文档库 最新最全的文档下载
当前位置:文档库 › [Fourier series傅里叶级数]例题01

[Fourier series傅里叶级数]例题01

[Fourier series傅里叶级数]例题01
[Fourier series傅里叶级数]例题01

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

(整理)傅里叶级数的数学推导

傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦

最新傅里叶级数的数学推导

傅里叶级数的数学推 导

傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin

和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即

信号与系统习题答案

《信号与系统》复习题 1. 已知f(t)如图所示,求f(-3t-2)。 2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值) 3.已知f(5-2t)的波形如图,试画出f(t)的波形。 解题思路:f(5-2t)?????→?=倍 展宽乘22/1a f(5-2×2t)= f(5-t) ??→?反转f(5+t)??→?5 右移 f(5+t-5)= f(t) 4.计算下列函数值。 (1) dt t t u t t )2(0 0--?+∞ ∞-) (δ (2) dt t t u t t )2(0 --?+∞ ∞-) (δ (3) dt t t e t ?+∞ ∞ --++)(2)(δ

5.已知离散系统框图,写出差分方程。 解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○ ∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1) 右○ ∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。 a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程 6.绘出下列系统的仿真框图。 )()()()()(10012 2t e dt d b t e b t r a t r dt d a t r dt d +=++ 7.判断下列系统是否为线性系统。 (2) 8.求下列微分方程描述的系统冲激响应和阶跃响应。 )(2)(3)(t e dt d t r t r dt d =+

傅里叶级数

傅里叶级数(Fourier Series ) 引言 正弦函数是一种常见而简单的周期函数,例如描述简谐振动的函数 )sin(?ω+=t A y 就是一个以ωπ 2为周期的函数。其中y 表示动点的位置,t 表示时间,A 为振幅,ω为 角频率,?为初相。 但在实际问题中,除了正弦函数外,还会遇到非正弦的周期函数,它们反映了较复杂的周期运动,我们也想将这些周期函数展开成由简单的周期函数例如三角函数组成的级数。具体地说,将周期为)2(ωπ =T 的周期函数用一系列以T 为周期的正弦函数 )sin(n n t n A ?ω+组成的级数来表示,记为 ∑∞ =++ =10)sin()(n n n t n A A t f ?ω 其中),3,2,1(,,0Λ=n A A n n ?都是常数。 将周期函数按上述方式展开,它的物理意义就是把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。在电工学上,这种展开称为谐波分析。其中常数项0A 称为)(t f 的直流分量;)sin(11?ω+t A 称为一次谐波(又叫做基波);而)2sin(22?ω+t A , Λ)3sin(33?ω+t A 依次称为二次谐波,三次谐波,等等。 为了下面讨论方便起见,我们将正弦函数)sin(n n t n A ?ω+按三角公式变形,得 t n A t n A t n A n n n n n n ω?ω??ωsin cos cos sin )sin(+=+, 令x t A b A a A a n n n n n n ====ω??,cos ,sin ,2 00,则上式等号右端的级数就可以改写成 ∑∞=++1 0)sin cos (2n n n nx b nx a a 这个式子就称为周期函数的傅里叶级数。

傅里叶级数课程习题讲解

第15章 傅里叶级数 §15.1 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x L L 线性表出而得.不妨称2{1,,,,,}n x x x L L 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; cos , cos cos cos d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; sin , cos sin cos d 0 mx nx mx nx x ππ -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01 cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,,,,,n n a a b a b L L 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[],ππ-上可积,

傅里叶级数的推导

傅里叶级数的推导 2016年12月14日09:27:47 傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数:

首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn 及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

傅里叶级数课程及习题讲解

第15章 傅里叶级数 § 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x 线性表出而得.不妨称 2 {1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下 面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积 为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,, ,,,n n a a b a b 为常数

【免费下载】傅里叶级数的数学推导

、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

傅里叶级数总结1

傅里叶级数总结 TASK1:(x f 在[-π ,π]上的周期函数,需展开成傅里叶级数,公式: ??--==π π π π nxdx x f b nxdx x f a n n sin )(cos )( 例1:将x x f 4sin )(=展开成傅里叶级数 x x x f x f n xdx x b n n n dx nx x nx x nx nxdx x a dx x x dx x a x x x x n n 4cos 8 1 2cos 2183)(,...) 3,2,1(0sin sin 1 )4(81) 2(2 1 ...)4,2(0)cos 4cos 81cos 2cos 21cos 83(2cos sin 24 3 )4cos 812cos 2183(sin 2 24cos 1412cos 2141)22cos 1(sin :40040 4024+-=∴=== ????????? ==-≠=+-=== +-== +- -=-=???? - )(,即傅里叶级数收敛于本身处处连续 解 π π πππ π πππ

TASK2:(x f 在[-π ,π]上的奇函数,需展开成傅里叶级数,公式: ,...)3,2,1(sin )(2 ,...) 2,1,0(00 == ==?n nxdx x f b n a n n π π 例2: )(sin sin ..)1(sin 2) () (.)1.(sin 2])cos()[cos(2 sin sin 2 0)()(sin )(1 2 212210 0πππ π ππ π πππ π <<-=--∴--= +--= = ==∴<<-=∑? ? ∞ =++x ax a n nx n a x f a n n ax dx x a n x a n nxdx ax b a a x f x ax x f n n n n n 按展开定理有为奇函数解:展开成傅里叶级数将

傅里叶级数通俗解析

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数 代表的 物理含义。 1. 完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果 n 个函数卿(1),化(1)1, b Kl ) 构成一个函数集,若这些函数在区间(th 12)上满足 j £卩心)仞MM = {监° 如果是复数集,那么正交条件是 j tpi(l)(p j ⑴山— {K ]" 甲;⑴为函数舸(I )的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数 集和复 指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设恤(I )COS mM ,5i (L )- cos m (ol ,把忸⑴,畅⑴代入⑴得 ft +H I COS ticoleos iiiwl dt J L, 当n 工討时 =J :綁卜恥(口 十 十 COS tn - m)wt| di ]ITsL (n+ ni}O J =0 (n,m=1,2,3,…;n 壬 ml ) 当n=m 时 再证两个都是正弦的情况 设加(0 = sin 阮(0 ’in mst ,把曲1).帥⑴|代入⑴得 / t"T tc ~2[ fn + Tr>n)

=J : * *cos2no>t dt _T 最后证明两个是不同名的三角函数的情况 设加⑴=eos 1131,加(0 u sin msl ,扌旳八⑴,加0)代入⑴得 Sr 『S + T q>i(t](pj(Odt = I COS nct)lsiii uicot 41 L tip =^丿;:"1甫115 + m)fot - sin(n - ni)o>tl dt 1 r co?-(II + niKot cos5 "zl " (n + + (n - III )(D . =0 (n,m 为任意整数) 因为两个三角函数相乘只有以上三种情况: 两个皆为余弦函数相乘;两个皆 为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正 交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以 从n, m 的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集, 而根据欧拉公式,我们容易联想到复指 数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设讹恥⑴?^,则0;⑴-恤伽◎ 0; W 代入⑵得 加;⑴山=叫伽恤 当时,根据欧拉公式 / / S+T tc 当n 盖血时 =丿:"|凶£ (n 十 in)?t -心(11 - tti) 曲 I 山 * to ]|sui (n+ ni)cot siii tn - tc =0 (n,m=1,2,3,…;n 士 n 』) 当n=m 时 (n ■+ m)co

傅里叶级数课程及习题讲解

第15章 傅里叶级数 §15.1 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x 线性表出而得.不妨称 2 {1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下 面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积 为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; cos , cos cos cos d 0 m n mx nx mx nx x m n ππ π-=?=?=? ≠??; sin , cos sin cos d 0 mx nx mx nx x ππ -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01 cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,, ,,,n n a a b a b 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[],ππ-上可积,

傅里叶级数课程及习题讲解

第15章傅里叶级数 §傅里叶级数 一基本内容 一、傅里叶级数 在幂级数讨论中,可视为经函数系 线性表出而得.不妨称为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列称为三角函数系.其有下面两个重要性质. (1) 周期性每一个函数都是以为周期的周期函数; (2) 正交性任意两个不同函数的积在上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在可积的函数系,定义两个函数的内积为, 如果,则称函数系为正交系. 由于; ; ; ; , 所以三角函数系在上具有正交性,故称为正交系. 利用三角函数系构成的级数 称为三角级数,其中为常数 2 以为周期的傅里叶级数 定义1 设函数在上可积, ; , 称为函数的傅里叶系数,而三角级数 称为的傅里叶级数,记作 ~. 这里之所以不用等号,是因为函数按定义1所得系数而获得的傅里叶级数并不知其是否收敛于. 二、傅里叶级数收敛定理 定理1 若以为周期的函数在上按段光滑,则 ,

其中为的傅里叶系数. 定义2 如果,则称在上光滑.若 存在; ,存在, 且至多存在有限个点的左、右极限不相等,则称在上按段光滑. 几何解释如图. 按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点. 推论 段光滑,则, 有 . 定义3 设在上有定义,函数 称为的周期延拓. 二 习题解答 1 在指定区间内把下列函数展开为傅里叶级数 (1) ; 解:、,作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 . 当时, , , 所以 ,为所求. 、,作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数.

常见函数的傅里叶级数

∞ ? 2 2 0 0 0 ∑ 24.4. c = f (x )e in π x /L dx = ?1 (a + ib n < 0 ? Definition of a Fourier Series The Fourier series corresponding to a function f (x ) defined in the interval c ÷ x ÷ c + 2L L > 0 are constants, is defined as where c and 24.1. a 0 + ∑ a cos n π x + b sin n π x 2 where n n =1 L n L ?a = 1 c + 2 L n π x f (x ) cos dx 24.2. ? n L ?c 1 c + 2 L L n π x ?b n = L ?c f (x ) s in L dx If f (x ) and f '(x ) are piecewise continuous and f (x ) is defined by periodic extension of period 2L , i.e., f (x + 2L ) = f (x ), then the series converges to f (x ) if x is a point of continuity and to 1{ f (x + 0) + f (x - 0)} if x is a point of discontinuity. Complex Form of Fourier Series Assuming that the series 24.1 converges to f (x ), we have 24.3. f (x ) = ∑ c n e in π x /L n =-∞ where ? 1 (a - ib ) n > 0 1 n 2L c +2 L - c ?2 n n 2 - n - n ? ?1 a n = 0 Parseval’s Identity 1 c +2 L a 2 ∞ 24.5. { f (x )}2 dx = 0 + ∑ (a 2 + b 2 ) L ?c n n n =1 Generalized Parseval Identity 24.6. 1 c +2 L a c ∞ f (x ) g (x ) dx = + (a c + b d ) ∞ ? ) 2

傅里叶级数展开

傅里叶级数展开傅里叶级数其实是一种三角级数。三角级数的一般形式是 ∑∞=++10)sin cos (2a n n n nx b nx a 其中0a ,n a ,n b (n=1,2,···)都是实数。 现在能否把一个任意周期为2π的函数表示为一系列正弦函数之和呢?这样表示有什么条件吗?且听慢慢分辨。 现在的焦点就是把一个周期为2π的函数f (x )表示为: ∑∞=++=10)sin cos (2a )(f n n n nx b nx a x [1] 这样的形式。 现在有两个问题: 1.在什么条件下把f (x )展开成[1]的形式: 2.0a ,n a ,n b 如何确定。 由三角函数系的正交性可知,三角函数系中任意两个相同的函数之积在[-π,π]上积分不为零;任意两个不相同的函数之积在[-π,π]上积分为零。 接下来可以这样推导0a ,n a ,n b 的值 第一步:对[1]两边同时在[-π,π]上积分有: ∑∫∫∫∫∞=++=1---0-dx] sin b dx cos [dx 2a dx )(f n n n nx nx a x πππππ πππ=π0a , 故0a =∫πππ-dx x f 1)(第二步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有:∑∫∫∫∫∞=++=1---0-]d cos sin b d cosn cos [d cosn 2a d cosn )(f n n n x nx nx x x nx a x x x x x πππππππ π得, ),()(∫==πππ-n 2,1n cosnxdx x f 1a ?第三步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有: ∑∫∫∫∫∞=++=1---0-]d sin sin b d sinn cos [d sinn 2a d sinn )(f n n n x nx nx x x nx a x x x x x πππππ πππ得, ),()(∫==πππ-n 2,1n sinnxdx x f 1b ?那么什么条件下才能有以上展开呢?

傅里叶级数课程及习题讲解.

第15章 傅里叶级数 § 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 线性表出而得.不妨称 2{1,,,,,}n x x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重 要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{ }() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为 (),()()()d b n m n m a x u x u x u x x =??, 如果 0 (),() 0 n m l m n x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:L 为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠??; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[ ],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 称为三角级数,其中011,,,,,,n n a a b a b L L 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[ ],ππ-上可积, 1 1 (),cos ()cos d k a f x kx f x kx x π π π π -= = ? 0,1,2,k =L ;

傅里叶级数课程及习题讲解

傅里叶级数课程及习题讲解

第15章 傅里叶级数 §15.1 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数 系 21, , , , , n x x x L L 线性表出而得.不妨称2 {1,,,,,}n x x x L L 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx L L 称为三角函数系.其有下面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,] ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:L ,定义两个函数的内积为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系 {}() [, ], 1,2, n u x x a b n ∈=:L 为正交系.

由于 1, sin 1sin d 1cos d 0 nx nx x nx x π π π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n ππ π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01 cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中0 1 1 ,,,,,,n n a a b a b L L 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[],ππ-上可积, 1 1 (),cos ()cos d k a f x kx f x kx x π π π π -= = ? 0,1,2,k =L ; 1 1 (),sin ()sin d k b f x kx f x kx x π π π π -= = ? 1,2,k =L , 称为函数()f x 的傅里叶系数,而三角级数 ()01 cos sin 2n n n a a nx b nx ∞ =++∑ 称为()f x 的傅里叶级数,记作 () f x ~()01 cos sin 2n n n a a nx b nx ∞ =++∑. 这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x . 二、傅里叶级数收敛定理 定理1 若以2π为周期的函数()f x 在[,]ππ-上按

傅里叶级数课程及习题讲解

傅里叶级数课程及习题 讲解 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

第15章 傅里叶级数 § 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1()n n n f x a x ∞ ==∑,可视为()f x 经函数系 线性表出而得.不妨称2 {1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角 函数系作为基,就得到傅里叶级数. 1 三角函数系 函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为 (),()()()d b n m n m a x u x u x u x x =??, 如果 0 (),() 0 n m l m n x u x m n ≠=?=? ≠?,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠??; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 称为三角级数,其中011,,,,,, n n a a b a b 为常数 2 以2π为周期的傅里叶级数 定义1 设函数()f x 在[],ππ-上可积, 1 1 (),cos ()cos d k a f x kx f x kx x π π π π -= = ? 0,1,2,k =;

什么是傅里叶级数

我们的提纲如下: 1. 为什么我们要分解一个函数 2. 傅里叶级数就是三角级数 2.1 傅里叶级数就是把周期函数展开成基频和倍频分量 2.2 每个分量的大小我们用投影的方法来求。———————————————————————— 你是大学生吗?你学理工科吗?你还不知道傅里叶级数吗?你以为傅里叶和泰勒有什么亲戚关系吗?你一定听说过傅里叶展开和泰勒展开吧?展开的结果就是傅里叶级数和泰勒级数。他们是对一个函数的不同的【展开】方法。 【相信我,傅里叶分解其实巨简单!】 #【但是最开始的问题一定是:我们为什么要展开一个函数????!!!!! 一个函数: y=1 他的泰勒展开是神马?还是y=1。 那么y=x的展开呢? 是y=x。 我们知道,泰勒展开是把函数分解成1, x, x^2, x^3, …等等幂级数的【和】。 就是【把一个函数变成几个函数的和】啊!!!这个展开的式子就是泰勒级数啊!!!

对函数的展开和5 = 2+3 一样一样一样的啊!!!要多简单有多简单有木有啊!!! 但是你要注意啊: 【展开的很多时候是有无限项不能穷尽的呀!】 你还记得sinx 的泰勒展开是什么吗?sinx = 0+ x – 1/3!x^3 + 1/5!x^5 -… (如果系数错了可千万不要吐槽啊啊啊,lz是学渣记系数记不住啊!!!!) 【那么现在提问:】你知道为什么要展开成幂级数的和吗?请看这里: 因为我们把y展开成泰勒级数y = 1+x+x^2+x^3+x^4+…的时候我们可以无限细分得到函数在每个点的【【变化】】呀呀呀! 这和你把3234.352拆成3000+200+30+4+0.3+0.05+0.002一样一样一样的啊!!! 所谓对函数的无限细分,就是不断求导,得到123456789阶变化率,从而得到这个函数到底在各个点【精细】【变化】的有多剧烈啊!还记得神马叫变化吗?位移的变化是速度,速度的变化是加速度,加速度的变化是加加速度的。一句话,【变化就是导数啊】!!! 【泰勒级数的每一阶的系数(主值)就是各阶导数啊!!】 所以泰勒级数就是在描述一个函数的各个点的变化啊啊啊!!!—————————————————————————— 喂!!!不要再跑题啦啦!!我们是要说傅里叶级数的好不好!!!! 你不认识傅里叶?没有任何关系,但是你见过三角形吗?知道三角函数吗? 傅里叶级数又叫三角级数啊。一句话就是【把一个函数y拆成三角函数的和】啊啊!! 神马,你还记得神马是三角函数吗?sinx,cosx等等。 那马展开成三角级数,简单! y = sinx + sinx^2 + sinx^3…是这样吗????

相关文档
相关文档 最新文档