文档库 最新最全的文档下载
当前位置:文档库 › 基于dsPIC30F4011无刷直流电机的控制

基于dsPIC30F4011无刷直流电机的控制

基于dsPIC30F4011无刷直流电机的控制
基于dsPIC30F4011无刷直流电机的控制

龙源期刊网 https://www.wendangku.net/doc/fc5441544.html,

基于dsPIC30F4011无刷直流电机的控制

作者:贾艳艳,颉轶萍,徐莎莎,阎婷

来源:《软件导刊》2011年第09期

摘要:采用Microchip公司电机的数字信号控制器(Digital Signal Controller, DSC)dsPIC30F4011,完成了无刷直流电机软硬件控制方案。针对所设计的控制方案对控制系统的软、硬件设计作了详细论述。在完成硬件电路整体设计的基础上,着重讨论了几个主要模块的电路设计。软件部分采用模块化设计思想,编制了各个模块的流程图。

关键词:无刷直流电机;DSC;dsPIC30F4011

中图分类号:TP311.52 文献标识码:A 文章编号:1672-7800(2011)09-0092-02

作者简介:贾艳艳(1980-),女,安徽阜阳人,硕士,西安通信学院助教,研究方向为电子应用;颉轶萍(1980-),女,陕西宝鸡人,西安通信学院助教,研究方向为计算机应用;徐莎莎(1984-),女,陕西西安人,西安通信学院助教,研究方向为计算机应用;阎婷(1979-),女,陕西西安人,硕士,西安通信学院讲师,研究方向为计算机应用。

0 引言

无刷直流电动机(BLDCM)实际上是以电子换向代替机械换向的直流电动机,既具有交流电动机结构简单、运行可靠、维护方便等一系列优点,又保持了直流电动机的优良特性,具有较好的起动和调速性能,无刷直流电机可以从根本上克服一般有刷直流电动机易于产生换向火花的弊病,故在当今国防和国民经济的各个领域,如医疗器械、仪器仪表、化工、轻纺、家电和航空航天等方面的应用日益普及。Microchip公司的16位dsPIC DSC兼容了单片机和DSP 芯片这两类产品的优点,本设计中以dsPIC30F4011为主控芯片,以无刷直流电机为被控对

象,对无刷直流电机的控制与应用进行了研究。

1 dsPIC30F4011功能简介

Microchip公司推出的DSC系列,为嵌入式系统设计提供了合适的单芯片、单指令的解决方案。其中16位dsPIC30F4011芯片是专为电动机控制应用而优化的单片机控制器,不仅具备强大高速的运算处理能力,而且在片内集成了丰富的电动机控制外围部件,这就使得整个数字控制系统的硬件设计比较简洁。dsPIC30F4011有以下特点:dsPIC30F4011有40管脚,具有脉

电动车无刷马达控制器硬件电路详解

电动车无刷马达控制器硬件电路详解 电动车无刷电机是目前最普及的电动车用动力源,无刷电机以其相对有刷电机长寿,免维护的特点得到广泛应用,然而由于其使用直流电而无换向用的电刷,其换向控制相对有刷电机要复杂许多,同时由于电动车负载极不稳定,又使用电池作电源,因此控制器自身的保护及对电机,电源的保护均对控制器提出更多要求。 自电动车用无刷电动机问世以来,其控制器发展分两个阶段:第一阶段为使用专用无刷电动机控制芯片为主组成的纯硬件电路控制器,这种电路较为简单,其中控制芯片的代表是摩托罗拉的MC33035,这个不是这里的主题,所以也不作深入介绍。第二阶段是以MCU为主的控制芯片。这是这篇文章介绍的重点,在MCR版本的设计中,揉和了模拟、数字、大功率MOSFET 驱动等等许多重要应用,结合MCU智能化控制,是一个非常有启迪性的设计。 今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: 整机电路看起来很复杂,我们将其简化成框图再看看:

图2:电路框图 电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。 图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振

荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT 的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在 3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,120°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。 18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。 19:单片机电源地。 20:单片机电源正。上限是5.5V。 21:数字输入口:外部中断输入,当电流由于意外原因突然增大而不在控制范围时,该口有低电平脉冲输入。单片机收到此信号时产生中断,关闭电机的输出,从而保护重要器件不致损坏或故障不再扩大。 22:数字输出口:同步续流控制端,当电流比较大时,该口输出低电平,控制其后逻辑电路,使同步续流功能开启。该功能在后面详细讲解。 23--28:数字输出口:是功率管的逻辑开关,单片机根据电机转子位置传感器的信号,由这里输出三相交流信号控制功率MOSFET开关的导通和关闭,使电机正常运转。

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

直流无刷电机的控制技术

直流无刷电机的控制技术 摘要围绕直流无刷电机控制运用广泛技术——基于DSP的控制系统进行了系统研究,采取模糊控制策略,设计出上位监控系统,数字化、智能化的控制系统提出方案,实践证明了系统的平稳性和快速性满足要求。 关键词直流无刷电机;DSP控制;模糊控制 0引言 数字信号(Digital Signal Processing ,DSP)是涉及很多学科,它广泛被用于很多学科与技术领域。数字信号处理器称为DSP芯片,适用在数字信号处理运算的微处理器,能够快速的在数字信号处理算法上实现。现今,DSP芯片用于运动上的控制、数控机床的控制、航天航空的控制、电力系统上的操作、自动化仪器的控制等各个领域[1],该文主要介绍这种基于DSP芯片控制直流无刷电机智能化控制系统的设计。 1 系统结构设计 系统组成由“PC 上位机、电源单元、TMS320LF2407 DSP芯片、无刷直流电机、检测单元、功率驱动模块、通讯接口”等。(见图1) 1.1 DSP芯片的选择 DSP芯片的选择是很重要的,选对了DSP芯片才能设计出其外围电路和其他电路。DSP芯片的选择要根据实际的应用系统进行确定。DSP芯片由于场合不同选择的也就不同,我们要考虑DSP芯片的运算速度、价格、运算精度、功耗、硬件的资源等。我们根据系统要求,选择TI公司TMS320LF2407芯片。 1.2无刷直流电机 该电机采取1500转/分, 无刷直流电机采用1.78A、27V电压进行供电,电机换向电路主要是由控制和驱动组成,直流无刷电机自身属于机电能量转换部分,该部分由电机电枢、永磁、传感器组成。我们把电机的电轴绕组在定子上、把永磁放在转子上,其目的是为了实现换向。无刷直流电机的工作方式是两相导通的星型3相6状态,这样操作方式是因为转子在旋转定子电流中进行不断换相来保证两个磁场电流方向不发生改变,控制3相定子电流通电顺序与大小控制电机旋转的速度。 1.3功率的驱动模块 TOSHIBA公司采用IPM系列智能型模块,IPM主要集成了检测、控制、逻辑、保护电路这样有效提高了稳定性与可靠性。东芝的高速光耦TLP550(F)是

51单片机直流无刷电机控制

基于MCS-51单片机控制直流无刷电动机 学号:3100501044 班级:电气1002 :王辉军

摘要 直流无刷电机是同步电机的一种,由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载围当负载变化时仍可以控制电机转子维持一定的转速。 MCS-51单片机是美国英特尔公司生产的一系列单片机的总称,是一种集成电路芯片,采用超大规模技术把具有数据处理能力的微处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入输出接口电路、定时计算器、串行通信口、脉宽调制电路、A/D转换器等电路集成到一块半导体硅片上,这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 本论文将介绍基于MCS-51单片机控制直流无刷电动机的设计,它可以实现控制直流无刷电动机的启动、停止、急停、正反转、加减速等功能。 关键词:单片机,直流无刷电动机,控制系统

直流无刷电动机是在直流电动机的基础之上发展而来的,它是步进电动机的一种,继承了直流电动机的启动转矩大、调速性能好等特点克服了需要换向器的缺点在交通工具、家用电器及中小功率工业市场占有重要的地位。直流无刷电动机不仅在电动自行车、电动摩托车、电动汽车上有着广泛的应用,而且在新一代的空调机、洗衣机、电冰箱、吸尘器,空气净化器等家用电器中也有逐步采用的趋势,尤其是随着微电子技术的发展,直流无刷电动机逐渐占有原来异步电动机变频调速的领域,这就使得直流无刷电动机的应用围越来越广。 本设计就是基于MCS-51系列单片机控制直流无刷电动机,利用所学的知识实现单片机控制直流无刷电动机的启动、停止、急停、正反转,加减速等控制,并对直流无刷电动机运行状态进行监视和报警。详细介绍单片机的种类、结构、功能、适用领域和发展历史、未来前景及其直流无刷电动机的工作原理、控制结构等容,既着重单片机的基本知识、功能原理的深入阐述,又理论联系实际详细剖析单片机控制直流无刷电动机的过程。 1.直流无刷电动机的基本组成 直流无刷电动机是在直流电动机的基础上发展而来的,直流无刷电动机继承了直流电动机启动转矩大、调速性能好的优点,克服了直流电动机需要换向器的缺点,在交通工具、家用电器等生活的方方方面面占有重要的地位。 由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。 直流无刷电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图3-1所示为三相两极直流无刷电机结构。 三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、

基于TMS320F2812的无刷直流电机控制

基于TMS320F2812的无刷直流电机控制 以前一个项目里有一部分是使用2812控制无刷直流电机,这里分享一下软硬件设计和程序代码: 1.无刷直流电机的结构和换相原理 无刷直流电机的本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他启动装置。其转子采用永磁材料制成,而定子上有多相电枢绕组,绕组相数分为两相、三相、四相和五相,但应用最多的是三相和四相。各相绕组分别与外部的电力电子开关电路中相应的功率开关器件连接,位置传感器的跟踪转子与电动机转轴相连接。 当定子绕组的某一相通电时,该相电流与转子永久磁钢的磁极所产生的磁场相互作用产生转矩,驱动转子旋转,再由位置传感器将转子位置变换成电信号去控制电力电子开关电路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相,这就是直流无刷电动机的换流原理。由于电力电子开关电路的导通次序是与转子转角同步的,因而起到了机械换相器的换相作用。 基于TMS320F2812的无刷直流电机控制系统结构图如图1所示。图1中,直流电源通过开关电路相电动机定子绕组供电,位置传感器采用了霍尔传感器,可不断检测转子当前位置,DSP控制器根据当前位置信息来判断哪一相绕组被接通,进而控制开关管的导通与截止,实现电机的换相。 图1 直流无刷电动机控制系统结构图

图2 电子换相器的工作原理图 图2给出了一个三相无刷直流电机电子换相原理图。图中符号H1、H2和H3表示三个霍尔位置传感器,它们输出电平信号。当电机的转子运行到x-u平面的正半周(图中虚线标出的区间),则H1传感器输出高电平。同理,当电机的转子分别运行到y-v和z-w,平面的正半周(图中虚线标出的区间),则对应的H2和H3分别输出高电平。由图可见,H1、H2和H3输出高电平的区间是互有重叠的,如果将H1、H2和H3的输出电平组合成一个向量[H1 H2 H3],则可以得到6种有效组合:[001]、[010]、[011]、[100]、[110]和[101],每种组合覆盖整个圆周的1/6(即60°)。控制器根据这六个状态组合来决定开关电路的哪一相被接通以维持电机的运行,当状态发生变化时,就必须进行相位的切换。对于电机的三相绕组,A、B和C,采用ANC表示直流母线电压施加到A-C绕组之间;CNA则表示直流母线电压施加到C-A绕组之间,其他类似。注意ANC电流从A→C,而CAN电流从C→A,作为直流电机,绕组电流相反意味着受力是相反的,会导致电机反向转动。 图3给出了6种状态组合下对应的通电绕组的情况,例如在状态[001]通电绕组是ANB。如果电机正转,则下一个组合状态为[101],故应将通电绕组切换为ANC;同理,如果电机反转,则下一个组合状态为[101],故通电绕组应该切换为CNB,以次类推。表1给出了电机正向旋转时,转子位置传感器输出的状态组合[H1 H2 H3]与下一个导通绕组之间的对应关系。表2给出了电机反转时的情况。

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流无刷电机转速控制

一、 直流无刷电机转速控制 1. 模拟PID 控制 1.1 模拟PID 控制原理 在模拟控制系统中,最常用的控制器就是模拟PID 控制器。以下图所示直流电机 控制系统为例,说明PID 控制器控制电机转速的原理。图中)(0t n 为转速设定值,)(t n 为转速反馈值,)()()(0t n t n t e -=为偏差信号,偏差信号通过PID 控制器后产生控制作用作用于直流电机从而控制电机转速到设定值。 常见的模拟PID 控制系统如下图所示。PID 控制器由比例、积分、微分的线性组合构成。控制规律如下: ]) ()(1)([)(0?++=t d i p dt t de T d e T t e K t u ττ * 其中: p K ——控制器的比例系数 i T ——控制器的积分系数 d T ——控制器的微分系数 1) 比例部分 比例部分的数学表达式:)(t e K p 。 比例部分的作用是对偏差信号做出快速反应,一旦控制器检测到偏差,比例部分就 能迅速产生控制作用,且偏差越大,控制作用越强。但仅存在比例控制的系统存在稳态偏差。比例系数越大,响应越快,过渡越快,稳态偏差也越小,但系统也越不稳定,因此比例系数必须选择恰当。 2) 积分部分 积分部分的数学表达式: ?t i p d e T K 0 )(ττ。

从积分部分表达式可以看出,只要系统输出与设定值存在偏差,积分作用就会不断增加,知道偏差为零,因此积分部分可以消除稳态偏差。但积分作用会降低系统的响应速度,增加系统的超调量。积分常数越小,积分作用越强,过渡过程容易产生震荡,但回复时间减小;积分常数越大,积分作用越弱,过渡过程不产生震荡,但回复时间增长。因此应根据具体情况选取积分常数。 3) 微分部分 微分部分的数学表达式: dt t de T K d p ) (。 微分作用能阻值偏差的变化。它根据偏差的变化趋势进行控制。偏差变化越快,微分作用越强,能在偏差变化之前就行控制。微分作用的引入有助于减小超调量,克服振荡;但微分作用对噪声很敏感,导致系统的错误响应,使系统不稳定。 为实现PID 控制器的软件实现,将式*进行适当离散化,即离散PID 。 2. 数字PID 控制 2.1 位置式PID 算法 离散化处理的方法是,以T 为采样周期,对模拟信号进行采样,以k 为采样序列号,进行以下近似: T e e dt t de e T d e kT t k k k j j t 1 )()(-=-≈≈≈∑?ττ 将上式带入式*,得到如下式所示的位置式离散PID 控制规律。 ][1 T e e T e T T e K u k k d k j j i k p k -=-++ =∑ ** 由于位置式PID 要对t 时刻之前的所有输出进行记录,工作量大,对计算机硬件要求高。增量式PID 可避免这些。 2.2 增量式PID 算法 由式**得到 ][2 11 11T e e T e T T e K u k k d k j j i k p k ---=---++ =∑ 将式**与上式相减,得到增量式PID 控制规律如下 211)21()1(---++-++ =-=?k d p k d p k d i p k k k e T T K e T T K e T T T T K u u u *** 一旦得出控制作用的增量,就可递推得出当前控制作用的输出。 2.3 控制器参数整定 1) 离线整定法 步骤 1:将控制器从“自动”模式切换至“手动”模式(此时控制器输出完全由人工控制),人为以阶跃方式增大或减少控制器输出,并记录控制器相关的输入输出动态响应数据。 步骤 2:由阶跃响应数据估计特性参数 K , T ,τ。

电动车无刷电机控制器软件设计详解

电动车无刷电机控制器软件设计详解作者:谢渊斌原作发表在《电子报2007年合订本》下册版权保留,转帖请注明出处本文以MICROCHIP公司所生产的PIC16F72为基础说明软件编程方面所涉及的要点,此文所涉及的源程序均以PIC的汇编语言为例。由于软件不可避免需与硬件相结合,所以此文可能出现硬件电路图或示意图。本文适合在单片机编程方面有一定经验的读者,有些基础知识恕不一一介绍。我们先列一下电动车无刷马达控制器的基本要求:功能性要求:1.电子换相2.无级调速3.刹车断电4.附加功能a.限速b.1+1助力c.EBS柔性电磁刹车d.定速巡航e.其它功能(消除换相噪

音,倒车等)安全性要求:1.限流驱动2.过流保护3.堵转保护3.电池欠压保护4.节能和降低温升5.附加功能(防盗锁死,温升限制等)6.附加故障检测功能从上面的要求来看,功能性要求和安全性要求的前三项用专用的无刷马达驱动芯片加上适当的外围电路均不难解决,代表芯片是摩托罗拉的MC33035,早期的控制器方案均用该集成块解决。但后来随着竞争加剧,很多厂商都增加了不少附加功能,一些附加功能用硬件来实现就比较困难,所以使用单片机来做控制的控制器迅速取代了硬件电路芯片。但是硬件控制和软件控制有很大的区别,硬件控制的反应速度仅仅受限于逻辑门的开关速度,而软件的运

行则需要时间。要使软件跟得上电机控制的需求,就必须要求软件在最短的时间内能够正确处理换相,电流限制等各种复杂动作,这就涉及到一个对外部信号的采样频率,采样时机,信号的内部处理判断及处理结果的输出,还有一些抗干扰措施等,这些都是软件设计中需要再三仔细考虑的东西。PIC16F72是一款哈佛结构,精简指令集的MCU,由于其数据总线和指令总线分开,总共35条单字指令,0-20M的时钟速度,所以其运算速度和抗干扰性能都非常出色,2K 字长的FLASH程序空间,22个可用的IO 口,同时又附加了3个定时/计数器,5个8位AD口,1个比较/捕捉/脉宽调制器,8个

两种新型实用直流无刷电机控制器的设计与实现_邱明

控制器中电子换相电路的设计方法有很多。对于有位置传感器的无刷电机,用中小规模数字集成电路和经典的数字电路设计方法即可实现。例如,用可编程 逻辑器件CPLD可在计算机上完成硬件设计、波形 仿真和下载。目前用于无刷电机控制的专用集成 电路种类有很多,如MOTOROLA公司生产的 MC33035、东芝公司生产的TA7247芯片等。这些专 用芯片对使用电压、工作电流及电机类型都有一 定要求。实践证明使用专用芯片设计控制器在芯 片的选择、驱动电路设计及试验等环节并非省时 省力。在参考和分析了多种专用集成电路工作原 理后,用PIC单片机设计出两种有位置传感器的无 刷电机控制器,同时与专用集成电路设计的控制 器进行了对比,得出以下三方面结论: (1)单片机在改变功能和价格上优于专用芯片; (2)软件程序便于加密,有利于知识产权的保护; (3)软件编程灵活,可根据用户需求增加和完善功 能。 有了PIC单片机的控制核,只要改变外围驱 动、保护、输出电路,即可对不同功率、不同电压或 内部结构不同的无刷直流电机实现控制。 1控制核心 控制器采用PIC16F877或PIC16F876单片机, 使用的功能和接口有:八路输入(PIC16F876为四 路输入)10位A/D转换器,分辨率达十位的PWM 脉宽调制输出口CCP1,可响应外部逻辑电平变化 时产生中断的端口B0、B4、B5,用于换相输出的端 口C。核心部分结构如图1和图2所示。 2高电压大功率控制器工作原理 该控制器是针对大功率高电压无刷直流电机 设计的,电源取自220V交流电压整流滤波后产生 的300V左右的直流电压(电机功率范围为500W ̄ 2000W)来对智能功率模块输出部分供电。为简化 硬件电路,降低元器件成本,单片机及相关的控制电路供电部分由一只小变压器降压后提供。低压电源提供五组独立输出,其中一组给单片机供电,完全隔离。另四组提供给功率模块内部驱动电路。整个控制部分所需 两种新型实用直流无刷电机控制器的设计与实现 邱明,张曙明,曲金泽 (北京联合大学实训基地电工电子中心,北京100101) 摘要:直流无刷电动机通过电子换相实现电机运转,与有刷直流(机械换相)电机相比具有噪声低、无电火花干扰、效率高、使用寿命长等优点。所介绍的控制器用PIC单片机完成电子换相及调速控制,其中,软件实现转子位置检测、旋转磁场信号输出及电机PWM调速。 关键词:直流无刷旋转磁场PWM调速智能功率模块 77 《电子技术应用》2006年第10期本刊邮箱:eta@ncse.com.cn

无刷直流电动机PWM 控制方案

第三章、用EL-DSPMCKIV实现无刷直流电动机PWM 控制方案 实验概述: 本实验是一个无刷直流电动机的PWM控制系统。结构简单,用到的模块也较少。下面给出每个模块的输入与输出量名称及其量值格式 (一)、无刷直流电动机PWM 控制原理简介 无刷直流电动机从结构上讲更接近永磁同步电动机(我们在下一章节中做详细介绍),控制方法也很简单,主要是通过检测转子的位置传感器给出的转子磁极位置信号来确定励磁的方向,从而保证转矩角在90 度附近变化,保证电机工作的高效率。定子换相是通过转子位置信号来控制,转矩的大小则通过PWM的方法控制有效占空比来调控。 我公司提供过两种直流无刷电机,一种以前提供过的57BL-02直流无刷电机的额定电压为24V,额定转速为1600rpm,转子极数为4,也就是2 极对,还有一种是现在提供的57BL-0730N1直流无刷电机,该电机额定转速为3000rpm,转子极数为10,也就是5极对,这两种电机的转子位置都由霍尔传感器提供,同时由此计算出电机的转速,控制程序样例没有电流环。 (二)、系统组成方案及功能模块划分 本实验为开环和闭环实验,通过几个模块信号处理最终用BLDCPWM模块产生IPM 驱动信号来控制直流无刷电机转动。

下图为一个开环控制的系统功能框图,参考占空比信号经由RMP2CNTL 模块处理,变成缓变信号送到PWM产生模块。霍尔传感器的输出脉冲信号,经由DSP的CAP1、CAP2、CAP3端口被DSP获取。通过霍尔提供的转子位置信息HALL3_DRV模块判断转子位置,并将该转子位置信息通过计数器传递给BLDC_3PWM_DRV 模块,该模块通过占空比输入、设定开关频率以及转子的位置信息产生相应的PWM 信号作用于逆变器中的开关管,从而驱动电动机旋转。

PID算法在无刷直流电机调速电路中的应用

PID算法在无刷直流电机调速电路中的应用 摘 要:在分析了无刷直流电机闭环速度控制方案的基础上,针对PID算法在无刷直流电机应用中出现的种种问题,给出了相应的解决方法,提出了非线性变速 积分PID算法,成功地解决了在低采样周期时PID算法的积分饱和问题。 直流电机具有良好的调速性能,如无级调速、调速范围宽、低速性能好、高起动转矩、高效率等。无刷直流电机由于采用电子换向,PWM调速,在进一步提高直流电机性能的同时又克服了直流电机机械换向带来的一系列问题,从而大大延长了电机的使用寿命,近年来已广泛应用于家电、汽车、数控机床、机器人等领域。 1、无刷直流电机的速度控制方案 对无刷直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差 率(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范围可以大大提高。无刷直流电机的速度控制方案如图1所示。 无刷直流电机控制器可采用电机控制专用DSP(如TI公司的TMS320C24X 系列、AD公司的ADMCxx系列),也可采用单片机+无刷直流电机控制专用集成电路的方案。前者集成度高,电路设计简单,运算速度快,可实现复杂的速度控制算法,但由于DSP的价格高而不适合于小功率低成本的无刷直流电机控制器。后者虽然运算速度低,但只要采用适当的速度控制算法,依然可以达到较高的控制精度,适合于小功率低成本的无刷直流电机控制器。 摩托罗拉公司的第二代无刷直流电机控制专用集成电路MC33035,集成了转子位置传感器译码器电路、脉宽调制电路(PWM)、功率输出驱动电路、限流电路,可以实现无刷直流电机速度开环系统的全部控制功能。系统中采用了一片MC33035、一片低成本的单片机AT89C2051、串行输入A/D、串行输出D/A 以及由MOSFET型场效应管组成的功率驱动电路,无刷电机控制逻辑和保护由MC33035完成,单片机用来完成转速设定值的获取、转速反馈的实时采样以及速度控制算法的实现。

电动车无刷控制器电机线和霍尔线常规接法

针对目前控制器普通版本和标准版本需要对相序给出常规接法(本公司智能自学习版本无需对相序),?? 无刷电机为3相6拍控制,因此3根霍尔状态对应3根电机线6种输出状态,不同组合有36种接法,其中有6种接法能让电机运转正常,且这6种接法里有3种接法是正转另3种接法是反转。所以我们有必要掌握接线规则。 一:首先我们得让电机正常转起来,通常是霍尔插头直接插上,调整电机线。 以下给出6种规律接法,必定有1种能让电机运转正常 1》电机线蓝色对控制器蓝色电机线绿色对控制器绿色电机线黄色对控制器黄色 2》电机线蓝色对控制器蓝色电机线绿色对控制器黄色电机线黄色对控制器绿色 3》电机线黄色对控制器黄色电机线蓝色对控制器绿色电机线绿色对控制器蓝色 4》电机线绿色对控制器绿色电机线蓝色对控制器黄色电机线黄色对控制器蓝色 5》电机线蓝色对控制器黄色电机线黄色对控制器绿色电机线绿色对控制器蓝色 6》电机线黄色对控制器蓝色电机线蓝色对控制器绿色电机线绿色对控制器黄色 总结以上规律我们可以编出一套顺口溜方便记忆 一般控制器是放在上方的,电机是放在下方的,我们可以这么记忆 1》颜色对颜色 2》蓝对蓝,其它2色对调 3》黄对黄,其它2色对调 4》绿对绿,其它2色对调 5》上蓝对下蓝,其它2色对调 6》上黄对下蓝,其它2色对调 霍尔有正有反,说明该电机是60°相位角,没有正反就是120°相位角。你可按原样放入(可稍稍用502瞬间胶固定)将三个霍尔的正极和负极分别并联后与电机引出线中细的红、黑线相连焊接(注意绝缘)将三个霍尔的信号线分别与电机引出线中细的黄、绿,蓝线相连焊接(注意绝缘)。

二:以上接法能让电机运转正常,但不一定是正转,如果你要调成正转可将电机线A相C相对调,霍尔线A相B相对调。 无刷电机相角的判断 无刷电机的相角是无刷电机的相位代数角的简称,指无刷电机各线圈在一个通电周期里面线圈内部电流方向改变的角度。电动车用无刷电机常见的相位代数角有120°与60°两种。 □观察霍耳元件安装空间位置判断无刷电机的相角 120°和60°两种相角电机的霍耳元件安装空间位置不一样。 □测量霍耳真值信号判断无刷电机的相角 在此需要先说明一下的是什么叫无刷电机的磁拉力角.无刷电机的磁钢数量一般是 12片、16片或18片,其对应的定子槽数是36槽、48槽或54槽。电机在静止状态时,转子磁钢的磁力线有沿磁阻最小方向行走的特性,因此转子磁钢所停顿的位置恰好为定子槽凸极的位置。磁钢不会停在定子槽心的位置,这样转子与定子的相对位置只有36种、48种或54种这有限的几个位置。因此无刷电机的最小磁拉力角就是360/36°、360/48°或360/54°。

无刷直流电机控制技术综述

龙源期刊网 https://www.wendangku.net/doc/fc5441544.html, 无刷直流电机控制技术综述 作者:黄秀勇 来源:《山东工业技术》2017年第14期 摘要:在十九世纪电机诞生的时候,其中实用性的电机就是无刷的形式,其得到了广泛 的运用,随着时代的发展,在上世纪中叶的时候晶体管诞生,直流无刷电机也随之应运而生,无刷直流电机的应用十分广泛,在各个领域都有涉猎。 关键词:直流无刷电机;技术研究;控制技术 DOI:10.16640/https://www.wendangku.net/doc/fc5441544.html,ki.37-1222/t.2017.14.201 0 引言 经过不断的演变与发展,无刷直流电机综合了交流电机和直流电机的全部优点出现在人们的视野当中,它的出现大大的提高了生产的效率,减少了能源的消耗,得到了广泛的应用和普及。在电机领域中,新型无刷电机的品种众多,其性能和价格都不尽相同,就其的控制来说具有多种方法。 1 无刷直流电机的特点 随着科技的发展,无刷直流电机的出现代替了许多传统的电机,在各个领域都得到了广泛的应用,它具有传统直流电机的全部优点,但同时又除去了碳刷、滑环结构,它在投入使用的过程中具有速度很低的优点,这就大大的减少了用电率,虽说其速度低但其产生的功率却十分巨大,其体积小、重量轻的优点省去了减速机的超大负载量,在使用的过程中效率十分高。由于其除去了碳刷,所以减少了很多消耗,这就使它的省电率相当高,再加上其在运作时不会产生火花,对于一些爆炸性的场所来说更具备安全性,对其的维修和保养方面来说也是十分容易的。综合其特点来看,和其他种类的电机相比其优异性非常显著,因此,无刷直流电机凭借着其充分的优势在很多场合都发挥着重要的作用。 2 转子位置检测技术 逆变器功率器在进行运转的时候,转子在进行运转的时候位置会发生改变,在其位置发生改变的同时会触发组合,使其组合的状态进行不同的改变,这就是无刷直流电机的运行原理,由此看来,想要准确的控制无刷直流电机的运行就必要确保转子的位置,与此同时还要对转子触发的功率器件组合进行相应准时的切换,想要做到这一点是相当困难的。 通过科技水平的不断提高,相关学者提出了检测转子位置的一种新的办法。首先准备一些非磁性导电质地的材料,把这些材料粘在永磁转子的外部;其次,相关设备在工作时会使非磁性材料上产生涡流效应,进而使转子的位置发生相应的改变,最后通过观察检测电压来确定转

对直流无刷电机的pid控制

PID闭环速度调节器采用比例积分微分控制 闭环速度调节器采用比例积分微分控制(简称PID控制),其输出是输入的比例、积分和微分的函数。PID调节器控制结构简单,参数容易整定,不必求出被控对象的数学模型,因此PID 调节器得到了广泛的应用。 PID调节器虽然易于使用,但在设计、调试无刷直流电机控制器的过程中应注意:PID调节器易受干扰、采样精度的影响,且受数字量上下限的影响易产生上下限积分饱和而失去调节作用。所以,在不影响控制精度的前提下对PID控制算法加以改进,关系到整个无刷直流电机控制器设计的成败。 2速度设定值和电机转速的获取 为在单片机中实现PID调节,需要得到电机速度设定值(通过A/D变换器)和电机的实际转速,这需要通过精心的设计才能完成。 无刷直流电机的实际转速可通过测量转子位置传感器(通常是霍尔传感器)信号得到,在电机转动过程中,通过霍尔传感器可以得到如图2所示的周期信号。 由图2可知,电机每转一圈,每一相霍尔传感器产生2个周期的方波,且其周期与电机转速成反比,因此可以利用霍尔传感器信号得到电机的实际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍尔传感器的一个正脉冲的宽度,则电机的实际转速为:但由于利用霍尔传感器信号测速,所以测量电机转速时的采样周期是变化的,低速时采样周期要长些,这影响了PID 调节器的输出,导致电机低速时的动态特性变差。解决的办法是将三相霍尔传感器信号相“与”,产生3倍于一相霍尔传感器信号频率的倍频信号,这样可缩短一次速度采样的时间,但得增加额外的硬件开销。直接利用霍尔传感器信号测速虽然方便易行,但这种测速方法对霍尔传感器在电机定子圆周上的定位有较严格的要求,当霍尔传感器在电机定子圆周上定位有误差时,相邻2个正脉冲的宽度不一致,会导致较大的测速误差,影响PID调节器的调节性能。若对测速精度要求较高时,可采用增量式光电码盘,但同样会增加了电路的复杂性和硬件的开销。 电机速度设定值可以通过一定范围内的电压来表示。系统中采用了串行A/D(如ADS7818)来实现速度设定值的采样。但在电机调速的过程中,电机控制器的功率输出部分会对A/D模拟输入电压产生干扰,进行抗干扰处理。 3非线性变速积分的PID算法 (1)PID算法的数字实现 离散形式的PID表达式为: 其中:KP,KI,KD分别为调节器的比例、积分和微分系数;E(k),E(k-1)分别为第k 次和k-1次时的期望偏差值;P(k)为第k次时调节器的输出。 比例环节的作用是对信号的偏差瞬间做出反应,KP越大,控制作用越强,但过大的KP会导致系统振荡,破坏系统的稳定性。积分环节的作用虽然可以消除静态误差,但也会降低系统的响应速度,增加系统的超调量,甚至使系统出现等幅振荡,减小KI可以降低系统的超调量,但会减慢系统的响应过程。微分环节的作用是阻止偏差的变化,有助于减小超调量,克服振荡,使系统趋于稳定,但其对干扰敏感,不利于系统的鲁棒性。 (2)经典PID算法的积分饱和现象 当电机转速的设定值突然改变,或电机的转速发生突变时,会引起偏差的阶跃,使|E(k)|增大,PID的输出P(k)将急剧增加或减小,以至于超过控制量的上下限Pmax,此时的实际控制量只能限制在Pmax,电机的转速M(k)虽然不断上升,但由于控制量受到限制,其增长的速度减慢,偏差E(k)将比正常情况下持续更长的时间保持在较大的偏差值,从而使得PID 算式中的积分项不断地得到累积。当电机转速超过设定值后,开始出现负的偏差,但由于积分项已有相当大的累积值,还要经过相当一段时间后控制量才能脱离饱和区,这就是正向积分饱和,反向积分饱和与此类似。解决的办法:一是缩短PID的采样周期(这一点单片机往往达不到),

DSP无刷直流电动机驱动控制程序

2.4 无刷直流电动机驱动控制程序 //########################################################################## ###/// //无刷电机控制源程序 //TMS320F2812 // //########################################################################## ### //===================================================================== //头文件调用 //===================================================================== #include "DSP28_Device.h" #include "math.h" #include "float.h" //===================================================================== //常量附值 //===================================================================== #define Idc_max 3000 //电流给定最大值 #define Idc_min 0 //电流给定最小值 //===================================================================== //标志位 //===================================================================== char Iab_Data=0; struct Flag_Bits { // bits description

开题报告无刷直流电机的控制系统

合肥师范学院本科生毕业论文(设计)开题报告 (学生用表) 装 订 线

第l章主要叙述了无刷直流电机的发展趋势、无刷直流电机的控制技术、研究背景及意义。 第2章首先介绍了无刷直流电机的基本结构和工作原理,然后给出了常见的无刷直流电机的数学模型及其推导过程,在此基础上对无刷直流电机的稳态特性进行了详细分析。 第3章对本控制系统的总体结构和设计进行介绍。主要包括控制系统的整体方案,控制芯片,控制技术以及控制策略的选择。 第4章对控制系统的硬件电路进行设计,包括DSP最小系统、功率驱动电路、采样检测电路、保护电路等的设计,并对各个部分进行了详细的分析。 第5章以TI公司的CCS开发环境为开发工具,对整个控制系统的软件部分进行了设计。 第6章总结与展望,总结了本文的主要工作,展望了以后工作的研究方向。 五、可行性分析 此次研究是在指导老师的指导下搜集,查阅相关资料,确定能够通过应用DSP 芯片进行控制是最优方案,采用TI公司的TMS320F2812作为控制器。根据现在无刷直流电机的控制技术的发展水平和未来的发展趋势及可操作性进行分析,该课题能够顺利进行。 六、设计方案 6.1无刷直流电机的基本结构 无刷直流电机的设计思想来源于利用电子开关电路代替有刷直流电机的机械换向器。普通有刷直流电机由于电刷的换向作用,使得电枢磁场和主磁场的方向在电机运行的过程中始终保持相互垂直,这样能够产生最大的转矩,从而驱动电机不停地运转下去。无刷直流电机取消电刷实现了无机械接触换相,做成“倒装式直流电机"的结构,将电枢绕组和永磁磁钢分别放在定子和转子侧。无刷直流电机必须具有由控制电路、功率逆变桥和转子位置传感器共同组成的换相装置以实现电机速度和方向的控制[5]。因此,可以认为无刷直流电机是典型的机电一体化器件,其基本结构由电动机本体、驱动控制电路及转子位置传感器三部分组成,如图所示。 无刷直流电机的构成 6.2无刷直流电机的工作原理 普通直流电机的电枢在转子上,而定子产生固定不变的磁场。为了使直流电机旋转,需要通过换相器和电刷不断地改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转[6]。 无刷直流电动机为了去掉电刷,将电枢放到定子上,而转子做成永磁体,这样的结构正好与普通直流电动机相反。然而即便是这样的改变仍然不够,因为直流电通入定子上的电枢以后,产生的不变磁场还是不能使电动机转动起来。为了达到使电动机

无刷直流电机控制系统的设计

无刷直流电机控制系统 的设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。

相关文档
相关文档 最新文档