文档库 最新最全的文档下载
当前位置:文档库 › ANSYS Workbench如何对模型以及结果进行扩展显示(以轴对称模型为例)

ANSYS Workbench如何对模型以及结果进行扩展显示(以轴对称模型为例)

ANSYS Workbench如何对模型以及结果进行扩展显示(以轴对称模型为例)
ANSYS Workbench如何对模型以及结果进行扩展显示(以轴对称模型为例)

Workbench如何对模型以及结果进行扩展显示(以轴对称模型为例)

1.对称模型:

以下是未对模型显示进行扩展的效果

2.下面就来对有限元模型和结果进行扩展处理

2.1 ANSYS Workbench中11.0中需要加插命令才能办到,而且只能看死图,

workbench12.0之后就都可以扩展了。下面是在option里面设置扩展选项。

2.2进入Model里面,插入Symmetry选项。

2.3在Symmetry选项中设置2D Axisymmetry。

2.4在Symmetry选项中设置参数,间隔为10度,总个数=360/10+1=37。

2.5在菜单栏中的View中打开Visual Expansion (Beta)开关。

2.6设置完毕,即可发现原来的二维模型,经过轴对称之后实体显示网格和结果了。

有限元ansys静力分析的一个小例子

有限元 学院:机电学院 专业: 姓名: 学号:

一、问题描述 如图所示的平面,板厚为0.01m,左端固定,右端作用50kg的均布载荷,对其进行静力分析。弹性模量为210GPa,泊松比为0.25. 二、分析步骤 1.启动ansys,进入ansys界面。 2.定义工作文件名 进入ANSYS/Multiphsics的的程序界面后,单击Utility Menu菜单下File中Change Jobname的按钮,会弹出Change Jobname对话框,输入gangban为工作文件名,点击ok。 3.定义分析标题 选择菜单File-Change Title在弹出的对话框中,输入Plane Model作为分析标题,单击ok。 4.重新显示 选择菜单Plot-Replot单击该按钮后,所命令的分析标题工作文件名出现在ANSYS 中。 5.选择分析类型 在弹出的对话框中,选择分析类型,由于此例属于结构分析,选择菜单Main Menu:Preferences,故选择Structural这一项,单击ok。 6.定义单元类型 选择菜单Main Menu-Preprocessor-Element Type-Add/Edit/Delete单击弹出对话框中的Add按钮,弹出单元库对话框,在材料的单元库中选Plane82单元。即在左侧的窗口中选取Solid单元,在右侧选择8节点的82单元。然后单击ok。 7.选择分析类型 定义完单元类型后,Element Type对话框中的Option按钮被激活,单击后弹出一个对话框,在Elenment behavior中选择Plane strs w/ thk,在Extra Element output 中,选择Nodal stress,单击close,关闭单元类型对话框。 8.定义实常数 选择菜单Main Menu-Preprocessor-Real Constants Add/Edit/Delete执行该命令后,在弹出Real Constants对话框中单击Add按钮,确认单元无误后,单击ok,弹出Real Constants Set Number 1,for Plane 82对话框,在thickness后面输入板的厚度0.01单击ok,单击close。 9.定义力学参数 选择菜单Main Menu-Preprocessor-Material Props-Material Model 在弹出的对

第7讲轴对称最值模型(原卷版)

中考数学几何模型7:轴对称最值模型名师点睛拨开云雾开门见山

B' Q D A' A P B C

典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为. 变式练习>>> 1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为()

A.B.C.D. 例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值. 变式练习>>> 2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()

A.140°B.100°C.50°D.40° 例题3. 如图,在△ABC中,∠C=90°,CB=CA=4,∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是. 变式练习>>> 3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小

值是() A.3B.2C.D.4 例题4. 如图,∠MON=30°,A在OM上,OA=2,D在ON上,OD=4,C是OM上任意一点,B是ON上任意一点,则折线ABCD的最短长度为. 变式练习>>> 4. 如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:

数学八年级上册 【几何模型三角形轴对称】试卷专题练习(word版

数学八年级上册 【几何模型三角形轴对称】试卷专题练习(word 版 一、八年级数学全等三角形解答题压轴题(难) 1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板 45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00) 45(a ≤≤得到ABM ,图()2所示.试问: ()1当a 为多少时,能使得图()2中//AB CD ?说出理由, ()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00 )45(a ≤≤时,探索 DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明. 【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析. 【解析】 【分析】 (1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ; (2)DBM CAM BDC ∠+∠+∠的大小不变,是105?,由FEM CAM C ∠=∠+∠, 30C ∠=?, EFM BDC DBM ∠=∠+∠, 45M ∠=?,即可利用三角形内角和求出答案. 【详解】 ()1当a 为15时,//AB CD , 理由:由图()2,若//AB CD ,则30 BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-?=?, 所以,当a 为15时,//AB CD . 注意:学生可能会出现两种解法:

第一种:把//AB CD 当做条件求出a 为15, 第二种:把a 为15当做条件证出//AB CD , 这两种解法都是正确的. ()2DBM CAM BDC ∠+∠+∠的大小不变,是105? 证明: ,30FEM CAM C C ∠=∠+∠∠=?, 30FEM CAM ∴∠=∠+?, EFM BDC DBM ∠=∠+∠, DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠, 180,45EFM FEM M M ∠+∠+∠=∠=?, 3045180BDC DBM CAM ∴∠+∠+∠+?+?=?, 1803045105DBM CAM BDC ∴∠+∠+∠=?--=?, 所以,DBM CAM BDC ∠+∠+∠的大小不变,是105. 【点睛】 此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键. 2.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点. (1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ?,若2OA =,4OB =,试求C 点的坐标; (2)如图2,若点A 的坐标为() 23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以 B 为顶点,BA 为腰作等腰Rt ABD ?.试问:当B 点沿y 轴负半轴向下运动且其他条件都不 变时,整式2253m n +-化,请说明理由; (3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ?,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.

七个ansys经典入门实例

“有限元分析及应用”课程有限元分析软件ANSYS6.xed 上机指南 清华大学机械工程系 2002年9月

说明 本《有限元分析软件ANSYS6.1ed:上机指南》由清华大学机械工程系石伟老师组织编写,由助教博士生孔劲执笔, 于2002年9月完成,基本操作指南中的所有算例都在相应的软件系统中进行了实际调试和通过。 本上机指南的版权归清华大学机械工程系所有,未经同意,任何单位和个人不得翻印。

目录 Project1 简支梁的变形分析 (1) Project2 坝体的有限元建模与受力分析 (3) Project3 受内压作用的球体的应力与变形分析 (5) Project4 受热载荷作用的厚壁圆筒的有限元建模与温度场求解 (7) Project5 超静定桁架的有限元求解 (9) Project6 超静定梁的有限元求解 (11) Project7 平板的有限元建模与变形分析 (13)

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

利用轴对称模型求线段和的最小值

利用轴对称模型求线段和的最小值 近几年来,最小值问题成为中考命题的热点,其中有些问题的解决常用构建轴对称模型的方法。 学习目标:知识目标:掌握轴对称图形的做法和三角形三边的关系,根据问题建构数学模 型,解决实际问题。 能力目标:通过观察、分析、对比等方法,提高学生分析问题,解决问题的能力, 进一步强化分类归纳综合的思想,提高综合能力。 情感目标:通过自己的参与和教师的指导,享受学习数学的快乐,提高应用数学 的能力。 引例:例:如图(1),草原上两居民点A ,B 在笔直河流l 的同旁,一汽车从A 处出发到B 处,途中需要到河边加水,问选在何处加水可使行驶的路程最短?并在途中画出这一点。 分析:将这一问题转化为数学问题,即已知直线l 及l 同侧的点A 和点B ,在l 上确定一点C,使AC+BC 最小。 首先我们思考若点A 和B 点分别在直线l 的两侧,则点C 的位置应如何确定,根据两点之间线段最短,点C 应是与AB 直线l 的交点,如图(2),这就是说,设线段AB 交l 于点C ,点C /是直线上异于点C 的任意一点,总有AC+BC <AC /+BC /。因此,解决上述问题的关键是将点A (或点B )移至l 的另一侧(设点A 移动后的点为A /),且使A 、A /到直线l 上任意点的距离相等,利用轴对称可达到这一目的。 解:如图(3),作点A 关于直线l 的对称点A /,连接A /B 交l 于点C ,则点C 的位置就是汽车加水的位置,即汽车选在点C 处可使行驶的路程最短。 (1)A B A

总结:作点A 关于直线l 的对称点A ′,连结A ′B 交直线l 于点C ,那么点C 就是所求作的点。轴对称在本题中的主要作用是将线段在保证长度不变的情况下改变位置,要注意体会轴对称在这方面的应用。以此作为模型我们可以解决下列求最小值的问题。 例1. 如图4,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是________。 图4 分析:首先分解此图形,构建如图5模型,因为E 、B 在直线AC 的同侧,要在AC 上找一点P ,使PE+PB 最小,关键是找出点B 或E 关于AC 的对称点。如图6,由菱形的对称性可知点B 和D 关于AC 对称,连结DE ,此时DE 即为PE+PB 的最小值, 图5 图6 由∠BAD=60°,AB=AD ,AE=BE 知, 3 22 3DE =?= 故PE+PB 的最小值为 3 。 跟踪练习1: 如图7,已知点A 是半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径

ansys工程实例(4经典例子)解析

输气管道受力分析(ANSYS建模) 任务和要求: 按照输气管道的尺寸及载荷情况,要求在ANSYS中建模,完成整个静力学分析过程。求出管壁的静力场分布。要求完成问题分析、求解步骤、程序代码、结果描述和总结五部分。所给的参数如下: 材料参数:弹性模量E=200Gpa; 泊松比0.26;外径R?=0.6m;内径R?=0.4m;壁厚t=0.2m。输气管体内表面的最大冲击载荷P为1Mpa。 四.问题求解 (一).问题分析 由于管道沿长度方向的尺寸远大于管道的直径,在计算过程中忽略管道的端面效应,认为在其长度方向无应变产生,即可将该问题简化为平面应变问题,选取管道横截面建立几何模型进行求解。 (二).求解步骤 定义工作文件名 选择Utility Menu→File→Chang Jobname 出现Change Jobname对话框,在[/FILNAM] Enter new jobname 输入栏中输入工作名LEILIN10074723,并将New log and eror file 设置为YES,单击[OK]按钮关闭对话框 定义单元类型 1)选择Main Meun→Preprocessor→Element Type→Add/Edit/Delte命令,出现Element Type 对话框,单击[Add]按钮,出现Library of Element types对话框。 2)在Library of Element types复选框选择Strctural、Solid、 Quad 8node 82,在Element type reference number输入栏中出入1,单击[OK]按钮关闭该对话框。 3. 定义材料性能参数 1)单击Main Meun→Preprocessor→Material Props→Material models出现Define Material Behavion 对话框。选择依次选择Structural、Linear、Elastic、Isotropic选项,出现Linear Isotropic Material Properties For Material Number 1对话框。 2)在EX输入2e11,在Prxy输入栏中输入0.26,单击OK按钮关闭该对话框。 3)在Define Material Model Behavion 对话框中选择Material→Exit命令关闭该对话框。 4.生成几何模型、划分网格 1)选择Main Meun→Preprocessor→Modeling→Create→Areas→Circle→Partail→Annulus出现Part Annulus Circ Area对话框,在WP X文本框中输入0,在WP Y文本框中输入0,在Rad1文本框中输入0.4,在Theate-1文本框中输入0,在Rad2文本框中输入0.6,在Theate-2文本框中输入90,单击OK按钮关闭该对话框。 2)选择Utility Menu→Plotctrls→Style→Colors→Reverse Video,设置显示颜色。 3)选择Utility Menu→Plot→Areas,显示所有面。 4) 选择Main Menu→Preprocessor→Modeling→Reflect→Areas,出现Reflect Areas拾取菜

八年级数学【几何模型三角形轴对称】试卷测试与练习(word解析版)

八年级数学【几何模型三角形轴对称】试卷测试与练习(word 解析版) 一、八年级数学 轴对称解答题压轴题(难) 1.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”. 理解: (1)如图1,在ABC ?中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小; (2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ?的“好好线”; 在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可); 应用: (3)在ABC ?中,27B ∠=,AD 和DE 是ABC ?的“好好线”,点D 在BC 边上,点 E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数. 【答案】(1)36°;(2)见详解;(3)18°或42° 【解析】 【分析】 (1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数. (2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形; (3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值; 【详解】 解:(1)∵AB=AC , ∴∠ABC=∠C , ∵BD=BC=AD ,

ANSYS 中使用函数加载的一个简单例子

ANSYS 中使用函数加载的一个简单例子 本文将通过一个具体实例说明在ANSYS 中如何使用函数加载,后续将通过该实例在分析过程中遇到的一个问题提出自己的一点看法。 实例的具体说明: 一个1/4 圆柱,内半径30 mm,外半径42 mm,长度100mm,如图1 所示: 所用材料为双线性弹塑性材料,其机械性能为: 弹性模量 E = 201000 Mpa;泊松比μ=0.3

屈服应力σ= 200 Mpa;切线模量Et = 2010使用单元类型solid185 (8 节点六面体单元)。 取整体单元边长4 mm,然后可以直接对该几何模型划分MAP 网格,划分网格结果如图2: 约束条件为: 轴向两个截面为对称边界条件;一个端面约束轴向位移Uz。 载荷条件为: 在外表面施加变化的压力载荷,载荷函数为: P (y) = 8e7 + 7E7 * (Y/42)

即: X = 0 ,Y = 42 (最高点) 时,P = 15E7; X = 42,Y = 0 (最低点)时,P = 8E7。 我们采用函数方式来施加这一压力载荷,首先定义函数: 在Solution 模块中,点击菜单路径: Solution > Define Loads > Apply > Functions > Define/Edit 将会弹出一个函数编辑器,可以在其中定义所需的函数。 在函数编辑器中,函数类型选择为Single equation,即单值函数;计算函数值时使用的插值坐标系( (x,y,z) interpreted in CSYS) 选择0,即总体直角坐标系,如图3 所示:

然后,在函数编辑器中间位置的“Result = “ 小窗口中输入要定义的函数表达式,如果表达式中有x, y, z, time 等变量(供定义函数时使用的“自变量”),可以用{X},{Y},{Z},{TIME} 等的形式输入;或者点击下面一个小窗口右边的小箭头,会出现一个下拉列表,列出可以选择的变量,然后从该列表中选择某个自变量,则该自变量会按照上述格式写入函数中,如图5 所示:

人教版八年级上册数学 【几何模型三角形轴对称】试卷专题练习(解析版)

人教版八年级上册数学【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学全等三角形解答题压轴题(难) 1.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系. 小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论, 他的结论是(直接写结论,不需证明); (2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由. (3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长. 【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10. 【解析】 【分析】 (1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG, ∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可. (2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG, ∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可. (3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到 EF=FG,最后求三角形的周长即可. 【详解】 解答:(1)解:如图1,延长FD到G,使得DG=DC

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

八年级上册数学 【几何模型三角形轴对称】试卷专题练习(解析版)

八年级上册数学【几何模型三角形轴对称】试卷专题练习(解析版) 一、八年级数学全等三角形解答题压轴题(难) 1.(1)问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系. 小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明 △ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是; (2)探索延伸: 如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点, 且∠EAF=1 2 ∠BAD,上述结论是否仍然成立,并说明理由; (3)结论应用: 如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离. (4)能力提高: 如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且 ∠MAN=45°.若BM=1,CN=3,试求出MN的长. 【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】 试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得 EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ABAQUS轴对称模型

实验一轴对称模型 一.实验目的和要求 1.使用轴对称单元,依照轴对称的原理建模分析. 2.使用Visualization 功能模块查看结果,延展轴对称单元构造等效的三维视图。二.实验步骤 1.启动ABAQUS/CAE 2.创建部件 (1) Module:Part,Name: Axis Modeling Space: Axisymmetric, (2) 绘制二维图 (3) 保存模型 3.创建材料和截面属性 (1) 创建材料Create Material—— Name:Steel,Mechanical-Elasticity-Elastcic.Young's Modulus-210000, Poisson's Ratio 0.3 (2) 创建截面属性Create Section—Material:Steel,Plane stess:1 (3) 给部件赋予截面属性Assign Section 4.定义装配件 Module:Assembly. Instance Part-选中部件Plate,参数默认。 5.设置分析步骤 Module:Step Create Step:Name—Apply Load,参数默认, 6.定义便捷条件和载荷 (1)施加载荷Create Loade—Types for Selected Step—Pressure ,选择图形上端面,中健确认,在edit load对话框中,在magnitude后面输入100 (2)定义部件底部的边界条件Creat Boundary,弹出Create Boundary Condition对话框中,在Name后面输入fix-y,将step设为apply load, Types for Selected Step ,选择Dispalcement/Rotation,其余参数默认,选择模型饿底边作为约束位置,点击中健确认,在弹出的对话框中,选择U2,点ok。 7. 划分网格 (1) 设置圆弧边的种子选中圆弧段,点击中健确认,在左下角提示区,选择第 三项,输入边界种子8,按中键确认。 设置其他种子为40 (2) 设制控网格参数

ANSYS优化设计含几个实例

ANSYS 优化设计 1.认识ANSYS优化模块 1.1 什么时候我需要它的帮忙? 什么是ANSYS优化?我想说明一个例子要比我在这里对你絮叨半天容易理解的多。 注意过普通的水杯吗?底面圆圆的,上面加盖的哪一种。仔细观察一下,你会发现比较老式的此类水杯有一个共同特点:底面直径=水杯高度。 图1 水杯的简化模型 为什么是这样呢?因为只有满足这个条件,才能在原料耗费最少的情况下使杯子的容积最大。在材料一定的情况下,如果水杯的底面积大,其高度必然就要小;如果高度变大了,底面积又大不了,如何调和这两者之间的矛盾?其实这恰恰就反应了一个完整的优化过程。 在这里,一个水杯的材料是一定的,所要优化的变量就是杯子底面的半径r和杯子的高度h,在ANSYS的优化模块里面把这些需要优化的变量叫做设计变量(DV);优化的目标是要使整个水杯的容积最大,这个目标在ANSYS的优化过程里叫目标函数(OBJ);再者,对设计变量的优化有一定的限制条件,比如说整个杯子的材料不变,这些限制条件在ANSYS 的优化模块中用状态变量(SV)来控制。下面我们就来看看ANSYS中怎么通过设定DV、SV、OBJ,利用优化模块求解以上问题。 首先参数化的建立一个分析文件(假设叫volu.inp),水杯初始半径为R=1,高度为H =1(DV),由于水杯材料直接喝水杯的表面积有关系,这里假设水杯表面积不能大于100,这样就有S=2πRH+2πR2<100(SV),水杯的容积为V=πR2H(OBJ)。 (用参数直接定义也可或者在命令栏内直接写) R=1 H=1 S=2*3.14*R*H+2*3.14*R*R V=10000/(3.14*R*R*H) 然后再建一个优化分析文件(假设叫optvolu.inp),设定优化变量,并求解。 /clear,nostart /input,volu,inp /opt opanl,volu,inp opvar,R,dv,1,10,1e-2 opvar,H,dv,1,10,1e-2 opvar,S,sv,,100,1e-2 opvar,V,obj,,,1e-2 opkeep,on optype,subp opsave,optvolu,opt0 opexec 最后,打开Ansys6.1,在命令输入框中键入“/input,optvolu,inp”,整个优化过程就开始了。

【中考几何模型压轴题】专题11《轴对称》

中考几何压轴题(几何模型30讲) 最 新 讲 义

专题11《轴对称》 破题策略 成轴对称的两个图形全等;如果两个图形关于某条直线对称,那么对成轴是任何一对对应点所连线段的垂直平分线.通常所说的翻折实质上就是轴对称变换.图形沿着某条直线翻折,这条直线即为对称轴,利用轴对称的性质,再借助方程的知识就能很快解决问题. 例题讲解 例1 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为点E,连接BE、DE,其中DE交直线AP于点F. (1)如图1,若∠PAB=20°,求∠ADF的度数; (2)如图2,若45°<∠PAB<90°,用等式表示AE、FE、FD之间的数量关系,并证明; 解(1)如图3,连接AE,则∠PAE=∠PAB=20°,AE=AB. Θ四边形ABCD为正方形∴∠BAD=90°,AB=AD∴∠EDA=130° ∴∠ADF=25°(2)如图4,连接AE,BF,BD,由轴对称知EF=BF,AE=AB=AD ∴∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90° ∴BF2+FD2=BD2∴EF2+FD2=2AB22 例 2 菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的? 小明发现:若∠ABC=60°, ①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为_________; ②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长_________(填“改变”或“不变”). 请帮助小明解决下面问题:

中考数学经典几何模型之轴对称最值模型(解析版)

中考数学几何模型:轴对称最值模型名师点睛拨开云雾开门见山

B' Q D A' A P B C

典题探究启迪思维探究重点例题1. 如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P到A,B两点距离之和P A+PB的最小值为2. 【解答】解:设△ABP中AB边上的高是h. ∵S△P AB=S矩形ABCD, ∴AB?h=AB?AD, ∴h=AD=4, ∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离. 在Rt△ABE中,∵AB=10,AE=4+4=8, ∴BE===2, 即P A+PB的最小值为2. 故答案为:2. 变式练习>>> 1.如图Rt△ABC和等腰△ACD以AC为公共边,其中∠ACB=90°,AD=CD,且满足AD⊥AB,过点D 作DE⊥AC于点F,DE交AB于点E,已知AB=5,BC=3,P是射线DE上的动点,当△PBC的周长取得最小值时,DP的值为() A.B.C.D. 【解答】解:连接PB、PC、P A, 要使得△PBC的周长最小,只要PB+PC最小即可, ∵PB+PC=P A+PB≥AB, ∴当P与E重合时,P A+PB最小, ∵AD=CD,DE⊥AC, ∴AF=CF,

∵∠ACB=90°, ∴EF∥BC, ∴AE=BE=AB=2.5, ∴EF=BC=1.5, ∵AD⊥AB, ∴△AEF∽△DEA, ∴=, ∴DE==, 故选:B. 例题2. 如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值. 【解答】解:作点B关于CD、AD的对称点分别为点B'和点B'', 连接B'B''交DC和AD于点M和点N,DB,连接MB、NB; 再DC和AD上分别取一动点M'和N'(不同于点M和N), 连接M'B,M'B',N'B和N'B'',如图1所示: ∵B'B''<M'B'+M'N'+N'B'', B'M'=BM',B''N'=BN', ∴BM'+M'N'+BN'>B'B'', 又∵B'B''=B'M+MN+NB'', MB=MB',NB=NB'', ∴NB+NM+BM<BM'+M'N'+BN', ∴C△BMN=NB+NM+BM时周长最小; 连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H, 如图示2所示: ∵在Rt△ABD中,AD=3,AB=, ∴==2, ∴∠2=30°, ∴∠5=30°,DB=DB'', 又∵∠ADC=∠1+∠2=60°, ∴∠1=30°, ∴∠7=30°,DB'=DB, ∴∠B'DB''=∠1+∠2+∠5+∠7=120°,

八年级【几何模型三角形轴对称】试卷练习(Word版 含答案)

八年级【几何模型三角形轴对称】试卷练习(Word版含答案) 一、八年级数学全等三角形解答题压轴题(难) 1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明. (1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程; (2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明). 【答案】(1)过程见解析;(2)MN= NC﹣BM. 【解析】 【分析】 (1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到 MN=BM+NC. (2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论. 【详解】 解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°, ∴∠DBC=∠DCB=30° ∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°, 在△MBD与△ECD中, ∵BD CD MBD ECD BM CE , ∴△MBD≌△ECD(SAS), ∴MD=DE,∠BDM=∠CDE ∵∠MDN =60°,∠BDC=120°, ∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°, 在△DMN与△DEN中, ∵MD DE MDN EDN DN DN , ∴△DMN≌△DEN(SAS), ∴MN=NE=CE+NC=BM+NC. (2)如图②中,结论:MN=NC﹣BM.

轴对称问题的有限元分析

第1节基本知识 本节的有限元对象为轴对称问题,目的是学习将3D问题转化为2D问题分析的轴对称方法,涉及如何选取轴对称单元、建模规律、载荷的施加方法和后处理技术。 一、轴对称问题的定义 轴对称问题是指受力体的几何形状、约束状态,以及其它外在因素都对称于某一根轴(过该轴的任一平面都是对称面)。轴对称受力体的所有应力、应变和位移均对称于这根轴。 二、用ANSYS解决2D轴对称问题的规定 用ANSYS解决2D轴对称问题时,轴对称模型必须在总体坐标系XOY平面的第一象限中创建,并且Y轴为轴旋转的对称轴。 求解时,施加自由约束、压力载荷、温度载荷和Y方向的加速度可以像其它非轴对称模型一样进行施加,但集中载荷有特殊的含义,它表示的是力或力矩在360°范围内的合力,即输入的是整个圆周上的总的载荷大小。同理,在求解完毕后进行后处理时,轴对称模型输出的反作用力结果也是整个圆周上的合力输出,即力和力矩按总载荷大小输出。 在ANSYS中,X方向是径向,Z方向是环向,受力体承载后的环向位移为零,环向应力和应变不为零。 常用的2D轴对称单元类型和用途见表11-1。 表11-1 2D轴对称常用结构单元列表

的高阶单的高阶单 在利用ANSYS进行有限元分析时,将这些单元定义为新的单元后,设置单元配置项KEYOPT(3)为Axisymmetric(Shell51和Shell61单元本身就是轴对称单元,不用设置该项),单元将被指定按轴对称模型进行计算。 后处理时,可观察径向和环向应力,它对应的是SX与SZ应力分量,并且在直角坐标系下观察即可。 可以通过轴对称扩展设置将截面结果扩展成任意扇型区域大小的模型,以便更加真实地观察总体模型的各项结果。 轴对称问题有限元分析实例 2D节2第

相关文档
相关文档 最新文档