文档库 最新最全的文档下载
当前位置:文档库 › 29数据统计、平均值、方差

29数据统计、平均值、方差

29数据统计、平均值、方差
29数据统计、平均值、方差

河北工业大学计算机软件技术基础(VC)2012年课程设计报告学院城市学院班级电信c1107班姓名刘畅学号 110250 成绩____ 一、题目:

数据统计、平均值、方差(29)

二、设计思路

1、总体设计

1)分析程序的功能

键盘输入20个数据,统计1:统计其中奇数个数是多少;统计2:统计其

中素数个数是多少;统计3:统计大于平均值的数据是多少;对奇数位置数

据计算平均值;对偶数位置数据计算方差;输入0,继续;输入1,结束程

序。

2)系统总体结构:

每一次运行程序的过程可以由这几部分完成:统计奇数个数,统计素数个数,统计大于平均值的个数,奇数位置计算平均值,偶数位置计算方差,判断是否继续运行程序。总共六个步骤。

2、各功能模块的设计:说明各功能模块的实现方法

第一步:定义a[i],使用for循环输入20个数据。

第二步:将输入的数据依次对2求余,并利用循环累加符合要求的个数,统计数据中奇数的个数。

第三步:统计数组中素数的个数,当输入的数据a[i]不能被2到a[i]-1范围内的所有数整除时,说明a[i]为素数。利用循环让k从2递增到a[i]-1,如果a[i]能被k整除,说明a[i]不是素数,不需再检测而结束循环,此时k必然小于a[i];如果a[i]不能被2到a[i]-1之中任何一个整数整除,则for循环正常结束,说明a[i]肯定为素数,此时k的值为a[i],因此在循环结束之后根据k的值是否为a[i]来确定a[i]是否为素数。并累加素数的个数。

第四步:计算出奇数数据位置的平均值,利用for循环统计大于平均值的个数。

第五步:利用方差公式(若x1,x2,x3...,xn的平均数为m,则方差s^2=1/n[(x1-m)^2+ (x2-m)^2+...+ (xn-m)^2]),计算出偶数数据位置的方差。

创新设计部分

本题未设置创新设计部分,但是我认为如果就其实用性来讲,在输入数据时难以确定是否超过声明的变量,所以,可以在数组插入前插入序号。还有就是插入循环,使程序可供循环使用,插入序号因时间原因未能实现,但插入循环已完成,作为对本题的创新。

3、设计中的主要困难及解决方案

其实,就总体而言,未发现什么难以解决的困难,一开始,在查找素数时有些疑惑,后来,经同学点拨,在课本66页找到原题,理解后果断引用之,还有就是在构建循环,一开始对这方面缺少了解,后经同学耐心讲解,终于攻克这一难题。

4、你所设计的程序最终完成的功能

1)说明你编制的程序能完成的功能

键盘输入20个数据,统计1:统计其中奇数个数是多少;统计2:统计其中素数个数是多少;统计3:统计大于平均值的数据是多少;对奇数位置数据计算平均值;对偶数位置数据计算方差;输入0,继续;输入1,结束程序。

准备的测试数据及运行结果

三、程序清单

1)main函数

#include

#include

const int N=20;

void main()

{

int a[N];

int j,k=0,l=0,sum=0,aver,su,summ,r=0;

double s,b,m;

while(r==0)

{

cout<<"请输入"<

for(int i=0;i

cin>>a[i];

for(i=0;i

> {for(j=2;j

if(a[i]%j==0)

break;

if(j==a[i])

k++;

else (k==k);

if(a[i]%2==0)

(l==l);

else l++;

sum+=a[i];}

aver=sum/N;

cout<<"统计1:数组中有"<

cout<<"统计2:数组中有"<

cout<<"统计3:";

for(i=0;i

if(aver

cout<<"大于平均数的数值有"<

su=0;summ=0;

for(i=0;i

su+=a[i];

b=su/10.0;

cout<<"奇数位置平均值为"<

for(i=1;i

summ+=a[i];

m=summ/10.0;

s=sqrt(0.1*((a[1]-m)*(a[1]-m)+(a[3]-m)*(a[3]-m)+(a[5]-m)*(a[ 5]-m)+(a[7]-m)*(a[7]-m)+(a[9]-m)*(a[9]-m)+(a[11]-m)*(a[11]-m )+(a[13]-m)*(a[13]-m)+(a[15]-m)*(a[15]-m)+(a[17]-m)*(a[17]-m )+(a[19]-m)*(a[19]-m)));

cout<<"偶数数据方差为"<

cout<<"是否继续,是(0),否(1)";

cin>>r;

}

cout<<"谢谢使用!"<

}

四、对该设计题目有何更完善的方案

1、对自己完成程序进行自我评价。

我的程序较好的完成了任务中规定的设计内容,并进行了部分的创新,运行正确。

2、对课题提出更完善的方案

我认为如果就其实用性来讲,在输入数据时难以确定是否超过声明的变量,而在数据超出声明变量运行时,会对结果造成影响,所以,可以在数组插入前插入序号。减少数据输入超幅带来的不便,此外,在求方差的过程中,可以利用循环结构,但是由于本人对于循环部分的内容没有掌握,所以,未能将其应用。

五、收获及心得体会

这次我的程序是数据统计、平均值、方差,一开始拿到这个题的任务书,第一眼感觉很简单,问题很简单,也很短,所以并没有着急于程序的编写,但是在编写的过程中,不断有这样那样的问题出现,很多次陷入抓狂状态,好在班里有擅长于c++的同学对我进行耐心的讲解,但是问题并没有完全解决,百度知道也不像传说中的那么好用,知道了什么叫眼高手低,所以,只好自己看课本,看课本时,不会的标记出来,问同学,问学长,然后做一些类似融汇贯通的东西,问题也便迎刃而解。比如求素数个数时就是在课本66也找到的答案。看似简单却如此麻烦,让我有些泄气,不过好在每天都有收获。在最后完成报告时也陷入困境,因为不知道该写些什么,如果单对于本个程序而言,我并不知道还有什么要解释的,不过我知道,在课设期间学到的东西却是怎么写也写不完的。

日期:2012年6月29日

标准偏差与相对标准偏差公式

标准偏差与相对标准偏 差公式 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

标准偏差 数学表达式: S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20- 30个 i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 六个计算标准偏差的公式 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ = l i X 1 σ = l2X 2 …… σn = l n X 我们定义标准偏差(也称)σ为 (1)

由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。 标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l1、l2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有 (2) 式(2)就是着名的贝塞尔公式(Bessel)。

它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为 (2') 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2')可写为 (2") 按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差σ的无偏估计 中定义S2为 数学上已经证明S2是σ2的无偏估计。即在大量重复试验中, S2围绕σ2散布, 它们之间没有。而式(2')在n有限时,S并不是总体标准偏差σ的无偏估计, 也

阿伦方差的定义以及计算方法和物理意义

阿伦方差的定义以及计算方法和物理意义 1. 阿伦方差的定义,计算方法以及物理意义。 David AIlan于1966年提出了Allan方差,最初该方法是用于分析振荡器的相位和频率不稳定性,高稳定度振荡器的频率稳定度的时域表征目前均采用Allan方差。由于陀螺等惯性传感器本身也具有振荡器的特征,因此该方法随后被广泛应用于各种惯性传感器的随机误差辨识中。 Allan方差的基本原理如下:设系统采样周期为τ,连续采样N个数据 点.Y(i),i=1,2,3…N。对任意的时间r=mτ,m=1,2…N/2,由式(1)求改族时间内各点的均值序列Y(K),由式(2)求取差值序列D(K). KM,,1 Yi(),JK,Y(K)=1/M K=1,2…N-M+1 (1) D(K)=Y(K+M)-Y(K) K=1,2…N-2M+1 (2) 普通AlIan方差的定义如式(3)。其中<>表示取均值,σ=1,2,?, Round((N,m)-1)。 2 2(τ)=1/2(3) ,yn Allan方差反映了相邻两个采样段内平均频率差的起伏。它的最大优点在于一2,大大缩短了测量的时间。对各类噪声的幂律谱项都是收敛的;此外每组测量N 交叠式Allan方差由式(4)计算: 2,yn(τ)=1/2 P=1,2…N-2M+1 (4) 衡量陀螺精度的一个非常重要的指标是陀螺随机漂移(drift),又指偏置稳定性(bias stabil—ity)以及零偏稳定性,不同应用场合对陀螺的漂移精度提出不同的要求。MEMS的随机误差具有慢时变、非平稳的特点,因而对其的辨识更适合采

用Allan方差分析法。然而由于在相同的置信水平之下,交叠式Allan方差分析方法比普通的Allan方差具有更大的置信区间. 所谓频率稳定度是指任何一台频率源在连续运行之后,在一段时期中能产生同一频率的程度,即频率随机起伏的程度。造成频率起伏的根本原因是噪声对信号相位或频率调制的结果。这种调相或调频所引起的频率不稳定度在时域表现为频率随时间的起伏,在频域表现为信号的频谱纯度。时域频率稳定度一般用阿伦方差来表征. 频率稳定度最常用的表达式是阿伦方差(Allan variance),根据稳定度时间的长短,分为频率短期稳定度,如lms,lOms,lOOms,ls稳定度等,中长期稳定度,如ls,10s一?,10000s稳定度等。频率短期稳定度和中长期稳定度虽然它们的定义是一样的,但反映的却是信号稳定度方面不同的特性。短期稳定度表征了信号的抖动水平(fluctuation),而中长期稳定度则代表了信号频率随时问的漂移程度(drift)。时域短期频率稳定度在时测量非常困难,甚至是不可能的,但此时进行频域测量则比较容易,因此,可以将测量的频率短期稳定度即相位噪声转换为时域的阿伦方差实现对时域短稳的间接测量。相噪理论和统计学认为,频域的相位噪声和时域的阿伦方差是等效的,如果求得了彼此间的换算关系,可以进一步揭示出各表征量的物理性 2. 用阿伦方差与统计平均及均方差在误差描述方面的差异,以及各自的优缺点 (1)均方差也叫标准差,方差开根号为均方差,工程中其量纲与变量一致,应用较广. 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

平均数标准差计算例题

例1 测定蚕豆根在25℃的逐日生长量(长度)于表1,试求根长的每天平均增长率及第7,11天的根长 表1 蚕虫根长的每天增长率 求出日平均增长率(几何平均数) G=1.31021 即日平均增长率为1.31021毫米。 第7天的根长应为 17×(1.31021)6=85.9992=86.00毫米。 若用算术平均值计算,则第7天的根长应为 17×(1.31205)6=86.7266毫米,与实际不符。 第11天的根长应为 17×(1.31021)6=253.4306=253.43毫米

未分组资料中位数求法: 例2 观察某除草剂对一种杂草的除草效果,施药后对10株杂草观察,发现其死亡时间分别为7、8、8、9、11、12、12、13、14、14小时,求其中位数。 即10株杂草从施药到死亡时间的中位数为11.5小时 已分组资料中位数求法: L — 中位数所在组的下限; i — 组距; f — 中位数所在组的次数; n — 总次数; c — 小于中数所在组的累加次数。 例3 取三化螟初孵幼虫204头,使其在浸有1:100敌百虫的滤纸上爬行(在25℃下),得不同时间的死亡头数于表2中,试求中位数。 表2 敌百虫的杀螟效果 ) 2(c n f i L M d -+=5.112 12112265)12/(2/=+=+=+=+x x x x M n n d

由表2可见:i =10,n =204,因而中位数只能在累加头数为118所对应的“35—45”这一组,于是可确定L =35,f =36,c=82,代入公式得: (分钟) 即50%的三化螟幼虫死亡时间的中位数为40.6分钟。即致死中时间,致死中量。 加权平均数计算公式: 式中: y i —第i 组的组中值; f i —第i 组的次数; k —分组数。 例:某村共种五块麦地,各地块的面积分别为0.1,0.2,0.4,0.15,0.15公顷,其相应的小麦单位面积产量为2250,1900,1500,1700,2300公斤/公顷,求该村小麦的平均产量? 例:欲了解春季盐碱土的盐分分布动态,在某地对一米土体内进行盐分分析,每个剖面共分8层取样,重复两次,测得结果(%)如下表,求:(1)0-10cm 土层的盐分平均含量(%);(2)一米土体内的盐分平均含量(%)。 6.40)822204 (361035)2(=-+=-+=c n f i L d M ∑∑∑∑= = ++++++===f fy f y f f f f y f x f x f y k i i k i i i k k k 1 1212211权

标准偏差与相对标准偏差

标准偏差 标准偏差(也称标准离差或均方根差)是反映一组测量数据的。是指结果在某一个时段内误差上下波动的幅度。是的重要参数之一。是测量变动的统计测算法。它通常不用作独立的指标而与其它指标配合使用。 标准偏差在、、等领域中均得到了广泛的应用。因此, 标准偏差的计算十分重要, 它的准确与否对器具的不确定度、测量的不确定度以及所接收产品的质量有重要影响。然而在对标准偏差的计算中, 不少人不论测量次数多少, 均按计算。 样本标准差的表示公式 数学表达式: ?S-标准偏差(%) ?n-试样总数或测量次数,一般n值不应少于20-30个 ?i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 ?在价格变化剧烈时,该指标值通常很高。 ?如果价格保持平稳,这个指标值不高。 ?在价格发生剧烈的上涨/下降之前,该指标值总是很 低。 标准偏差的计算步骤 标准偏差的计算步骤是: 步骤一、(每个样本数据-全部数据之平均值)2。 步骤二、把步骤一所得的各个数值相加。 步骤三、把步骤二的结果除以(n - 1)(“n”指)。 步骤四、从步骤三所得的数值之平方根就是的标准偏差。

六个计算标准偏差的公式 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l 1、l 2、……l n。令测得值l与该量真 值X之差为真差占σ, 则有σ 1 = l i X σ 2 = l2X …… σ n = l n X 我们定义标准偏差(也称)σ为 (1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l 1、l 2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有

MATLAB 标准差 均值

Matlab标准差std函数 std(x)算出x的标准偏差。x可以是一行的matrix或者一个多行matrix矩阵; 如果只有一行,那么就是算一行的标准偏差,如果有多行,就是算每一列的标准偏差。 std(x,a)也是x的标准偏差但是a可以=0或者1.如果是0和前面没有区别,如果是1就是最后除以n,而不是n-1.(你参考计算标准偏差的公式,一般都用除以n-1的公式。) std(x,a,b)这里a表示是要用n还是n-1,如果是a是0就是除以n -1,如果是1就是除以n。 b这里是维数,比如说 1234 4561 如果b是1,就是按照行分,如果b是2就是按照列分 如果是三维的矩阵,b=3就按照第三维来分数据。 Matlab均值Mean函数 函数功能 求数组的平均数或者均值 使用方法

M=mean(A) 返回沿数组中不同维的元素的平均值。 如果A是一个向量,mean(A)返回A中元素的平均值。 如果A是一个矩阵,mean(A)将其中的各列视为向量,把矩阵中的每列看成一个向量,返回一个包含每一列所有元素的平均值的行向量。如果A是一个多元数组,mean(A)将数组中第一个非单一维的值看成一个向量,返回每个向量的平均值。 M=mean(A,dim) 返回A中沿着标量dim指定的维数上的元素的平均值。对于矩阵,mean(A,2)就是包含每一行的平均值的列向量。 《Simulink与信号处理》 应用举例编辑本段回目录 A=[123;336;468;477]; mean(A) ans= 3.0000 4.50006.0000 mean(A,2) ans= 2.0000

4.0000 6.0000 6.0000 mean(A) 当A为向量时,那么返回值为该向量所有元素的均值当A为矩阵时,那么返回值为该矩阵各列向量的均值mean(A,2) 返回值为该矩阵的各行向量的均值。

标准差和标准偏差 (1)

标准差和标准偏差 1)首先给出计算公式 标准差:σ=(1) 标准偏差:s =(2)方差就是标准偏差的平方 这下大家就困惑了,这两个公式分别表示什么意义?他们分别在什么情况下用?这两个公式是怎么来的? 2)公式由来 标准差又叫均方差、标准方差,这个大家都不陌生,它是各数据偏离平均数的距离的平均数,是距离均差平方和平均后的方根,用σ表示。。说白了就是表示数据分本离散度的一个值。计算公式也很好理解,从一开始接触我们用的看的都是这个公式。 那么第二个公式,怎么来的呢?其实标准偏差从样本估计中来的。比如我们有一批数据,共10000个点,他们服从正太分布,很容易计算出它的均值和标准差。在这里我们叫做样本均值和样本标准差。表示如下: 样本均值:1 1n i i X X n ==∑ 样本方差:2211()n n i i s X X n ==-∑ 这两个公式就是大家常用的公式。那么现在我们认为,我们想用采集到的这10000个样本估计数据的真实分布,想要求出其均值μ和方差2σ。 对于均值μ,我们容易通过期望获得:

但是对于方差,我们知道 2 1 2 () n i i X X σ = - ∑ 是服从卡分分布2 1 n χ - 的(这一点请查阅卡分分布的 定义)。因此有下面的公式: 这个公式的第一个等号后面是利用期望的性质,试图构造卡分分布来求解。第二个等号后面是利用卡分分布的均值计算出来的。请自行查阅卡方分布的定义和性质。 这么一来,我们就能看出,X是μ的无偏估计,而2 n s则不是2σ的无偏估计。但是我们 可以通过对样本方差进行重新构造,从而是2 n s就是2σ的无偏估计。我们定义:这样我们重新来求解方差的期望: 这样一来,2s就是2σ的无偏估计,这也就是这个公式的由来。 3)这两个公式的应用。 在实际中,公式(2)用的更多。因为当样本容量比较小的时候,公式(1)会过小的估计实际标准差;如果样本容量较大,公式(1)和公式(2)很接近。这时候公式(1)叫做渐近无偏估计,当然还是比不上公式(2)的无偏估计喽。 看了上面这段话,你可能还不知道该用哪个。其实是这样的:如果我们想求一批数据的标准差,那么自然就用公式(1)。如果我们是利用现在的样本估计真实的分布,那么就用公式(2)。 4)在EXCEL中,方差是VAR(),标准偏差是STDEV(),函数里解释是基于样本,分母是除的N-1,其实就是公式(2)。还有个VARP()和STDEVP(),基于样本总体,分母是N,也就是说你关注的就是这批数据。 在Excel透视表中 标准偏差为=STDEVA()

方差分析公式

方差分析公式 (2012-06-26 11:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analysis of variance,简写为ANOV或ANOVA)可用于两个或两个以上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的μ1,μ2,……μk是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6 完全随机设计的多个样本均数比较的方差分析公式变异来源离均差平方和SS 自由度v 均方MS F 总ΣX2-C* N-1 组间(处理组间)k-1 SS组间/v组间MS组间/MS组间 组内(误差)SS总-SS组间N-k SS组内/v组内 *C=(ΣX)2/N=Σni,k为处理组数 表19-7 F值、P值与统计结论 αF值P值统计结论 0.05 <F0.05(v1.V2)>0.05 不拒绝H0,差别无统计学意义 0.05 ≥F0.05(v1.V2)≤0.05 拒绝H0,接受H1,差别有统计学意义 0.01 ≥F0.01(v1.V2)≤0.01 拒绝H0,接受H1,差别有高度统计学意义

方差分析计算的统计量为F,按表19-7所示关系作判断。

例19.9 某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有无差别? 表19-8 某湖水不同季节氯化物含量(mg/L)X ij 春夏秋冬 22.6 19.1 18.9 19.0 22.8 22.8 13.6 16.9 21.0 24.5 17.2 17.6 16.9 18.0 15.1 14.8 20.0 15.2 16.6 13.1 21.9 18.4 14.2 16.9 21.5 20.1 16.7 16.2 21.2 21.2 19.6 14.8 ΣX ij j 167.9 159.3 131.9 129.3 588.4(ΣX)n i8 8 8 8 32(N) X i20.99 19.91 16.49 16.16 ΣX2ijj 3548.51 3231.95 2206.27 2114.11 11100.84(ΣX2)H0:湖水四个季节氯化物含量的总体均数相等,即μ1=μ2=μ3=μ4 H1:四个总体均数不等或不全相等 α=0.05 先作表19-8下半部分的基础计算。 C= (Σx)2/N=(588.4)2/32=10819.205 SS总=Σx2-C=11100.84-10819.205=281.635 V总=N-1=31 V组间=k-1=4-1=3 SS组内=SS总-SS组间=281.635-141.107=140.465

相关性平均值标准差相关系数回归线及最小二乘法概念

平均值、标准差、相关系数、回归线及最小二乘法相关性 线性相关 数据在一条直线附近波动,则变量间是线性相关 非线性相关 数据在一条曲线附近波动,则变量间是非线性相关 不相关 数据在图中没有显示任何关系,则不相关 平均值 N个数据的平均值计算公式: 标准差 标准差表示了所有数据与平均值的平均距离,表示了数据的散度,如果标准差小,表示数据集中在平均值附近,如果标准差大则表示数据离标准差比较远,比较分散。标准差计算公式: x、y两个变量组成了笛卡尔坐标系中的一 坐标(x,y),这个坐标标识了一个点的位置。 个 各包含n个常量的X,Y两组数据在笛卡尔坐标系中以n个点来进行表示。 相关系数 相关系数用字母r来表示,表示两组数据线性相关的程度(同时增大或减小的程度),从另一方面度量了点相对于标准差的散布情况,它没有单位。包含n个数值的X、Y两组数据的相关系数r的计算方法: 简单的说,就是r=[(以标准单位表示的x )X(以标准单位表示的y )]的平均数 根据上面点的定义,将X、Y两组数据的关系以点的形式在笛卡尔坐标系中画出,SD线表示了经过中心点(以数据组X、Y平均值为坐标的点),当r>0时,斜率=X的标准

差/Y的标准差;当r<0时,斜率=-X的标准差/Y的标准差;的直线。通常用SD线来直观的表示数据的走向: 1、当r<0时,SD线的斜率小于0时,则说明数据负相关,即当x增大时y减少。 2、当r>0时,SD线的斜率大于0时,则说明数据正相关,此时当x增大时y增大。 3、相关系数r的范围在[-1,1]之间,当r=0时表示数据相关系数为0(不相关)。当r=正负1时,表示数据负相关,此(x,y)点数据都在SD线上。 4、r的值越接近正负1说明(x,y)越靠拢SD线,说明数据相关性越强,r的值越接近0说明(x,y)点到SD线的散度越大(越分散),数据相关性越小。 回归方法主要描述一个变量如何依赖于另一个变量。y对应于x的回归线描述了在不同的x值下y的平均值情况,它是这些平均值的光滑形式,如果这些平均值刚好在一条直线上,则这些平均值刚好和回归线重合。通过回归线,我们可以通过x值来预测y值(已知x值下y值的平均值)。下面是y对应于x的回归线方程: 简单的说,就是当x每增加1个SD,平均而言,相应的y增加r个SD。 从方程可以看出: 1、回归线是一条经过点,斜率为的直线。 2、回归线的斜率比SD线小,当r=1或-1时,回归线和SD线重合。 当用回归线从x预测y时,实际值与预测值之间的差异叫预测误差。而均方根误差就是预测误差的均方根。它度量回归预测的精确程度。y关于x的回归线的均方根误差用下面的公式进行计算: 由公式可以看出,当r越接近1或-1时,点越聚集在回归线附近,均方根误差越小; 反之r越接近0时,点越分散,均方根误差越大。 最小二乘法寻找一条直线来拟合所有的点,使得这条直线到所有的点之间的均方根误差最小。可以看到,当求两个变量之间的关系时,最小二乘法求出的直线实际上就是回归线。只不过表述的侧重点不同:

计量资料的标准差和标准误有何区别与联系1

1、计量资料的标准差和标准误有何区别与联系 标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别: ①概念不 同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽 样误差;②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算 标准误等。标准误用于估计参数的可信区间,进行假设检验等。③它们与样本含 量的关系不同: 当样本含量n 足够大时,标准差趋向稳定;而标准误随n的增大 而减小,甚至趋于0 。联系: 标准差,标准误均为变异指标,当样本含量不变时, 标准误与标准差成正比。 2、二项分布、Poission分布的应用条件 二项分布的应用条件:医学领域有许多二分类记数资料都符合二项分布(传染病和遗传 病除外),但应用时仍应注意考察是否满足以下应用条件:(1) 每次实验只有两类对立 的结果;(2) n次事件相互独立;(3) 每次实验某类结果的发生的概率是一个常数。 Poisson分布的应用条件:医学领域中有很多稀有疾病(如肿瘤,交通事故等)资料都符合Poisson分布,但应用中仍应注意要满足以下条件:(1) 两类结果要相互对立;(2) n次试验相互独立;(3) n应很大, P应很小。 3、极差、四分位数间距、标准差、变异系数的适用范围有何异同? 答:这四个指标的相同点在于均用于描述计量资料的离散程度。其不同点为: 极差可用于各种分布的资料,一般常用于描述单峰对称分布小样本资料的变异程度,或用于初步了解资料的变异程度。若样本含量相差较大,不宜用极差来比较资料的离散程度。 四分位数间距适用于描述偏态分布资料、两端无确切值或分布不明确资料的离散程度。 标准差常用于描述对称分布,特别是正态分布或近似正态分布资料的离散程度。 变异系数适用于比较计量单位不同或均数相差悬殊的几组资料的离散程度。 4.中位数、均数、几何均数的适用条件有何异同。 (1)均数适用于描述对称分布,特别是正态分布的数值变量资料的平均水平;(2)几何均数适用于描述原始数据呈偏态分布,但经过对数变换后呈正态分布或近似正态分布的数值变量资料的平均水平;(3)中位数适用于描述呈明显偏态分布(正偏态或负偏态),或分布情况不明,或分布的末端有不确切数值的数值变量资料的平均水平。 5.第一类错误与第二类错误的区别与联系。

期望 方差公式的证明全集

期望与方差的相关公式的证明 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑ ∞ =1 <∞时, 则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1 i i i p a , 如果i i i p a ∑ ∞ =1 =∞,则数学期望不存在。 [] 1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。但是在一些场合下,仅仅知道随机变量取值的

算术平均值的实验标准差和单次测量值的实验标准差的区别

一、问题的提出 在不等精度直接测量时,由各测量值x i及其标准差σi计算加权算术平均值的标准差时,有两个计算公式 式中:p i——各测量值的权;σi——各测量值的标准差;σ——单位权标准差;——加权算术平均值的标准差。 但这两个公式的计算结果有时会相差很大。那么,在这种情况下,采用哪个公式更为合理呢?本文对此从公式的推导到公式的选用进行探讨,并给出了一般性的原则。 二、公式的数学推导 在不等精度测量时,各测量值的权的定义式为: 测量结果的最佳估计值为: 则测量结果的不确定度评定为: 对式(5)求方差有 设各测量值x i的方差都存在,且已知分别为,即D(x i)=

由(4)式有=σ2/p i 从公式(1)的推导,我们可以看出,此时各测量值的方差(或标准差)必须是已知的。而在实际测量中,常常各测量值的方差(或标准差)是未知的,无法直接应用公式(1)进行不确定度评定。但是,从分析来看,如果能由各测量值的残差(其权等于测量值的权)求出单位权标准差的估计值,并将其代入公式(1)中,就可计算出加权算术平均值标准差的估计值。为此,作如下推导: 由残差νi=x i-i=1,2,……n 对νi单位权化 由于v i的权都相等,因而可设为1,故用v i代替贝塞尔公式中的νi 可得单位权标准差的估计值 将此式代入公式(1),即得到加权算术平均值标准差的估计值

从上面的推导我们可以看出,公式(1)是在各测量值的标准差已知时计算出的不等精度测量结果的不确定度的准确值;而公式(2)是在各测量值的标准差未知时计算出的不等精度测量结果的不确定度的估计值。从概率论与数理统计知识可知,只有在n→∞时,其单位权标准差的估计值才能等于单位权的标准差,而由于测量次数的有限性和随机抽样取值的分散性,这两者是不相等的,所以由公式(1)和公式(2)确定的不确定度的值是也不相同的。 三、公式选用的一般原则 笔者用了较大的篇幅来进行公式的数学推导,主要是为了说明这两个公式推导的前提是不一样的,其应用当然也就不同。我们分两种情况来进行讨论。 1.各测量值的标准差未知时 显然,在这种情况下,由于其测量值的权是由其他方法得到的,而各测量值的标准差未知,无法应用公式(1)来进行不确定度评定,而只能用公式(2)。 2.各测量值的标准差已知时 当已知测量值x i和其标准差σi时,有两种方法计算的标准差:第一种 方法是用公式(1)进行计算,第二种方法是用公式(2)进行计算。前面已述这两种方法在理论上是不相等的。两种方法的区别是:第一种方法是根据已知的σi计算,没有用到测量数据x i。而第二种方法既用到了σi(确定权),也用到了测量数据x i(计算残差)。公式(2)是一个统计学公式,与观测次数n有关,只有n足够大,即观测数据足够多时,该公式才具有实际意义。所以,根据前面的推导分析,当测量次数较少时,考虑到随机抽样取值的分散性,建议采用公式(1)进行不确定度评定,当测量次数较多时,采用公式(2)评定不确定度更能真实地反映出这一组数据的不确定度值,它包含了由随机效应引起的不确定度,也包含了由系统效应引起的不确定度,因而更具有实验性质。现在的问题是,测量次数究竟为多少时才是较少或较多呢?根据概率论与数理统计知识,单次测量的标准差与平均值的标 准差的关系为:,当σ一定时,n>10以后,已减少得非常缓慢。所 以常把n=10作为一个临界值。综上所述,当测量次数n<10时,用公式(1)进行计算效果较好;当测量次数n≥10时,采用公式(2)来评定不确定度会更客观一些。另外,还有一个问题值得注意:不等精度测量本来就是改变了测量条件的复现性测量,这些改变了的测量条件有可能带来系统误差。当n足够大时且本次测量条件与以前的测量条件变化不大时,两个公式计算的结果应近似相等。否则本次测量数据可能存在系统误差。 四、实例

02资料的整理平均数标准差

1 资料的整理 一、资料的分类 1 数量性状资料 (一)计量资料 指用量测手段得到的数量性状资料,即用度、量、衡等计量工具直接测定的数量性状资料。其数据是用长度、容积、重量等来表示,如体高、产奶量、体重、绵羊剪毛量等。这种资料的各个观测值不一定是整数,两个相邻的整数间可以有带小数的任何数值出现,其小数位数的多少由度量工具的精度而定,它们之间的变异是连续性的。因此,计量资料也称为连续性变异资料。 (二)计数资料 指用计数方式得到的数量性状资料。在这类资料中,它的各个观察值只能以整数表示,在两个相邻整数间不得有任何带小数的数值出现。如猪的产仔数、鸡的产蛋数、鱼的尾数、母猪的乳头数等,这些观察值只能以整数来表示,各观察值是不连续的,因此该类资料也称为不连续性变异资料或间断性变异资料。 2 质量性状资料 (一)统计次数法 在一定的总体或样本中,根据某一质量性状的类别统计其次数,以次数作为质量性状的数据。例如,在研究猪的毛色遗传时,白猪与黑猪杂交,子二代中白猪、黑猪和花猪的头数分类统计如下表。

2 表2-1 白猪和黑猪子二代的毛色分离情况 毛色 次数(f ) 频率(%) 白色 332 73.78 黑色 96 21.33 花色 22 4.89 合 计 450 100.00 这种由质量性状数量化得来的资料又叫次数资料。 (二)评分法 对某一质量性状,因其类别不同,分别给予评分。例如,在研究猪的肉色遗传时,常用的方法是将屠宰后2小时的猪眼肌横切面与标准图谱对比,由浅到深分别给予1 5分的评分,以便统计分析。 二、资料的整理 三、常用统计图 平均数、标准差与变异系数 一、平均数 平均数是统计学中最常用的统计量,用来表明资料中各观测值相

方差分析公式

方差分析公式 (20PP-06-2611:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analPsisofvarianee ,简写为ANOV或ANOV A可用于两个或两个以 上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态 分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完 全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的卩1,卩2,……卩k是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6完全随机设计的多个样本均数比较的方差分析公式 GC=(艺G) 2/N=艺ni , k为处理组数 方差分析计算的统计量为F,按表19-7所示关系作判断。 例19.9某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有 无差别? 表19-8某湖水不同季节氯化物含量(mg/L)

SS 加刖=丄 和 ' 10619.265^ 170 HO:湖水四个季节氯化物含量的总体均数相等,即 卩仁卩2=卩3=卩4 H1:四个总体均数不等或不全相等 a =0.05 先作表19-8下半部分的基础计算。 C=(艺 G ) 2/N= (588.4) 2/32=10819.205 SS 总=艺 G2-C=11100.84-10819.205=281.635 V 总=N-仁31 (工吋 “ 1 广_ (】6二口尸斗/」期.匸尸千 K .IT N "一 - ? r . —I b K V 组间=k-1=4-1=3 SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28 MS 组间二SS 组间 /v 组间=141.107/3=47.057

方差概念及计算公式

方差概念及计算公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。 平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX )=C2D(X ) (常数平方提取); 证: 特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布

2.二项分布 X ~ B( n, p ) 引入随机变量X i(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。 用matlab或c语言编写求导程序 已知电容电压uc,电容值 求电流i 公式为i=c(duc/dt) 怎样用matlab或c语言求解 函数的幂级数展开式

平均值、方差、标准差

平均值(Mean)、方差(Variance)、标准差(Standard Deviation) 对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。 平均值 平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为: 以下面10个点的CPU使用率数据为例,其平均值为。 14 31 16 19 26 14 14 14 11 13 方差、标准差 方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为: 标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根: 为什么使用标准差 与方差相比,使用标准差来表示数据点的离散程度有3个好处: 表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为;两者相比较,标准差更适合人理解。 表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。 在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。 贝赛尔修正 在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N 所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1: 经过贝塞尔修正后的方差公式: 经过贝塞尔修正后的标准差公式:

标准偏差与相对标准偏差公式

标准偏差 数学表达式: S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20-30个 i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 六个计算标准偏差的公式[1] 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i?X σ2 = l2?X …… σn = l n?X 我们定义标准偏差(也称标准差)σ为

(1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l1、l2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有

(2) 式(2)就是著名的贝塞尔公式(Bessel)。 它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为 (2') 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2')可写为 (2") 按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差σ的无偏估计 数理统计中定义S2为样本方差

单因素方差分析的计算步骤

一、 单因素方差分析的计算步骤 假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值 m j n i ,2,1;,2,1 。结果如下表3.1: 表3.1 单因素方差分析数据结构表 为了考察因素A 对实验结果是否有显著性影响,我们把因素A 的m 个水平m A A A ,,21看成是m 个正态总体,而 m j n i x ij ,2,1;,2,1 看成是取自第j 总体的第i 个样品,因此,可设 m j n i a N x j ij ,2,1;,2,1,,~2 。 可以认为j j j a , 是因素A 的第j 个水平j A 所引起的差异。因此检验因素A 的各水平之间是否有显著的差异,就相当于检验: m a a a H 210:或者 0:210 m H 具体的分析检验步骤是: (一) 计算水平均值 令j x 表示第j 种水平的样本均值,

j n i ij j n x x j 1 式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数 (二)计算离差平方和 在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。 首先,总离差平方和,用SST 代表,则, 2)( x x SST ij 其中,n x x ij 它反映了离差平方和的总体情况。 其次,组内离差平方和,用SSE 表示,其计算公式为: j i j ij x x SSE 2 其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。 最后,组间平方和,用SSA 表示,SSA 的计算公式为: 2 2 x x n x x SSA j j j 用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。可以看出,它所表现的是组间差异。其中既包括随机因素,也包括系统因素。 根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在: SSA SSE SST 因为: 2 2 x x x x x x j j ij ij x x x x x x x x j j ij j j ij 22 2 在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有, 222)()()( x x x x x x j j ij ij 即 SSA SSE SST

期望-方差公式

期望与方差的相关公式 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞ =1 <∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1 i i i p a , 如果i i i p a ∑∞ =1 =∞,则数学期望不存在。[]1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,

相关文档
相关文档 最新文档