳的因素,800V AC 1200 V DC高耐壓,使用范围宽广、稳定、安全,及长寿命的設計。所有M-cap电容于出厂前经多重测试精密度量,M-Cap高纯度银箔灌油电容误差低至2%以内,通常误差维持在1%,每一支M-Cap高纯度银箔灌油电容无须再行配对。

M-Cap高纯度银箔灌油电容,能明显地改善声音的表现,难以用言语形容的高贵感,极佳的声音细节表现,非常平坦及线性的频率响应,高度透明充满活力的声音。

实际的创新,超越一般电容设计,从未有过的声音表现,将音乐表现推至艺术境界,名幅其实的hi-end。

用途:喇叭分音器的交连或旁路,真空管( 胆机)高电压交连

如果要用两个字来形容MCAP油浸银膜电容的话,那就是“全面”。可以说,这是我目前为止听到的音乐味和HIFI性俱佳的电容。

音色上,通透细腻流畅鲜活,没有明显的染色,也不是一些朋友喜欢的那种“温暖”的味道,但是,它诠释的声音,照样很吸引人,很感染人。

极高频的延伸在此次测试的这四款电容中是最好的,可以明显的听出,它的高频延伸明显要比JENSEN高出一截,甚至也比卡达斯稍好一些。中频的厚度和润泽度居中,但是质感和密度的表现堪称典范。这在听比较醇厚的人声时,相当明显,也极为受用。低频的表现照样可圈可点,质感和清晰度相当不错,低频的下潜和力度好过JENSE N,量感比JENSEN的两款电容都要小些。这款电容的解析力是相当不错的,细节表现

居于前列,尤其是中高频和极高频段的细节表现,也是全场最佳。有一点令我非常喜欢:大凡油浸电容,都有着很不错的韵味,或者说,音乐味十分好,但是也不可避免的牺牲

一些HIFI性。但是,MCAP油浸银膜电容却是另类:由于是银导体的缘故,它的瞬态、速度表现都是相当不错的,而且声音明显的要通透、鲜活。

总而言之,它可以让你听到一种自然、流畅、有活力而没有压力的轻松音乐。

以下是这款电容的评分(单项以10分为满分)

均衡度:9 细腻度:8 解析力:8 音场表现:8 瞬态表现:8

高频表现:9.5 中频表现:8 低频表现:8 速度感:7 弹跳力:7

弱音表现:7 鲜活感:9 通透感:9 宁静度:7.5

第二堂课讲的是JENSEN铜箔纸管。

还是先引述锦华兄的看法:

Jensen纸管电容除拥有铜箔电容的全部优点外,背景更显得宁静一些, 声音的细致程度更好, 颗粒更细,中高频更为飘逸声音密度高的同时更具形体感。那种流动的

音乐非常迷人。

Jensen纸管电容最吸引我的是它极其细腻和流畅的音乐感。

不管是和参考电容对比,还是和此次参与测评的其他电容对比,它的细腻度绝对是首屈一指的。

除此之外,它的背景宁静度也是全场桂冠。

它诠释的音乐,是一种稍带暖意,细腻、柔和、甜润的感受。如果从客观的角度去分析,它的高频延伸不如MCAP油浸银膜,它的低频弹跳又不如卡达斯金膜电容,但是,它就是有一种让你忘情投入去欣赏音乐的本事。这个时候,你不会去顾及什么音场、解析力、两端延伸……,你听到的,你感受到的,只有音乐。

如果从生声音本身的角度去剖析,它的中高频比起其他电容,在情感的表达方

面更为传情,实质上,是因为它的中高频频段密度更高、更为厚润饱满所致。这一点,也是此次测评的所有电容当中,非常突出的一点。

如果你喜欢较为温暖厚润、细腻柔媚、音乐味十分浓郁的声音,Jensen纸管电容可以完全满足你。

Jensen纸管电容的单项评分:

均衡度:8 细腻度:9.5 解析力:7.5 音场表现:7.5 瞬态表现:7.5

高频表现:8 中频表现:9 低频表现:7.5 速度感:6.5 弹跳力:7

弱音表现:7 鲜活感:8 通透感:8 宁静度:9

现在开始讲第三堂课,JENSEN铜箔铜管

大家先看看锦华兄的评价:

铜管电容在保持了纸管电容音色通透细腻音场宽大的特点的同时令动态大了不少,强弱对比更为明显,音色更为丰富多彩和浓艳,整体的声音能量感增强了许多,由于份量感大大增加,使得声像更为实在和立体(这在听钢琴时最为突出),各种声音细节

丰富清晰,各种声音的谐波和泛音随处可见,整体音乐气氛非常热烈和充满动感。

可以说,在此次测评的所有电容当中,JENSEN铜箔铜管是音乐味最浓郁、音乐色彩最撩人的电容。

参考电容——MIT RTX 是十分中性无染的风格,典型的监听电容,它可以原

汁原味的传达录音中的绝大多数信息,而不管是好听还是不好听,它都不会去修饰、去掩盖。

JENSEN铜箔铜管电容的声音取向明显的不一样,或许是设计师声音美学观的截然不同,JENSEN铜箔铜管传达的是一种唯美的、修饰过的、好听的音乐。

它的中频段表现出来的情感,的确是此次所有测评电容中最为强烈的,甚至可

以用浓烈来形容,这在听人声和小提琴的时候非常受用。它诠释的小提琴,是温文尔雅、甜润多汁的,或许质感不是那么强烈,或许也不是那么真实,但是它的的确确很好听,很舒服。听人声就更加明显了,无论是人声的厚润度还是流畅感,绝对是名列前茅。

跟他家的纸管电容比较,铜箔铜管电容的声音流畅度更佳,情感表现力更强,

但全频段的颗粒度稍大,背景也比纸管电容显得稍微嘈杂了一点。

从整体风格上来讲,铜箔铜管电容的速度感和低频表现确实不是强项。和大多

数油浸电容一样,它的速度偏慢,进而也影响到它的瞬态反应(这一点对电容来说尤其重要),因此,建议大家在选择这款电容的时候,容量一定要控制妥当,否则极易出现中低频臃肿、拖沓的不良现象。但是,假如容量选择恰当、与你的整体风格相符的话,JENSEN铜箔铜管电容的声音会让你听得很惬意,让你着实沉醉在音乐当中。

JENSEN铜箔铜管电容的单项评分:

均衡度:7.5 细腻度:8.0 解析力:7.5 音场表现:7.5 瞬态表现:7.5

高频表现:8 中频表现:9.5 低频表现:7.5 速度感:6.5 弹跳力:7.0

弱音表现:6.5 鲜活感:7.5 通透感:7.5 宁静度:7

在讲第四堂课卡达斯金箔电容之前,先看看锦华兄的评价:

美国的“卡达时”(CARDAS)线材相信不少的朋友都玩过或正在使用,那甜润的音色,浓郁的味道相信赢得不少朋友的喜欢,特别是Golden Vross和Golden Refe-r ence这两个型号的线材相信迷倒不少玩家。而笔者也使用Golden Cross信号线有相当长的一段时间。“卡达时”金箔电容外观整体呈亮黑色,一红一黑两条由多股细线组成的软引脚。据厂家的资料介绍,“卡达时”金箔电容是双面金箔电容,电容的介质是聚丙烯和特富龙引脚,有一般铜线引脚和无氧铜线引脚,(笔者试用的是无氧铜引脚那款)。

试听是在笔者前一台300B机上进行.“卡达时”金箔电容的声音表现和“卡达时”的金参考信号线有不少相似之处.音色甜暧有柔润,用上之后使声音渗透出丝丝甜意,人声是甜暧有肉,小提琴甜韧,铜管浑圆丰厚,听者很容易会陶醉在这份甜美之中。除此之

外,有几个声音特点是笔者感受特别深的。

1、“卡达时”金箔电容的音场扩展能力非常强.笔者以住使用的MIT PPFX-S电容的音场已是够大的了,“卡达时”电容的音场居然还要大,使得整个音场现场感增大了不少。

尤为难得的是,有宽大音场的同时,还具有非常充足的份量感,各乐器不单有坚实的型体,还有足够的质感而不会单薄。单是这一点不知赢尽多少发烧电容。

2、可能是因为又面金箔的原故,故损失更低,笔者以往Jensen铜管铜箔电容如大力水手吃了菠菜般,“卡达时”电容同样有这个特征。用上“卡达时”电容后信息量特别充足,以往那些若隐若现的信息变得强烈地呈现在你面前。

3、“卡达时”金箔电容的线条感和控制力相当优秀,中频和高频的聚焦力非常好,音像稳定紧密圆滑,毫无松散含糊的感觉.这对听大场面、大部头的音乐会受益不浅!低频部分有丰富的量感和出色的控制力.高频的延伸和低频的下潜都非常优秀。特别是低频的速度上有喜人的表现。

4、在声音表现风格上,如果说Jensen油浸电容是江南女子般委婉含蓄,那“卡达时”电容就如那敢爱敢恨、火辣热情的西班牙女郎.“卡达时”电容热情奔放,动(感强烈。听“梁祝”能催人泪下,听匈牙利狂想曲能令人狂放不羁。那种小提琴声的娇美与铜管乐的的灿烂都强烈地呈现于听者“耳前”。由于“卡达时”电容的强动态和弱动态及动态对比相当理想,故此很有一种拉住听者跟音乐的旋律和拍子去互动的能力。当然“卡达时”电

容不会因为声音热情而变得粗糙,音乐的演绎是相当细腻,并不会给人一粗枝大叶的感觉。

在与其它电容搭配方面,笔者也作各样的尝试。

笔者把手中的电容如MIT、Rel-Cap、威马、Jensen、Rifa等与“卡达时”电容作过前后的搭配。从声音风格和音响要素的互补两方面,笔者觉得Jensen的铜箔油浸电容和“卡达时”电容是一对相当合适的搭档.至于那一款电容在前端要看你希望要哪一款电容的个性更多一些.若你喜欢优雅中带些激情就把“卡达时”电容放在后面吧.最后要告诉大家的是“卡达时”电容同样需要煲练,新的“卡达时”电容高频段的线条感并未能呈现得很优秀,稍显粗糙,但煲练后则会相当纤细。虽然“卡达时”电容煲练不需很长时间,

但在后级交连位置上煲练会快进入状态许多。

由于介质与此次参评的其他电容截然不同的缘故,自卡达斯金箔电容开声的那一刻,这种区别已经让在场的每一个人深有同感。

很明显,它的瞬态表现比其他三款电容都要好,这在听感上更能让人觉得有畅

快淋漓之感。音色上的表现,一脉继承了卡达斯金参考信号线的表现,每个音符都渗透着丝丝的甜暖和细腻:小提琴格外的甜润,韧性更佳;陈洁丽的声音表现,如同在初秋凉风习习的清晨,饮上一勺上等的野生蜂蜜,那份沁人心脾的滋润和没有杂质的畅快感,足足让人回味无穷。

它的音场表现,堪称典范。不单单是宽度惊人,音场的纵深感和准确度,的确让人惊诧。音场中的乐器排列井然有序,各种乐器的分离度相当的好,像真度也是名列前茅。

卡达斯金箔电容的确有很多不同于其他测评电容之处,其中声音的线条感的表

现也很明显。很明显,它的声音表现质感和凝聚度相当好,听它诠释的音乐,你绝对不用担心声音会松散无形,因为它对各个频段的控制力都是相当优秀的,从极高至极低频的能量分布来看,它做得非常均衡,各个频段的密度相当一致,坚实饱满。这在听大场面的作品时十分受用。

在速度感上,它同样处于领先地位。听节奏较快、动态强烈的音乐时,它一定会让你大呼过瘾。

最后,是它的弱音表现力。在这一点上,我给了它相当高的分数——因为它的

确可以将音乐中原本隐隐若现的信息玲珑通透的浮现出来,强弱对比也比其他电容更加理想,让你一次又一次的产生随着音乐舞动的欲望。

以下是卡达斯金箔电容的评分:

均衡度:8.5 细腻度:7.5 解析力:8 音场表现:9 瞬态表现:9

高频表现:8.5 中频表现:8 低频表现:8 速度感:8.5 弹跳力:9

弱音表现:9 鲜活感:7.5 通透感:8 宁静度:8

接下来是最后一棵,关于不同风格和特点的电容如何搭配使用。

我不主张DIY的时候去堆砌这些电容,一则是这些电容价格也对得起“极品”的称号,二则,从声音上讲,不分青红皂白的堆补品,绝非是1+1=2,很有可能出现1+1小于1的状况。

和器材一样,电容的使用也很讲究搭配。

我喜欢的声音,是这样的:高透明度,丰富的信息量,良好的空气感,喜人的

通透感,清甜厚润。总之,是要鲜活、有活力、有生命力的音乐。

以这个目标作为校声的唯一标准,我尝试了很多种电容的搭配使用方案,心得如下:

1、MCAP油浸银膜电容+JENSEN铜管铜膜电容。这两款电容的搭配是我最喜欢的,也成了我前级的标准配置。可以说,两者的搭配相当程度上起到了互补的作用,MCAP有效地弥补了JENSEN铜管铜膜电容高频柔润有余、延伸不足、空气感欠佳的缺陷,而JENSEN铜管铜膜电容则很好的把它独一无二的音乐感和韵味发挥到了极至。另

外,如果能够在恰当的地方,使用一对小容量的卡达斯金箔电容的话,整个的声音的强弱对比、弹跳力和弱音表现则更有一级的提升。

2、卡达斯金箔电容+MCAP油浸银膜电容。这个搭配可以说别有一番风味:线条清晰、质感坚实、密度绝佳、音场宽深无比、各个频段相当的平衡。可以说,这是离我的理想目标最近的电容搭配。如果你系统的声音柔弱有余、或者音乐味比HIFI性多了太多,那么这个搭配绝对适合你。

3、卡达斯金箔电容+JENSEN纸管电容。如果要我在这次测评的4款电容中挑一对脾气性格截然相反、却又合得来的搭档,那就非卡达斯金箔电容+JENSEN纸管电容莫属。JENSEN纸管电容,清丽、宁静、温文尔雅;卡达斯金箔电容,灿烂、热情、

活泼灵动。他们合作演绎的声音,绝对具有相当高的可听性,也是互补程度相当高的搭配,而且这套搭配具有相当广的适配性,没有太多的禁忌。有条件的朋友,不妨尝试一下美国热情奔放的小妞和清纯雅致的丹麦少女联袂带来的精彩演出。

因为条件限制,此次测评活动不能完整收集到所有的极品电容,只能在现有条件下尽可能为大家带来一些参观的资料,以期抛砖引玉。

最后,以德华前辈的一段话为本文划上一个完整的句号:“设计制作一台器材所需要的知识跟技巧是非常多的,别指望采用了几只极品电容就会让声音“连跳三级”,只有在电路设计、工艺技巧、元件搭配筛选等都至臻上乘的前提下,再根据声音表现有所针对性的选用合适的极品电容才会起到画龙点睛的作用。”

2 电容知识大全——专家超详细讲解

万鹏原创:最强最深入的电容讲座·实战篇 字体: 小中大| 上一篇| 下一篇发布: 01-18 09:39 作者: 万鹏来源: 泡泡网查看: 1718 次 本文作者万鹏简介:95年开始接触显卡,97年开始在《电脑报》、《微型计算机》上发表文章,99年进入耕宇公司,目前任职耕宇公司市场部,PCPOP技术顾问。曾用笔名:ECLIPSE、INTENSE、万大善人。假如您还没阅读过本文的上篇,那么我们强烈推荐您先阅读一遍:会攒机不叫DIY,迄今为止最深入的电容剖析。 第1页:铝电解液电容的制造过程 小地:万鹏你好,在上次的文章当中,我们了解了电容的构造、原理、阴极和阳极的分类,并且对如今性能最优秀的电解电容——固体聚合物导体电容进行了详尽的剖析。而这次,我们要谈些什么呢? 万鹏:假如说上次我们所讲的内容,都是以理论为主的话,那么这次我们要谈的则更加的实际——这包括电容的制造过程、电容的寿命以及不同品牌、不同型号电容的性能特点。 在本章节我们首先讲一讲贴片铝电解液电容的制造方法,贴片铝电解液电容是如今的显卡上最常见的电容之一。大家看完本章后,就能明白这种电容是如何从原材料变成现在的模样了。事实上其它种类的贴片电解电容,例如铝固体聚合物电容的制造方法也和它类似,只是阴极采用的材料不是电解液,而是固体聚合物等等。

贴片铝电解液电容是显卡上最常见的电容 贴片铝电解液电容的制造过程包括九个步骤,我们就按顺序逐一为大家讲解: 第一步:铝箔的腐蚀。 假如拆开一个铝电解液电容的外壳,你会看到里面是若干层铝箔和若干层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的结构,这样每两层铝箔中间就是一层吸附了电解液的电解纸了。 因此首先我们谈谈铝箔的制造方法。为了增大铝箔和电解质的接触面积,电容中的铝箔的表面并不是光滑的,而是经过电化腐蚀法,使其表面形成凹凸不平的形状,这样能够增大7~8倍的表面积。普通铝箔一平方米的价格在10元人民币左右,而经过这道工艺之后,它的价格将升到40~50元/平米。电化腐蚀的工艺是比较复杂的,其中涉及到腐蚀液的种类、浓度、铝箔的表面状态、腐蚀的速度、电压的动态平衡等等。我们国家目前在这方面的制造工艺还不够成熟,因此用于制造电容的经过电化腐蚀的铝箔目前还主要依赖进口。 第二步:氧化膜形成工艺。

电容的基本知识

电容 一、电容的应用: (一)电容在电源上的主要用途:去耦、旁路和储能。(二)电容的使用可以解决很多EMC问题。 二、电容分类 (一)按材质分 1.铝质电解电容 通常是在绝缘薄层之间以螺旋状绕缠金属箔而制成,这样可以在电位体积内得到较大的电容值,但也使得该部分的内部感抗增加。 2.钽电容 由一块带直板和引脚连接点的绝缘体制成,其内部感抗低于铝电解电容。 3.陶瓷电容 结构是在陶瓷绝缘体中包含多个平行的金属片。其主要寄生为片结构的感抗,并且低于MHz的区域造成阻抗。应用描述: 铝质电解电容和钽电解电容适用于低频终端,主要是存储器和低频滤波器领域。在中频范围内(从KHz到MHz),陶质电容比较适合,常用于去耦电路和高频滤波.特殊的低损耗陶质电容和云母电容适合月甚高频应用和微波电路。 为了得到最好的EMC特性,电容具有低的ESR(等效串联电阻)值是很重要的,因为它会对信号造成大的衰减,特别是在应用频率接近电容谐振频率场合 (二)按作用分类 1.旁路电容 电源的第一道抗噪防线是旁路电容。主要是通过产生AC旁路,消除不想要的RF能量,避免干扰敏感电路。 通过储存电荷抑制电压降并在有电压尖峰产生时放电,旁路电容消除了电源电压的波动。旁路电容为电源建立了一个对地低阻抗通道,在很宽频率范围内都可具有上述抗噪功能。要选择最合适的旁路电容,我们要先回答四个问题:(1)需要多大容值的旁路电容 (2)如何放置旁路电容以使其产生最大功效 (3)要使我们所设计的电路/系统要工作在最佳状态,应选择何种类型的旁路电容? (4)隐含的第四个问题----所用旁路电容采用什么样的封装最合适?(这取决于电容大小、电路板空间以及所选电容的类型。)其中第二个问题最容易回答,旁边电容应尽可能靠近每个芯片电源引脚来放置。距离电源引脚越远就等同于增加串联电感,这样会降低旁路电容的自谐振频率(使有效带宽降低)。

电容器参数大全

电容器 电容器通常简称其为电容,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 相关公式 电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联 C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3) 标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 容量大的电容其容量值在电容上直接标明,如10 μF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 μF 1P2= 1n=1000PF 数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数宇,第三位数宇表示有效数字后面零的个数,它们的单位都是pF。如:102表示标称容量为1000pF。 221表示标称容量为220pF。 224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数宇乘上10的-1次方来表示容量大小。如:229表示标称容量为22x(10-1)pF=。 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为μF、误差为±5%。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:D——005级——±%;F——01级——±1%;G——02级——±2%;J——I 级——±5%;K——II级——±10%;M——III级——±20%。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 注:用表中数值再乘以10n来表示电容器标称电容量,n为正或负整数。 主要参数的意义:标称容量以及允许偏差:目前我国采用的固定式标称容量系列是:E24,E12,E6系列。他们分别使用的允许偏差是+-5% +-10% +-20%。 额定电压:在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。常见的电容额定电压与耐压测试仪测量值的关系( 600V的耐压测试仪测量电压为760V以上550V的耐压测试仪测量电压为715V以上; 500V的耐压测试仪测量电压为650V以上; 450V的耐压测试仪测量电压为585V以上; 400V的耐压测试仪测量电压为520V以上; 250V的耐压测试仪测量电压为325V以上; 200V的耐压测试仪测量电压为260V以上;

超级电容器研究综述

一、超级电容器的发展与进步 (一)概述 在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。然而这一效应的缘由直到18世纪中叶方被人们理解。140年后,人们开始对电有了分子原子级的了解。早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。 电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。 超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。 超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。 (二)超级电容器的原理 超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。一方面,与传统电容器相比,超级电容器的电极材料往往选用高比表面积材料,如活性碳,通过静电作用在固/液界面形成对峙的双电层存储电荷,因此超级电容器拥有比传统电容器高的能量密度,静电容量能够达到千法拉至万法拉级;另一方面,与电池能量存储机理类似,超级电容器可以通过法拉第氧化还原反应完成电荷存储和释放,由于主要依靠电极表面或近表面的活性材料存储电荷,超级电容器与电池相比,能量密度较低,但是具有高的功率密度和循环稳定性。 1 传统电容器 传统的平行板电容器是所有静电电容器储能的基础,传统电容器电能的储存来源于电荷在两极板上聚集而产生电场。平行板电容器的静电电容的计算公式为: r是两极板材料的相对介电常数,0是真空介电常数,A是电极板的正对面积,d 是两极板的距离。 2 双电层超级电容器 双电层电容器是通过静电电荷分离,依靠固/液界面的双电层效应完成能量的存储和转化。电解液离子分布可为两个区域——紧密层和扩散层。其双电层电容可视为由紧密层电容和扩散层电容串联而成。双电层电容器正是基于上述理论发展起来的。充电时,电子经外电

电容器基本知识

電容器基本知識 一、定義:由兩金屬极板加以絕緣物質隔離所構成的可儲存電能的元件稱為電容器 二、代號:“C” 三、單位:法拉(F) 微法(uF) 納法(nF) 皮法(pF) 1F=106 uF =109nF=1012 pF 四、特性:通交流、阻直流 因電容由兩金屬片構成,中間有絕緣物,直流電無法流過電容,但通上交流電時,由於電容能充放電所致,所以能通上交流 五、作用:濾波、耦合交變信號、旁路等 六、電容的串聯、並聯計算 1.串聯電路中,總容量=1÷各電容容量倒數之和 例: 2.並聯電路中,總容量=各電容容量之和 例: 七、電容的標示: 1.直標法:直接表示容量、單位、工作電壓等。如1uF/50V 2.代表法:用數字、字母、符號表示容量、單位、工作電壓等 如:“104”表示容量為“100000pF” “Z”表示容量誤差“+80% -20%” “”表示工作電壓“50V” 八、電容的分類 1.按介質分四大類 1).有機介質電容器(極性介質與非極性介質,一般有真合介質、漆膜介質等)

2).無機介質電容器(雲母電容器、陶瓷電容器、波璃釉電容器 3).電解電容器(以電化學方式形式氧化膜作介質,如鋁Al2O3鉭Ta2O5) 4).氣體介質電容器(真空、空氣、充氣、氣膜復合) 2.按結構分四大類 1).固定電容器 2).可變電容器 3).微調電容器(半可變電容器) 4).電解電容器 3.按用途分 1).按電壓分低壓電容器、高壓電容器 2).按使用頻率分低頻電容器(50周/秒或60周/秒)和高頻電容器(100K周/秒) 3).按電路功能分:隔直流、旁路、藕合、抗干擾(X2)、儲能、溫度補償等 九、我司主要使用之電容: 1).電解電容 2).陶瓷電容(包括Y電容與積層電容、SMD電容) 3).塑膠薄膜電容(包括金屬薄膜電容器、X2電容器、嘜拉電容器) 電解電容(E/C) 一、概述 電解電容的構造是由陽箔、陰箔、電解紙、電解液之結合而成的,陽箔經化成後含有一高介電常數三氧化鋁膜(Al2O3),此氧化膜當作陽箔與陰箔間的絕緣層,氧化膜的厚度即為箔間之距離(d),此厚度可由化成來加以控制,由於氧化膜的介電常數高且厚度薄,故電解電容器的容量較其他電容高。電解電容的實值陽极是氧化膜接觸之電解液,而陰箔只是將電流傳屋電解液而已,電解紙是用來幫助電解液及避免陽箔、陰箔直接接觸因磨擦而使氧化膜磨損。 即電解電容器是高純度之鋁金屬為陽极,以陽极氧化所開氧化膜作為電介質,以液體電解液為電解質,另與陰极鋁箔所構成之電容器。

电容基础知识文档

北京星河亮点通信软件有限责任公司 电容基础知识 部门:硬件部 文件编号:- - 文件版本:V1.0 总页数:共21页 编制人:富蔓 审核人: 批准人: 会签人: 发布日期:实施日期:

1电容器的种类 1.1简介 电容器简称电容,是一种能贮存电荷或电场能量的元件。它是电路种常用的电子元器件之一,具有充、放电的特点,能够实现通交流、隔直流,因此,常用于隔直流、耦合、旁路、滤波、去耦、移相、谐振回路调谐、波形变换和能量转换等电路中。 电容器的种类繁多,按其结构可分为固定电容器、半可变电容器、可变电容器三种,电容的性能、外部结构和用途在很大程度上取决于其所用的电介质,因此按介质材料是常见的电容分类方法,大致可以分为以下几类:有机介质、无机介质、气体介质、电解质。 1.2无机介质 1.2.1纸介电容 用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯子,然后密封在金属壳或者绝缘材料(如火漆、陶瓷、玻璃釉等)壳中制成。它的特点是体积较小,容量可以做得较大。但是有固有电感和损耗都比较大,用于低频比较合适。 1.2.2金属化纸介电容 结构和纸介电容基本相同。它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频电路中。 图1-1 纸介和金属化纸介电容 1.2.3油浸纸介电容 它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。它的特点是电容量大、耐压高,但是体积较大。

图1-2 油浸纸介电容 1.2.4云母电容 用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。 图1-3 云母电容 1.2.5玻璃釉电容 以玻璃釉作介质,具有瓷介电容器的优点,且体积更小,耐高温。 1.2.6陶瓷电容 用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。它的特点是体积小,耐热性好、损耗小、绝缘电阻高,但容量小,适宜用于高频电路。铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。 图1-4 陶瓷电容 1.3有机介质 1.3.1涤纶薄膜电容(CL) 介电常数较高,体积小,容量大,稳定性较好,适宜做旁路电容。

薄膜电容器基本构造和分类教学文案

薄膜电容器基本构造 和分类

塑料薄膜电容( Plastic Film Capacitor )往往被简称为薄膜电容( Film Capacitor )或 FK 电容。其以塑料薄膜为电介质。 在应用上薄膜电容具有的一些的主要特性:无极性,绝缘阻抗高,频率特性优异 ( 频率响应宽广 ) ,介质损失小。基於以上的优点,薄膜电容器被大量使用在模拟电路上。尤其是在信号交连的部份,必须使用频率特性良好,介质损失极低的电容器,方能确保信号在传送时,不致有太大的失真情形发生。在所有的塑胶薄膜电容当中,又以聚丙烯 (PP) 电容和聚苯乙烯 (PS) 电容的特性最为显着。 1 基本构造: 薄膜电容内部构成方式主要是:以金属箔片(或者是在塑料上进行金属化处理而得的箔片)作为电极板,以塑料作为电介质。通过绕卷或层叠工艺而得。箔片和薄膜的不同排列方式又衍生出多种构造方式。图 1 是薄膜电容得典型示意图。

2 基本分类: 薄膜电容主要分类法有:按电介质分类;按薄膜(介质)和箔片(电极板)的排列方式分类;按结构分类;按线端方式分类。 从电介材质上分类: 从应用特性角度看,关键特性的表现还是缘于其电介质的不同。按电介质的不同 DIN 41379 对薄膜电容作了如下划分: T 型:即 PE T - Polyethylene terephthalate (聚乙烯对苯二酸盐( 或酯 ) ) P 型:即 P P - Polypropylene (聚丙烯)

N 型:即 PE N - Polyethylene naphthalate (聚乙烯石脑油) 以 M 作前缀表示为金属化薄膜的电容。 MFP 及 MFT 电容由金属箔片和金属化塑料薄膜构成,并不在 DIN 41379 阐述的范围内。

电解电容器基本知识试题.doc

深圳市青佺电子有限公司 电容器基本知识试卷 單位﹕ 姓名﹕ 分數﹕ 一﹑选择题(请把正确答案之序号填在前面之括号内)(答案每题不一定为一个/每题2.5分) ( )1.本公司生产之电容器为﹕ A.铝质电容器 B.铝质电解电容器 C.电容 D.电解电容器 ( )2.电容器能贮存( ) A.电荷 B.能量 C.质量 D.负荷 ( )3.表征电容器贮存电量之能力﹐称为此电容器之 A.容量 B.能量 C.质量 D.电荷 ( )其一般表示单位为﹕ A. 法拉第(F ) B. 法拉(F ) C.安培 D.伏特 ( )4.电路中表征电解电容器之组件符号﹕ A. B. C. D. ( )5.本公司生产之电容器﹐其正箔由( )组成 A.铝箔且表面有一曾致密的氧化膜 B.铁箔 C.两者皆可 ( )6.电容器真正之负极为﹕( ) A.导针 B.铝箔 C.电解液 D.电解纸 ( )7.本公司生产之电容器之构造: A.电解液 电解纸 正负导针 正负铝箔 B.电解液 电解纸 铝壳 胶盖 胶管 C. E/L 电解液 铝壳 胶盖 胶管 D. E/L 胶盖 胶管 铝壳 ( )8.正箔表面有一层氧化膜﹐它的作用是﹕ A.绝缘 B.非绝缘 C.导体 ( ) 9.电解纸之作用﹕ A.吸收电解液避免正负箔直接接触 B.隔绝正负箔 C.导电 ( ) 10.法拉第定律为﹕ A.d s C ∑= B. s d C ∑= C. s d c C ??= ( ) 11.电容器之电容量与两极间的相对面积成﹕ A.反比 B.正比 C.比例 ( )13.电解电容器中两极间的距离指﹕ A.电解纸之厚度 B.氧化皮膜之厚度 C.电解纸与氧化皮膜厚度之和 ( )14.电解电容器之三大特性分别为﹕ A.静电容量 损失角 泄漏电流 B.阻抗 静电容量 泄漏电流 C.静电容量 损失角 阻抗 ( )15. 计算损失角之公式为(低频下)﹕ A.DF=fCR π2 B.DF=fCV π2 C.DF= CR π2 ( )16.漏电流之单位﹕ A.V B. μA C.?

电容基本知识

产品说明 贴片电容产品规格说明及选用基本知识 电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上分主要有:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容(即贴片电容或MLCC)、电解电容、钽电容等。我们将贴片电容选用时需要注意的事项和一些基本知识拿出来一起与大家探讨. 如何理解电容介质击穿强度 介质强度表征的是介质材料承受高强度电场作用而不被电击穿的能力,通常用伏特/密尔(V/mil)或伏特/厘米(V/cm)表示。 当外电场强度达到某一临界值时,材料晶体点阵中的电子克服电荷恢复力的束缚并出现场致电子发射,产生出足夠多的自由电子相互碰撞导致雪崩效应,进而导致突发击穿电流击穿介质,使其失效。除此之外,介质失效还有另一种模式,高压负荷下产生的热量会使介质材料的电阻率降低到某一程度,如果在这个程度上延续足夠长的时间,将会在介质最薄弱的部位上产生漏电流。这种模式与温 度密切相关,介质强度隨温度提高而下降。 任何绝缘体的本征介质强度都会因为材料微结构中物理缺陷的存在而出现下降,而且和绝缘电阻一样,介质强度也与几何尺寸密切相关。由于材料体积增大会导致缺陷隨机出現的概率增大,因此介 质强度反比于介质层厚度。类似地,介质强度反比于片式电容器內部电极层数和其物理尺寸。基於以上考虑,进行片式电容器留边量设计时需要确保在使用过程中和在进行耐压测试(一般为其工作 电压的2.5倍)時,不发生击穿失效。 如何理解绝缘电阻IR 绝缘电阻表征的是介质材料在直流偏压梯度下抵抗漏电流的能力。 绝缘体的原子结构中没有在外电场强度作用下能自由移动的电子。对于陶瓷介质,其电子被离子键和共价键牢牢束缚住,理论上几乎可以定义该材料的电阻率为无穷大。但是实际上绝缘体的电阻率 是有限,并非无穷大,这是因为材料原子晶体结构中存在的杂质和缺陷会导致电荷载流子的出现。 电容器的射频电流与功率 这篇文章主要是讨论多层陶瓷电容器的加载电流、功率损耗、工作电压和最大额定电压之间的关系。通过电容的最大电流主要是由最大额定电压和最大功率损耗限制的。电容的容值和工作频率又决 定了它们的限制是可调节。对于在固定频率下一个较低容值的电容或者是一个电容在较低的频率下工作,它们的最高电压极限一般都比最大功率损耗的极限到达快一些。 最大的额定电压决定于电容器的阻抗(Xc),就好像功率损耗决定于电阻的阻抗,或者叫做电容的等效电阻(ESR) Xc是由公式:Xc=1/[2πFC]计算出来,这里的F是频率,单位是Hz;C是容量,单位是F。 在没有超出电容器的额定电压情况下,允许流过电容的最大电流峰值是这样计算出来的:I=Er/Xc这里的Er是电容器的额定电压,电流是峰值电流,单位是A。 流过电容的实际电流是这样计算出来:I=Ea/Xc,这里的Ea是应用电压或者是实际工作。 下面几个例子是讲解在固定的频率不同的电容器这些变数是怎样影响电压和电流的极限值。 例1:0.1pF,500V的电容器使用在1000MHZ的频率上: 等效电阻:Xc=1/[2(3.14)(1000×106)(0.1x10-12)]=1591ohms 电流峰值:I=500/1591=0.315Apeak或0.22Arms. 如果超过这个电流,则工作电压将会超过额定电压。 例2:1.0pF,500V的电容器使用在1000MHZ的频率上: 等效电阻:Xc=1/[2(3.14)(1000×106)(1.0x10-12)]=159ohms 电流峰值:I=500/159=3.15Apeak或者2.2Arms 如果超过这个电流,则工作电压将会超过额定电压。 例3:10pF,500V的电容器使用在1000MHZ的频率上: 等效电阻:Xc=1/[2(3.14)(1000×106)(10x10-12)]=15.9ohms 电流峰值:I=500/15.9=31.5Apeak或者22.2Arms 如果超过这个电流,则工作电压将会超过额定电压。 结论:最大功率损耗值是在假设电容器的端头是一个无穷大的散热器情况下计算出来得。这时传导到空气中的热量是忽略的。一个10pF,500V的电容器工作在1000MHZ的频率,在功率极限下工作 的电流峰值是7A,平均电流大概是5Arms。在这种工作电流情况下,电容器的温度将会升到125℃。为了稳定地工作,它的实际最大工作电流是2Arms,如果端头的散热效果很好可以到达3Arms。 如何理解电容器的静电容量 A.电容量 电容器的基本特性是能够储存电荷(Q),而Q值与电容量(C)和外加电压(V)成正比。 Q=CV 因此充电电流被定义为: =dQ/dt=CdV/dt 当外加在电容器上的电压为1伏特,充电电流为1安培,充电时间为1秒时,我们将电容量定义为1法拉。 C=Q/V=库仑/伏特=法拉 由于法拉是一个很大的测量单位,在实际使用中很难达到,因此通常采用的是法拉的分数,即: 皮法(pF)=10-12F 纳法(nF)=10-9F 微法(mF)=10-6F B.电容量影响因素 对于任何给定的电压,单层电容器的电容量正比于器件的几何尺寸和介电常数: C=KA/f(t) K=介电常数 A=电极面积 t=介质层厚度 f=换算因子 在英制单位体系中,f=4.452,尺寸A和t的单位用英寸,电容量用皮法表示。单层电容器为例,电极面积1.0×1.0″,介质层厚度0.56″,介电常数2500, C=2500(1.0)(1.0)/4.452(0.56)=10027pF 如果采用公制体系,换算因子f=11.31,尺寸单位改为cm, C=2500(2.54)(2.54)/11.31(0.1422)=10028pF 正如前面讨论的电容量与几何尺寸关系,增大电极面积和减小介质层厚度均可获得更大的电容量。然而,对于单层电容器来说,无休止地增大电极面积或减小介质层厚度是不切实际的。因此,平行 列阵迭片电容器的概念被提出,用以制造具有更大比体积电容的完整器件。 在这种“多层”结构中,由于多层电极的平行排列以及在相对电极间的介质层非常薄,电极面积A得以大大增加,因此电容量C会随着因子N(介质层数)的增加和介质层厚度t’的减小而增大。这里A’指的是交迭电极的重合面积。 C=KA’N/4.452(t’) 以前在1.0×1.0×0.56″的单片电容器上所获得的容量,现在如果采用相同的介质材料,以厚度为0.001″的30层介质相迭加成尺寸仅为0.050×0.040×0.040″的多层元件即可获得(这里重合电极面积A’为0.030×0.020″)。 C=2500(0.030)(0.020)30/4.452(0.01)=10107pF 上面的实例表明在多层结构电容器尺寸相对于单层电容器小700倍的情况下仍能提供相同的电容量。因此通过优化几何尺寸,选择有很高介电常数和良好电性能(能在形成薄层结构后保持良好的绝 缘电阻和介质强度)的介质材料即可设计和制造出具有最大电容量体积系数的元件。 电容的型号命名 各国电容器的型号命名很不统一,国产电容器的命名由四部分组成: 第一部分:用字母表示名称,电容器为C。 第二部分:用字母表示材料。 第三部分:用数字表示分类。 第四部分:用数字表示序号。 电容的标志方法 (1)直标法:用字母和数字把型号、规格直接标在外壳上。 (2)文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的单位:P、N、U、M、F等。和电阻的表示方法相同。标称允许偏差也和电阻的表示方法相同。小于10PF 的电容,其允许偏差用字母代替:B——±0.1PF,C——±0.2PF,D——±0.5PF,F——±1PF。 (3)色标法:和电阻的表示方法相同,单位一般为PF。小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示: 颜色黑棕红橙黄绿蓝紫灰耐压 4V 6.3V 10V 16V 25V 32V 40V 50V 63V (4)进口电容器的标志方法:进口电容器一般有6项组成。

电容器基本常识

电容器基本常识

————————————————————————————————作者:————————————————————————————————日期:

電容器基本常識 一﹑電容器的基本構造﹕ 在正負兩極間加入介質(絕緣材料)乃是電容器的最基本構造﹒ 二﹑電容器的總類﹕ 1﹒含油紙質電容(Oil impregnated paper Capacitor) 以兩層以上的絕緣體當介質﹐在真空槽中含浸絕緣油﹐再予以封裝即可﹒ 2﹒金屬化紙電容(Metallized paper Capacitor) 3﹒聚乙酯膜電容(Polyester Film Capacitor) 4﹒金屬化聚乙酯膜電容(Metallized Polyester Film Capacitor)簡稱MPE 5﹒聚苯乙烯膜電容(Polystyrene Film Capacitor)簡稱P.S.Cap 6﹒聚丙烯膜電容(Polypropylene Film Capacitor)簡稱PP.Cap 7﹒金屬化聚丙烯膜電容(Metallized Polypropylene Film Capacitor)簡稱MPP Cap. 8﹒雲母電容(Mica Capacitor) 9﹒陶瓷電容(Ceramic Capacitor) 10﹒鋁電解電容(Aluminum Electrolytic Capacitor) 11﹒空氣電容(Air Capacitor) 12﹒聚碳酯電容(PC) 以上凡是金屬化膜電容器皆具有自我恢復作用和小型化的特色﹐自我恢復作用是經電壓瞬時破壞後﹐仍會恢復﹐不致短路﹐因其材料上蒸著之金屬物氣化蒸發飛散之

电容器的符号及分类

电容符号 电子制作中需要用到各种各样的电容器,它们在电路中分别起着不同的作用。与电阻器相似,电容器通常简称其为电容,用字母C表示。顾名思义,电容器就是“储存电荷的容器”。尽管电容器品种繁多,但它们的基本结构和原理是相同的。两片相距很近的金属中间被某绝缘物质(固体、气体或液体)所隔开,就构成了电容器。两片金属称为极板,中间的物质叫做介质。电容器也分为容量固定的与容量可变的。但常见的是固定容量的电容,最多见的是电解电容和瓷片电容。 不同的电容器储存电荷的能力也不相同。规定把电容器外加1伏特直流电压时所储存的电荷量称为该电容器的电容量。电容的基本单位为法拉(F)。但实际上,法拉是一个很不常用的单位,因为电容器的容量往往比1法拉小得多,常用的电容单位有微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,它们的关系是:1法拉(F)= 1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。

把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源两端并接上一个较大容量的电解电容(1000 μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量。 电子电路中,电容器只能通过变化电流,不能通过直流电,在电路中起着“通交流,隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢?我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致的充电电流。电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为6.3 V,10 V,16 V,25 V,50 V等。 分类 1.固定电容器 电容量固定的电容器叫做固定电容器。根据介质的不同可分为陶瓷、云母、纸质、薄膜、电解几种。 1.1 陶瓷电容器 陶瓷电容器是用高介电常数的电容器陶瓷(钛酸钡一氧化钛)挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。它又分高频瓷介和低频瓷介两种。 高频瓷介电容器适用于无线电、电子设备的高频电路。具有小的正电容温度系数的电容器,使用于高稳定振荡回路中,作为回路电容器及垫整电容器。低频

pn结电容(pnjunctioncapacitance)物理知识大全-最新教学文档

pn结电容(p-njunctioncapacitance)物理知 识大全 苏霍姆林斯基说:让学生变得聪明的办法,不是补课,不是增加作业量,而是阅读、阅读、再阅读。学生知识的获取、能力的提高、思想的启迪、情感的熏陶、品质的铸就很大程度上来源于阅读。我们应该重视它,欢迎阅读pn结电容(p-njunctioncapacitance)物理知识大全。 pn结电容(p-njunctioncapacitance) pn结电容(p-njunctioncapacitance) pn结具有电容特性。pn结电容包括势垒电容和扩散电容两部分。pn结的耗尽层宽度随加在pn结上的电压而改变。当pn结加正向偏压时,势垒区宽度变窄、空间电荷数量减少,相当于一部分电子和空穴存入势垒区。正向偏压减小时,势垒区宽度增加,空间电荷数量增多,这相当于一部分电子和空穴的取出。对于加反向偏压情况,可作类似分析。pn结的势垒宽度随外加电压改变时,势垒区中电荷也随外加电压而改变,这和电容器充放电作用相似。这种pn结的电容效应称势垒电容。另外,在正偏结中,有少数非平衡载流子分别注入n区和p区的一个扩散长度范围内(称做扩散区),其密度随正向电压的增加而增加,即在两个扩散区内储存的少数非平衡载流子的数目随pn结的正向电压而变化。这种由于扩散区的电荷数量随外加电压的变化所产生的电容效应,称

为pn结的扩散电容。pn结电容是可变电容。势垒电容和扩散电容都随外加电压而变化。pn结电容使电压频率增高时,整流特性变差,是影响由pn结制成器件高频使用的重要因素。利用pn结电容随外加电压非线性变化特性,可制成变容二极管,在微波信号的产生和放大等许多领域得到广泛的应用。 感谢阅读pn结电容(p-njunctioncapacitance)物理知识大全,希望大家从中得到启发。

电容器的种类

电容器的种类概述 类别:网文精粹阅读:1822 1.概述 由于电子、电气设备的不同,对电容器的种类规格和种类要求也不一样。为适应不同性能的需要,各生产厂研制开发了许多种类的电容器。 电容器的种类很多,一般可归纳为两种分类方法。第一类:按所用绝缘材料(电介质)的不同夯类。 ①固体无机介质电容器。如陶瓷电容器(CC高频、CT低频)、云母电容器(CY)、玻璃釉电容器(CI)和玻璃膜电容器(CO)。 ②固体有机介质电容器,如聚苯乙烯电容器(CB)、聚丙烯电容器(CBB)、纸介电容器(CH)、涤纶电容器(CL)等有机薄膜电容器。 ③电解电容器,如铝电解电容器(CD)、担电解电容器(CA)和锯电解电容器(CN),另外还有气体介质电容器,如空气电容器。 第二类:按电容器的结构形式分类。 ①固定电容器:电容量不能改变的电容器。 ②可变电容器和微调电容器:电容量在一定范围和较小的范围内可进行人为调整的电容器。 还可以根据用途分为滤波电容器、祸合电容器及旁路电容器等。 总之,在一般的电子电路中,电容器基本上有固定电容器、微调电容器和电解电容器三大类。 2.不同种类电太霖的介绍 (1)瓷介质电容器 瓷介质电容器是以陶瓷材料作为绝缘介质的,所以叫瓷介质电容器。瓷介质电容器的电极是在瓷片表面用烧结渗透的方法形成银层而构成的。 按照工作电压,瓷介质电容器又可分为低压电容器和高压电容器两种。 瓷介质电容器的容量误差一般有士2%、士15%、士10%、士20%几个等级。 瓷介质电容器的形状和结构常见的有管形、圆片形、筒形及叠片形,如图2-10所示。

(2)云母电容器 云母电容器的表面上一般都标有型号和电容量等: ①型号,用字母C表示电容器,用Y表示虫容的介质材料是云母,在型号后边用数字表示产品类别,规定用数字1或2表示非密封产品。 ②标称容量与容量容许误差,在电容器上标称的容量是指该电容器应该达到的容量,所以都是标称容量值,一般用直标法表示,如0 .022 pF表示0 .022微法,3 300 pF表示3300微微法。有些标称容量没有单位,此时,如果是大于1的数,则它的容量单位为微微法。例如,标称“300”,就是表示300微微法;标称"2 000",就是表示2000微微法,如图2-11所示。也有些用文字符号法表示标称容量单位的,如用p表示微微法(10-12法拉),用n表示毫微法(10’”法拉),用拜表示微法(10-6法拉),用m表示毫法(10-3法拉),用F表示法拉。文字符号法目前在国内使用得不多。 电容器的实际电容量与标称容量之间总会有误差。根据不同的允许误差范围,规定电容器的精确度等级(即容量允许误差):0级一土2%,I级一士2%,11级一士10%,m级一士20%。有些生产厂用百分数直接表示,有些生产厂用0、I、且、m分别表示容量允许偏差,如图2-12所示。

超级电容器综述_刘小军 电极材料

第14卷第2期2011年4月西安文理学院学报:自然科学版Journal o fX i ,an U niversity o fA rts&Science(Nat SciE d)Vo.l 14 N o .2Apr .2011文章编号:1008 5564(2011)02 0069 05 收稿日期:2010 11 20 作者简介:刘小军(1982 ),男,湖北黄冈人,陕西国防工业职业技术学院化学工程学院助教,硕士.研究方向:储能材料.超级电容器综述 刘小军,卢永周 (陕西国防工业职业技术学院化学工程学院,陕西西安710302) 摘 要:超级电容器是一种介于常规电容器与化学电池之间的一种新型储能元件,它具有很高的放 电功率、法拉级别的超大电容量、较高的能量、较宽的工作温度范围、极长的使用寿命、免维护、经济环保 等优点.介绍了超级电容器的发展状况、原理、应用及特点,归纳了超级电容器电极材料的研究进展. 关键词:超级电容器;发展原理;应用综述 中图分类号:TM 53 文献标识码:A A R eview of Super -Capacitors L I U X iao jun ,LU Y ong z hou (D epa rt m en t of Che m ical Eng i nee ri ng ,Shaanx iN ati onal D efense Industry V ocati onal T echno logy Instit ute ,X i an 710302,China) A bstract :Super-capac itor ,the function o f wh ich ranges bet w een that o f co mm on capac itor and che m ica l batteries ,is a brand-ne w energy storage device .It features such superior quali ties as large dischar ge po w er ,large capacitance of farad grade ,higher energy ,w ider operati n g te m perature range ,longer service life ,exe mpti o n fro m m a i n tenance ,econo m y ,and env iron m enta l protection .Th i s paper g i v es an intr oducti o n to the status quo of super-capacitor s de velopm en t ,its pr i n ci p le ,app lication ,and characteristics .It a lso d iscusses the current research on super-capacitors e lectrode m ateri a ls . K ey words :super-capacitor ;princi p le of developm en;t rev ie w o f application 超级电容器是一种介于普通电容器和化学电池之间的储能器件,兼具两者的优点,如功率密度高、能量密度高、循环寿命长、可快速充放电,并具有瞬时大电流放电和对环境无污染等特性.它涉及材料、能源、化学、电子器件等多个学科,成为交叉学科研究的热点之一.作为一种绿色环保、性能优异的新型储能器件,超级电容器在众多的领域有广泛的应用,包括国防、军工,以及电动汽车、电脑、移动通信等民用领域,因而受到了世界各国,尤其是发达国家的高度重视.近几年来,我国科研人员和国家相关部门也对此极度关注. 1 超级电容器的发展状况 双电层电容器是建立在双电层理论基础之上的.1879年H e l m ho lz 发现了电化学界面的双电层电容

电容知识介绍

电容知识介绍 一、电容的基础知识: 电容是一种最基本的电子元器件,基本上所有的电子设备都要用到。小小一颗电容却是一个国家工业技术能力的完全体现,世界上最先进的电容设计和生产国是美国和日本,我国自主力量还很薄弱,并且生产的产品也都以低档为主。 电容的基本单位为法拉(F),常用微法(μF)、纳法(nF)、皮法(pF)(皮法又称微微法)等,它们的关系是: 1法拉(F)= 106微法(μF) 1微法(μF)= 103纳法(nF)= 106皮法(pF) 1pF = 10-12F 1nF = 10-9F= 103 ×10-12F= 102pF 1uF = 10-6F= 106 ×10-12F= 105pF 104表示0.1uF,105表示1 uF, 106表示10uF,226表示22 uF。 电容的误差等级一般分为3级:I级±5%(J),II级±10%(K),III级±20%(M)0402封装:1.0mm长×0.5mm宽 0603封装:1.6mm长×0.8mm宽(60mil×0.0254=1.524mm,30mil=0.762mm)0805封装:2.0mm长×1.25mm宽(80mil×0.0254=2.032mm,50mil=1.27mm)1206封装:3.2mm长×1.6mm宽 1210封装:3.2mm长×2.5mm 宽 1812封装:4.5mm长×3.2mm宽 2010封装:5.0mm长×2.5mm 宽 2225封装:5.6mm长×6.5mm宽 2512封装:6.5mm长×3.2mm宽 A型钽电容:3.2mm长×1.6mm宽×1.6mm高 B型钽电容:3.5mm长×2.8mm宽×1.9mm高 C型钽电容:6.0mm长×3.2mm宽×2.5mm高 D型钽电容:7.3mm长×4.3mm宽×2.8mm高 E型钽电容:7.3mm长×4.3mm宽×4.0mm高

相关文档