文档库 最新最全的文档下载
当前位置:文档库 › 光电成像技术复习

光电成像技术复习

光电成像技术复习
光电成像技术复习

题型:填空,选择,名词解释,解答

复习大纲:

第一章:

1. 试述光电成像技术对视见光谱域的延伸以及所受到的限制。

2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?

3. 光电成像器件可分为哪两大类?各有什么特点?

4. 什么是变像管?什么是像增强器?试比较二者的异同。

5. 反映光电成像系统光电转换能力的参数有哪些?

6. 光电成像过程通常包括哪几种噪声?

第二章:

1.人眼的视觉分为哪三种响应?明暗适应各指什么?

2.何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度?

3.试述人眼的分辨力的定义及其特点。

4.简述下列定义:

(1)图像信噪比;(2)图像对比度;(3)图像探测方程

5.目标搜索的约翰逊准则把探测水平分为几个等级?各是怎么定义的?

6.人眼的凝视时间和瞥见时间

第三章:

1. 波长为0.7μm的1W辐射能量约为多少光子/秒?

2. 通常光辐射的波长范围可分为哪几个波段?如:红外,可见光波长是什么?

3.试述辐射度量与光度量的联系和区别。

4.太阳的亮度L=1.9Х109cd/m2,光视效能K=100,试求太阳表面的温度。

5.假定一个功率(辐射通量)为60W的钨丝充气灯泡在各个方向均匀发光,求其发光强

度。

6.有一个直径d=50mm的标准白板,在与板面法线成45角处所测得发光强度为0.5cd,

试分别计算该板的光出射度Mv、亮度Lv和光通量Φv。

7.一束光通量为620lm,波长为460nm的蓝光射在一个白色屏幕上,问屏幕上一分钟内

接收到多少能量?

8.在离发光强度为55cd的某光源2.2m处有一个屏幕,假定屏幕的法线通过该光源,试

求屏幕上的光照度。

9.根据物体的辐射发射率可将物体分为哪几种类型?

10.试简述黑体辐射的几个定律,并讨论其物理意义。

11.已知太阳最大辐射波长为λ=0.47μm,日地平均距离L=1.495Х108Km,太阳半径

Rs=6.955Х105Km,如将太阳和地球近似看作黑体,求太阳和地球的表面温度。

12.星的等级是如何定义的?8等星的照度为多少?

13. 黑体是什么,维恩位移公式,黑体辐射的计算

第四章:

1.简述下述名词:

(1)气溶胶粒子;(2)绝对湿度;(3)相对湿度;(4)波盖尔定律;(5)大气窗口;(12)大气传递函数;

2.辐射在大气中传输主要有哪些光学现象?试简述其产生的物理原因?

第五章:

1. 像管的成像包括哪些物理过程?其相应的理论对应的核心器件是什么?

2. 像管是怎样分代的?各代的技术改进特点是什么?

3. 负电子亲和势光阴极的特点是什么?其较正电子亲和势光阴极有哪些特点?

4 试从静电场的高斯轨迹方程出发讨论其理想成像性质。

5. 静电透镜的最本质特征是什么?

6. 什么叫荧光?什么叫磷光?

7. 荧光屏表面蒸镀铝膜的作用是什么?

8. 荧光屏的转换效率与哪些因素有关?

9. 光纤面板的传像原理是什么?光纤面板应用于像管有哪些优点?

第七章:

1.什么是摄像管?它是怎样完成摄像过程的?

2.摄像管的工作原理是什么?简述视频信号的形成过程.

3.摄像管的结构由几部分组成?各部分的作用是什么?

4.摄像管产生惰性的主要原因是什么?怎样减小这些惰性?摄像管的分辨力是怎样定义

的?采用什么单位?

5.简述光电导摄像管的工作原理,指出光电导靶的特点。

6.热释电摄像管的靶有什么特点?具有什么性质?

7.什么叫热释电效应?试叙述之。

8.为什么热释电摄像管工作前要进行单畴化?

第八章

1.简述CCD工作时的电荷耦合原理(作简图)

3.以三相CCD为例,说明决定其工作频率的上下限因素是什么?

4.什么叫CCD的转移效率,怎样计算?提高转移效率有哪几种方法?

5. CMOS成像原理,CMOS和CCD工作原理的不同?

练习:

1.人眼按不同照度下的响应可分为()视觉、()视觉及()视觉。

2.Johnson准则把目标的探测等级分为4等,其中:()意味着在视场中发现一个目标,()意味着可将目标大致分类,()意味着可区分目标的型号和其他细节特征;这三者探测等级实现概率为50%时,对应地在目标临界尺寸上,可分辨的等效条带的周期数目应分别是()、()、()。

3.()是利用二次电子发射性质来完成电子图像的倍增的。

4. 对于线阵CCD成像器件,在行扫描正程,()区负责积累光信号,()下没有势阱,()区在交变电压的作用下,将上一行信号依次传输到输出电路。为使电荷包实现定向转移,需要控制好相邻栅极上的(),从而调节其下对应势阱的深浅,电压的绝对值越大,势阱就越(),电荷包总是从()势阱流向()势阱。

5.选择:

下列谱段中光电成像系统中常用的大气窗口有()。

a)3~5μm;

b)1~3μm;

c)0.38~0.76μm;

d)8~14μm。

2)像管中()的出现和使用,分别成为了各代像管出现的标志性部件。

a)负电子亲和势阴极;

b)电子光学系统;

c)微通道板MCP;

d)光纤面板

3)下列像管的性能指标( )的值越高,像管的成像质量越好。

a)增益系数;

b)等效背景照度;

c)畸变;

d)品质因数。

4)下列微光摄像器件中,属于纯固体器件的是()。

a)高灵敏度CCD;

b)增强型CCD(ICCD);

c)电子轰击型CCD(EBCCD);

d)电子倍增CCD(EMCCD)

5)下列辐射体的辐射发射率ε与波长λ有关系的是()。

a)黑体;

b)灰体;

c)选择体。

6. 目前做红外成像,夜视技术的企业或研究机构有哪些?产品的种类和特点?(要求国

内和国外各举一例说明)

7. 熟悉摄像管各个部分结构和作用,如图P253图7-1

光电成像原理及技术课后题答案

光电成像原理及技术课后题 答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 5.光学成像系统与光电成像系统的成像过程各有什么特点在光电成像系统性能评价方面通常从哪几方面考虑 答:a、两者都有光学元件并且其目的都是成像。而区别是光电成像系统中多了光电装换器。 b、灵敏度的限制,夜间无照明时人的视觉能力很差; 分辨力的限制,没有足够的视角和对比度就难以辨认; 时间上的限制,变化过去的影像无法存留在视觉上; 空间上的限制,隔开的空间人眼将无法观察; 光谱上的限制,人眼只对电磁波谱中很窄的可见光区感兴趣。 6.反映光电成像系统光电转换能力的参数有哪些?表达形式有哪些答:转换系数:输入物理量与输出物理量之间的依从关系。 在直视型光电成像器件用于增强可见光图像时,被定义为电镀增益G 光电灵敏度: 或者: 8.怎样评价光电成像系统的光学性能有哪些方法和描述方式 答,利用分辨力和光学传递函数来描述。 分辨力是以人眼作为接收器所判定的极限分辨力。通常用光电成像系统在一定距离内能够分辨的等宽黑白条纹来表示。 光学传递函数:输出图像频谱与输入图像频谱之比的函数。对于具有线性及时间、空间不变性成像条件的光电成像过程,完全可以用光学传递函数来 定量描述其成像特性。

第二章 6.影响光电成像系统分辨景物细节的主要因素有哪些? 答:景物细节的辐射亮度(或单位面积的辐射强度); 景物细节对光电成像系统接受孔径的张角; 景物细节与背景之间的辐射对比度。 第三章 13.根据物体的辐射发射率可见物体分为哪几种类型? 答:根据辐射发射率的不同一般将辐射体分为三类: 黑体,=1; 灰体,<1,与波长无关; 选择体,<1且随波长和温度而变化。 14.试简述黑体辐射的几个定律,并讨论其物理意义。 答:普朗克公式: 普朗克公式描述了黑体辐射的光谱分布规律,是黑体理论的基础。 斯蒂芬-波尔滋蔓公式: 表明黑体在单位面积上单位时间内辐射的总能量与黑体温度T的四次方成正比。 维恩位移定律: 他表示当黑体的温度升高时,其光谱辐射的峰值波长向短波方向移动。 最大辐射定律: 一定温度下,黑体最大辐射出射度与温度的五次方成正比。 第五章

光电成像系统

光电成像系统 [教学目的] 1、掌握CCD的结构和工作原理、光电成像原理、光电成像光学系统; 2、了解微光像增强器件和纤维光学成像原理。 [教学重点与难点] 重点:CCD的结构和工作原理、光电成像原理、光电成像光学系统的组成。 难点:CCD的结构和工作原理、调制传递函数的分析。 成像转换过程有四个方面的问题需要研究: 能量方面——物体、光学系统和接收器的光度学、辐射度学性质, 解决能否探测到目标的问题 成像特性——能分辨的光信号在空间和时间方面的细致程度,对多 光谱成像还包括它的光谱分辨率 噪声方面——决定接收到的信号不稳定的程度或可靠性 信息传递速率方面 (成像特性、噪声——信息传递问题,决定能被传递的信息量大小) 景噪声景 噪 声 声声 光电成像器件是光电成像系统的核心。 §1 固体摄像器件

固体摄像器件的功能:把入射到传感器光敏面上按空间分布的光强信息(可见光、红外辐射等),转换为按时序串行输出的电信号——视频信号,而视频信号能再现入射的光辐射图像。 固体摄像器件主要有三大类: 电荷耦合器件(Charge Coupled Device,即CCD) 互补金属氧化物半导体图像传感器(即CMOS) 电荷注入器件(Charge Injenction Device,即CID) 一、电荷耦合摄像器件 电荷耦合器件(CCD)特点)——以电荷作为信号 CCD的基本功能——电荷存储和电荷转移 CCD工作过程——信号电荷的产生、存储、传输和检测的过程1.电荷耦合器件的基本原理 (1)电荷存储 构成CCD的基本单元是MOS(金属-氧化物-半导体)电容器 电荷耦合器件必须工作在瞬态和深度耗尽状态 (2)电荷转移 以三相表面沟道CCD为例 表面沟道器件,即SCCD(Surface Channel CCD)——转移沟道在界面的CCD器件

光电成像原理复习指南(含答案)

复习指南 注:答案差不多能在书上找到的都标注页数了,实在找不到的或者PPT上的才打在题后面了,用红色和题干区分。特此感为完善本文档所做出贡献的各位大哥。(页码标的是白廷柱、金伟其编著的光电成像原理与技术一书) 1.光电成像系统有哪几部分组成?试述光电成像对视见光谱域的延伸以及所受到的限制(长波限制和短波限制)。(辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。P2-4) 答:辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。 [1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?(P5) 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节( 4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点?(P8)固体成像器件主要有哪两类?(P9,CCD CMOS) 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 电荷耦合器件,简称CCD;自扫描光电二极管阵列,简称SSPD,又称MOS图像传感器 4.什么是像管?由哪几部分组成?(P8第一段后部) 器件本身具有图像的转换、增强及显示等部分,它的工作方式是:通过外光电效应将入射的辐射图像转换为电子图像,而后由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增,经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。这样的器件通常称为像管。 基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。 5.像管的成像包括哪些物理过程?其相应的物理依据是什么?(P8第一段工作方式) (1)像管的成像过程包括3个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图 像B、使电子图像聚焦成像并获得能量增强或数量倍增C、将获得增强后的电子图像转

光电测试考试资料整理

第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外, 用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen射线)与y 射线(Gamma射线)波段。 这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系 统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制: (1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以 捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来

3.光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常 使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光 图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4.什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接 收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强 后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要 是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5.反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6.光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f噪声)(6)介质损耗噪声(7)电 荷藕合器件(CCD)的转移噪声 第二章:

光电成像原理与技术考试要点.pdf

光电成像原理与技术考试要点 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以 捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3. 光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4. 什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5. 反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6. 光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f 噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1. 人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3 min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45 min,充分暗适应则需要一个多小时。 2. 何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3. 试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。

光电成像

光电测试考试资料整理 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X射线(Roentgen射线)与y射线(Gamma射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4.什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5.反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6.光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1.人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45min,充分暗适应则需要一个多小时。 2.何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3.试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。 [2]特点:眼睛的分辨力与很多因素有关,从内因分析,与眼睛的构造有关(此处不再讨论)。从外因分析,主要是决定于目标的亮度与对比度,但眼睛会随外界条件的不同,自动进行适应,因而可得到不同的极限分辨角。当背景亮度降低或对比度减小时,人眼的分辨力显著地降低。于中央凹处人眼的分辨力最高,故人眼在观察物体时,总是在不断地运动以促使各个被观察的物体依次地落在中央凹处,使被观察物体看得最清楚。 4.简述下列定义:(1)图像信噪比(2)图像对比度(3)图像探测方程 答:[1]图像信噪比:图像信号与噪声之比[2]图像对比度:指的是一幅图像中明暗区 域最亮的白和最暗的黑之间不同亮度层级的测量,即指一幅图像灰度反差的大小。 [3]当关系式成立时,表明图像可探测到,反之将不能探测。

光电技术应用及发展展望

光电技术应用及发展前景 43年前,世界上第一台红宝石激光器诞生。那是的人们可能还没有意识到,由这台激光器引发、孕育出的光电技术将会给人类的生活带来翻天覆地的变化。随着光电子技术的发展,当今社会正在从工业社会向信息社会过渡,国民经济和人们生活对信息的需求和依赖急剧增长,不仅要求信息的时效好、数量大,并且要求质量高、成本低。在这个社会大变革时期,光电子技术已经渗透到国民经济的每个方面,成为信息社会的支柱技术之一。总之,光电子技术具有许多优异的性能特征,这使得它具有很大的实用价值。而今天,光电子产业已经成为了21世纪的主导产业之一,光电子产业的参天大树上也结出了丰富的果实,它们包括但不限于光通信、光显示、光存储、影像、光信号、太阳能电池等,也可以简单地把现在的光电子产业分为信息光电子(光纤光缆、光通讯设备等)、能量光电子(激光器、激光加工成套设备、测控仪表、激光医疗设备等)和娱乐光电子(VCD、DVD等)等方面。而本文将介绍光电子技术在以下几个领域的应用前景: 光通信: 目前,光通信网络行业进入高速发展期,以光纤为技术基础的网络通信现在已经覆盖了许多地区,我国的光通信技术也走在世界前沿。2011年,武汉邮科院在北京宣布完成“单光源1-Tbit/s LDPC 码相干光OFDM 1040公里传输技术与系统实验”,这一传输速率是目前国内商用最快速率(40Gb/s)的25倍。十年发展,光通信商用水平的最高单通道速率增长16倍,最大传输容量增长160倍。2005年,邮科院实现了全球率先实现在一对光纤上4000万对人同时双向通话。2011年7月29日,该院在全球率先实现一根光纤承载30.7Tb/s信号的传输,可供5亿人同时在一根光纤上通话,再次刷新了世界纪录。而正在研制中的科技开发项目,有望在2014年实现12.5亿对人同时通话。这一技术打破了美国在该领域保持的单光源传输世界纪录。在2012年的中国光博会上,新技术新产品层出不穷。随着“宽带中国”上升为国家战略,中国得天独厚的优势将使光通信制造企业信心十足。通过对各技术分支专利的分析看出,光传输物理层PHY和光核心网OCN已相对成熟和大规模商用,PHY作为各类网络传输技术的基础,既有相对成熟、淡出主流研究视野的部分,也有业界正致力于寻求最佳方案的技术点;无光源网络PON技术作为世界普遍应用的接入网技术,在“光纤到户”、“三网融合”等概念家喻户晓的今天,已成为各国基础设施建设投资中不可或缺的一部分;分组传输网PTN既是新兴技术,又得到了相对广泛的商用,其在移动回传中的应用使其成为下一代移动通信网络建设中的一种较优的可选方案,同时相应技术标准正在争议中发展,其技术发展将带来难以估量的商机;智能交换光网络ASON技术和全光网AON技术是光通信网络技术中的前沿技术,目前处于研发的活跃期。 此外,复旦大学近期研发的可见光通讯技术也是光通信的发展前景之一,通过给普通的LED 灯泡加装微芯片,使灯泡以极快的速度闪烁,就可以利用灯泡发送数据。而灯泡的闪烁频率达到每秒数百万次。通过这种方式,LED灯泡可以快速传输二进制编码。但对裸眼来说,这样的闪烁是不可见的,只有光敏接收器才能探测。这类似于通过火炬发送莫尔斯码,但速度更快,并使用了计算机能理解的字母表。使用标准的LED照明灯,哈斯与他的同事戈登·波维创建的研究小组已经达到了两米距离的130兆比特每秒的传输速度。随着白炽灯、荧光灯逐渐退出市场并被LED取代,未来任何有光的地方都可以成为潜在的LiFi数据传输源。想象一下这样的场景:在街头,利用路灯就可以下载电影;在家里,打开台灯就可以下载歌曲;在餐厅,坐在有[4]灯光的地方就可以发微博;即便是在水下,只要有灯光照射就可以上网。LiFi另一个巨大的好处是在任何对无线电敏感的场合都可以使用,比如飞机上、手术室里等。光显示:

光电成像技术玉林师范学院期末考试

1.简述: (1)CMOS器件和CCD器件的工作原理上有什么相同点和不同点; 答:CMOS图像传感器的光电转换原理与CCD基本相同,其光敏单元受到光照后产生光生电子。而信号的读出方法却与CCD不同,每个CMOS源像素传感单元都有自己的缓冲放大器,而且可以被单独选址和读出,工作时仅需工作电压信号,而CCD读取信号需要多路外部驱动。 (2)在应用上各自有什么优缺点,以及各自的应用领域是什么 答:优缺点比较:CMOS与CCD图像传感器相比,具有功耗低、摄像系统尺寸小,可将图像处理电路与MOS图像传感器集成在一个芯片上等优点,但其图像质量(特别是低亮度环境下)与系统灵活性与CCD的相比相对较低。灵敏度代表传感器的光敏单元收集光子产生电荷信号的能力,而CCD灵敏度较CMOS高30%~50%。电子-电压转换率表示每个信号电子转换为电压信号的大小,由于CMOS在像元中采用高增益低功耗互补放大器结构,其电压转换率略优于CCD。 运用的领域:CMOS传感器在低端成像系统中具有广泛运用,如数码相机,微型和超微型摄像机。CCD在工业生产中的应用广泛,如冶金部门中的各种管、线轧制过程中的尺寸测量。 (3)全球生产CMOS器件和CCD几件的企业有哪些分别位于哪些国家,并对先关企业进行简要描述。 2、简要概述《光电成像原理与技术》各章的主要内容,并用自己的语言陈述各章之间的联系(文字在1000字以上)。 答: 1.光电成像技术的产生及发展,光电成像对视见光谱域的延伸,光电成像技术的应用范畴,光电成像器件的分类,光电成像器件的特性。 2.] 3.人眼的视觉特性与图像探测:人眼的视觉特性与模型,图像探测理论与图像探测方程,目标的探测与识别。 4.辐射源与典型景物辐射:辐射度量及光度量,朗伯辐射体及其辐射特性,黑体辐射定律,辐射源及其特性。 5.辐射在大气中的传输:大气的构成,大气消光及大气窗口,大气吸收和散射的计算,大气消光对光电成像系统性能的影响。 6.直视型电真空成像器件成像物理:像管成像的物理过程,像管结构类型与性能参数,辐射图像的光电转换,电子图像的成像理论,电子图像的发光显示,光学图像的传像与电子图像的倍增。 7.直视型光电成像系统与特性分析:直视型光电成像系统的原理,夜视光电成像系统的主要部件及特性,直视型夜视成像系统的总体设计,夜视系统的作用距离。 8.电视型电真空成像器件成像物理:电视摄像的基本原理,摄像管的主要性能参数,摄像管的分类,热释电摄像管,电子枪简介。 9.固体成像器件成像原理及应用: CCD的物理基础与工作原理, CDD的结构与特性,CCD 成像原理,增强型(微光)电荷耦合成像器件,CCD的应用,CMOS成像器件及其应用。10.电视型光电成像系统与特性分析:电视系统的组成与工作原理,电视型微光成像系统(微光电视),成像光子计数探测系统。 11.红外热成像器件成像物理:红外探测器的分类,红外探测器的工作条件与性能参数,光电导型红外探测器,光伏型红外探测器,红外焦平面阵列探测器,非制冷红外焦平面陈列探测器,量子阱红外探测器。

光电检测技术与应用-郭培源-课后答案

光电检测技术与应用课后答案 第1章 1、举例说明你说知道的检测系统的工作原理。 (1)光电检测技术在工业生产领域中的应用:在线检测:零件尺寸、产品缺陷、装配定位…(2)光电检测技术在日常生活中的应用: 家用电器——数码相机、数码摄像机:自动对焦---红外测距传感器自动感应灯:亮度 检测---光敏电阻 空调、冰箱、电饭煲:温度检测---热敏电阻、热电偶遥控接收:红外检测---光敏二极管、光敏三极管可视对讲、可视电话:图像获取---面阵CCD 医疗卫生——数字体温计:接触式---热敏电阻,非接触式---红外传感器办公商务——扫描仪:文档扫描---线阵CCD 红外传输数据:红外检测---光敏二极管、光敏三极管(3)光电检测技术在军事上的应用:夜视瞄准机系统:非冷却红外传感器技术激光测距仪:可精确的定位目标光电检 测技术应用实例简介点钞机 (1)激光检测—激光光源的应用用一定波长的红外激光照射第五版人民币上的荧光字,会使荧光字产生一定波长的激光,通过对此激光的检测可辨别钞票的真假。由于仿制 困难,故用于辨伪很准确。(2)红外穿透检测—红外信号的检测红外穿透的工作原理是利用人民币的纸张比较坚固、密度较高以及用凹印技术印刷的油墨厚度较高,因而 对红外信号的吸收能力较强来辨别钞票的真假。人民币的纸质特征与假钞的纸质特征 有一定的差异,用红外信号对钞票进行穿透检测时,它们对红外信号的吸收能力将会 不同,利用这一原理,可以实现辨伪。 (3)荧光反应的检测—荧光信号的检测荧光检测的工作原理是针对人民币的纸质进行检测。人民币采用专用纸张制造(含85%以上的优质棉花),假钞通常采用经漂白处理后的普通纸进行制造,经漂白处理后的纸张在紫外线(波长为365nm的蓝光)的照射下会出现荧光反应(在紫外线的激发下衍射出波长为420-460nm的蓝光),人民 币则没有荧光反应。所以,用紫外光源对运动钞票进行照射并同时用硅光电池检测钞 票的荧光反映,可判别钞票真假。 (4)纸宽的检测—红外发光二极管及接收二极管的应用主要是用于根据钞票经过此红外发光及接收二极管所用的时间及电机的转速来间接的计算出钞票的宽度,并对机器 的运行状态进行判断,比如有无卡纸等;同时也能根据钞票的宽度判断出其面值。

光电成像原理与应用复习资料

1、光电效应应按部位不同分为内光电效应和外光电效应,内光电效应包括(光电导)和(光伏效应)。 2、真空光电器件是一种基于(外光电)效应的器件,它包括(光电管)和(光电倍增管)。 3、光电导器件是基于半导体材料的(光电导)效应制成的,最典型的光电导器件是(光敏电阻)。 4、硅光电二极管在反偏置条件下的工作模式为(光电导),在零偏置条件下的工作模式为(光伏模式)。 5、变象管是一种能把各种(不可见)辐射图像转换成为(可见)图像的真空光电成像器件。 6、固体成像器件电荷转移通道主要有两大类,一类是(SCCD),另一类是(BCCD)。 7、光电技术室(光子技术)和(电子技术)相结合而形成的一门技术。 8、场致发光有(直流)、(交流)和结型三种形态。 9、常用的光电阴极有(正电子亲合势光电阴极)和(负电子亲合势光电阴极),正电子亲和势材料光电阴极有哪些(Ag-O-Cs,单碱锑化物,多碱锑化物)。 10、根据衬底材料的不同,硅光电二极管可分为(2DU)型和(2CU)型两种。 11、像增强器是一种能把(微弱)增强到可以使人眼直接观察的真空光电成像器件,因此也称为(微光管)。 12、光导纤维简称光纤,光纤有(纤芯)、(包层)及(外套)组成。 13、光源按光波在时间,空间上的相位特征可分为(相干)和(非相干)光源。 14、光纤的色散有材料色散、(波导色散)和(多模色散)。 15、光纤面板按传像性能分为(普通OFP)、(变放大率的锥形OFP)和(传递倒像的扭像器)。 16、光纤的数值孔径表达式为(),它是光纤的一个基本参数、它反映了光纤的(集光)能力。 17、真空光电器件是基于(外光电)效应的光电探测器,他的结构特点是有一个(真空管),其他元件都置于(真空管)。 18、根据衬底材料的不同,硅光电电池可分为(2DR)型和(2CR)型两种。 19、根据衬底材料的不同,硅光点二、三级管可分为(3DU)型和(3CU)型两种。 20、为了从数量上描述人眼对各种波长辐射能的相对敏感度,引入视见函数V(f), 视见函数有(明视见函数)和(暗视见函数)。 21、PMT有哪几部分组成?并说明店子光学系统的作用是什么?PMT的工作原理? PMT主要由入射窗口、光电阴极、电子光学系统、电子倍增系统和阳极五个主要部分组成。 电子光学系统的主要作用有两点: 1、使光电阴极发射的光电子尽可能全部汇聚到第一倍增极上,而将其他部分的杂散热电子散射掉,提高信噪比. 2 . PMT的工作原理 1.光子透过入射窗口入射在光电阴极K上 2.光电阴极K受光照激发,表面发射光电子 3.光电子被电子光学系统加速和聚焦后入射到第一倍增极D1上,将 发射出比入射电子数更多的二次电子。入射电子经N级倍增后, 光电子数就放大N次. 4.经过倍增后的二次电子由阳极P收集起来,形成阳极光电流I p,在负载R L上产生信号电压U0。 22、PMT的倍增极结构有几种形式?个有什么特点? 鼠笼式,盒栅式,直线聚焦型,百叶窗式,近贴栅网式,微通道板式。 23、什么是二次电子?并说明二次电子发射过程的三个阶段是什么?光电子发射过程的三步骤? 答:当具有足够动能的电子轰击倍增极材料时,倍增极表面将发射新的电子。称入射的电子为一次电子,从倍增极表面发射的电子为二次电子。 二次电子发射过程的三个阶段: 1) 材料吸收一次电子的能量,激发体内电子到高能态,这些受激电子称为内二次电子; 2) 内二次电子中初速指向表面的那一部分向表面运动,在运动中因散射而损失部分能量; 3) 到达界面的内二次电子中能量大于表面势垒的电子发射到真空中,成为二次电子。 24、简述Si-PIN光电二极管的结构特点,并说明Si-PIN管的频率特性为什么比普通光电二极管好?p69 25、简述常用像增强器的类型?并指出什么是第一、第二和第三代像增强器,第四代像增强器在在第三代基础上突破的两个技术室什么?p130 1). 级联式像增强器2) 第2代像增强器(微通道板像增强器)3).第3代像增强器4).第4代像增强器 26、什么是光电子技术?光电子技术以什么为特征? 光电子技术是:光子技术与电子技术相结合而形成的一门技术。主要研究光与物质中的电子相互作用及其能量相互转

光电成像技术

2014-2015 第一学期 光电成像技术 ——红外热成像技术的发展及其应用 院系电子工程学院光电子技术系 班级光信1104 姓名王凯 学号05113123 班内序号14 考核成绩

红外热成像技术的发展及其应用 摘要:用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。 关键字:红外线,红外热成像技术,发展及其应用 一、引言 1800年英国的天文学家Mr.William Herschel 用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。 二、红外热成像技术 我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。红外热成像仪大致分为致冷型和非致冷型两大类。 目前,世界上最先进的红外热像仪(热成像仪或红外热成像仪),其温度灵敏度可达0.03℃。 1、红外热像仪的工作原理 红外热像仪可将不可见的红外辐射转换成可见的图像。物体的红外辐射经过镜头聚焦到探测器上,探测器将产生电信号,电信号经过放大并数字化到热像仪的电子处理部分,再转换成我们能在显示器上看到的红外图像。

光电成像系统复习

光电成像系统基础理论 第一章: 1. 人眼视觉性能的局限性; (1)灵敏度的限制:光线很差时人的视觉能力很差; (2)分辨力的限制:没有足够的视角和对比度就难以辨识; (3)时间上的限制:变化过去的影像无法存留在视觉上; (4)空间上的限制:离开的空间人眼将无法观察; (5)光谱上的限制:人眼局限于电磁波的可见光区; 因此,眼睛的直观视觉只能有条件地提供图像信息,为了突破人眼的限制催生了光电成像技术这门学科。扩展视见光谱范围、视见灵敏度和时空限制。 2.光电成像系统的分类以及各自的工作方式; (1)直视型光电成像系统 工作方式:①通过外光电效应将入射的辐射图像转换为电子图像;②由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增;③经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。 (2)电视型光电成像系统 工作方式:①接收二维的光学图像或热图像,②利用光敏面的光电效应或热电效应将其转换为二维电荷图像并进行适当时间的存储,③然后通过电子束扫描或电荷耦合转移等方式, 输出一维时间的视频信号。 3.变像管与像增强器的异同。 变像管:接受非可见辐射图像的直视型光电成像器件:红外变像管、紫外变像管和X 射线变像管等。 共同特点:入射图像的光谱和出射图像的光谱完全不同,输出图像的光谱是可见光。像增强器:接受微弱可见光图像的直视型光电成像器件:级联式像增强器、带微通道板的像增强器、负电子亲和势光阴极的像增强器等。 共同特点:输入的光学图像极其微弱,经器件内电子图像的能量增强和数量倍增后通过荧光屏输出可见光学图像。 第二章: 1. 绝对视觉阈、阈值对比度、光谱灵敏度; 人眼的绝对视觉阈 所谓人眼的绝对视觉阈,是在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值(用照度表示,单位lx),在10-9数量级。 人眼的阈值对比度 阈值对比度是指在一定背景下把目标鉴别出来所必须的目标在背景中的衬度(对比度C)。C的倒数成为反衬灵敏度。 人眼的光谱灵敏度 人眼对不同波长的光具有不同的灵敏度响应,不同人的眼睛,对波长灵敏度响应也有差异。 在可见光区域内,任意波长与555 nm波长处的辐射功率之比称为光谱灵敏度,其构成的曲线就称为光谱响应曲线。 2.约翰逊准则对探测水平的分级及其各自的定义;

光电技术及应用

《光电技术及应用》期末总结 在本学期开始选课时,很惊喜的看到我院的牛憨笨院士竟然开了一门课,《光电技术及应用》,作为光电工程学院一名学生的我,果断的就选报了。 本课程由牛憨笨院士主讲,作为学院的最高领导人,他总能给我们用课件展示最新的光电类科学技术,以及以后哪方面是研究的主导。 记得院士曾给我们讲过最新关于激光科技的研究发展情况,而我这对激光有着一定的兴趣,所以自然而然的更加关注。 激光历史 世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 激光产生 物质与光相互作用的规律 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。 1. 受激吸收 处于较低能级的粒子在受到外界的激发,吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。 2. 自发辐射 粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。 3. 受激辐射、激光 1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 近几年中国激光产业发展情况 激光精密切割的国产发电机转子成功地应用于三峡工程水轮发电机组,激光切割的零部件应用于航天工程……中国激光器及成套设备制造水平近年来大幅提升。 激光技术作为一种新的科学技术有着广阔的应用前景。快速、精准是其最大的优势,激光不仅能够在精密仪器上打标,也可以快速的对地毯等进行切割。激光机在现代的工业事业上功不可没。推进了工业的快速发展。 激光走进了人们的生活同时也加速了人类社会的进步。相信在不久的将来,激光将会渗透到社会生活的方方面面。 激光应用 光纤通信,光纤常被电信公司用于传达电话、构建网络等。跟传统的铜线相比光纤的信号衰减小、抗干扰能力高,。 军事科技 激光在科技、军事上的应用也有很多。 工业生产 激光在工业上的应用也非常的广泛。如激光打标、激光打孔、激光裁床、激光切割、

光电技术的应用

引言 光电子技术确切称为信息光电子技术。20世纪60年代激光问世以来,最初应用于激光测距等少数应用,到70年代,由于有了室温下连续工作的半导体激光器和传输损耗很低的光纤,光电子技术才迅速发展起来。全世界铺设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术成为市场最大的电子产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗低、响应带宽很大,噪音低的光电子技术。 当今全球范围内,已经公认光电子产业是本世纪的第一主导产业,是经济发展的制高点,光电子产业的战略地位是不言而喻的。鉴于此,光电子技术应用的开发被世界各国所关注,新的应用领域也在不断发现中。 我国光电子技术和发展,从“六五”起步,开始发展以激光技术为主的光电子技术。1987年科技部把信息光电子列入“863”计划,给予支持,激光科学技术的研究和发展受到国家的很大重视,在国防建设和社会应用上起了重要作用。我国光电子产业的原始基础是军事光学,军用光电子学和红外技术。自60年代以来,我国依靠自己的力量,研制出“神龙”高功率激光装置,激光分离同位素装置,军用靶场激光经纬仪,激光卫星测距仪,高速摄影机,红外扫描仪等重要的军用光电子设备,并在此过程中,形成了实力雄厚的10多个光电子技术研究基地。70年代末,光纤通信的研究和开发也在我国兴起。80年代中期光盘技术和光电平面显示技术也得到发展。我国在"八五"计划期间对一些光电器件企业进行了技术改造,已在"九五"计划中产生了效益。例如,12英寸彩色液晶显示屏已经在1996年投产。国家重大成套通信设备2.5Gbps同步数字系列(SDH)光通信系统,于1997年研制开发成功,现已广泛应用于国家通信骨干网的建设[1]。 总之,我国的光电子技术经过“七五”入轨,“八五”攻坚和“九五”拼搏,在信息光电子方面取得了可喜的成绩。而我国光电子技术理论的迅速发展,更为该领域的可持续发展奠定了坚实的基础。理论是发展的基础,发展是理论的延续。对于较新兴的技术领域更是如此。近年来,我国光电子技术理论论文发表数量逐年增加,论文年平均增长率在光电子技术领域的所有专业中最高,这为光电子技术的进一步发展和产业化奠定了厚实的基础。

光电成像原理及技术__部分答案(北理工)解析

第一章 5.光学成像系统与光电成像系统的成像过程各有什么特点?在光电成像系统性能评价方面通常从哪几方面考虑? 答:a、两者都有光学元件并且其目的都是成像。而区别是光电成像系统中多了光电装换器。 b、灵敏度的限制,夜间无照明时人的视觉能力很差; 分辨力的限制,没有足够的视角和对比度就难以辨认; 时间上的限制,变化过去的影像无法存留在视觉上; 空间上的限制,隔开的空间人眼将无法观察; 光谱上的限制,人眼只对电磁波谱中很窄的可见光区感兴趣。 6.反映光电成像系统光电转换能力的参数有哪些?表达形式有哪些? 答:转换系数:输入物理量与输出物理量之间的依从关系。 在直视型光电成像器件用于增强可见光图像时,被定义为电镀增益G1, 光电灵敏度: 或者: 8.怎样评价光电成像系统的光学性能?有哪些方法和描述方式? 答,利用分辨力和光学传递函数来描述。 分辨力是以人眼作为接收器所判定的极限分辨力。通常用光电成像系统在一定距离内能够分辨的等宽黑白条纹来表示。 光学传递函数:输出图像频谱与输入图像频谱之比的函数。对于具有线性及时间、空间不

变性成像条件的光电成像过程,完全可以用光学传递函数来定量描述其成像特性。 第二章 6.影响光电成像系统分辨景物细节的主要因素有哪些? 答:景物细节的辐射亮度(或单位面积的辐射强度); 景物细节对光电成像系统接受孔径的张角; 景物细节与背景之间的辐射对比度。 第三章 13.根据物体的辐射发射率可见物体分为哪几种类型? 答:根据辐射发射率的不同一般将辐射体分为三类: 黑体,=1; 灰体,<1,与波长无关; 选择体,<1且随波长和温度而变化。 14.试简述黑体辐射的几个定律,并讨论其物理意义。 答:普朗克公式: 普朗克公式描述了黑体辐射的光谱分布规律,是黑体理论的基础。 斯蒂芬-波尔滋蔓公式: 表明黑体在单位面积上单位时间内辐射的总能量与黑体温度T的四次方成正比。

光电成像原理

光电成像原理论文 院系:物理学系 专业:光信息科学与技术 姓名:王世明 学号:2007113143

嵌入式光电成像系统及高分辨率的实现 王世明 (西北大学2007级陕西西安 710069) 摘要:自上世纪初人类揭示光电效应的本质以来,光电成像技术一直是成像领域的热点技术,并得到了迅速的发展。目前,光电成像技术已广泛应用于国防、航天、生物科学、化工检测、工业监控乃至日常消费等领域。本论文分析了目前光电成像系统结构和性能上的优势和不足,从提高系统移动性和集成度、突破传输受限和增强系统实时处理和分析三个方面出发,设计了一套新型的光电成像系统,并详细分析了这套系统的整体构造、软硬件设计和实现形式、调试技术和实验结果。 嵌入式技术的引入,可以大大减小光电成像系统的体积,降低功耗,提高便携性,从而扩展光电成像技术的应用领域。本论文将该系统应用于图像采集,得到了理想的实验结果。论文最后,总结了设计过程中所做的工作和创新点,同时对于系统的进一步完善和开发进行了展望。本文主要介绍了光电成像原理的发展过程及其在实际生活中的运用,为我们介绍了具体的应用及未来的发展前景。 实现成像系统的超高分辨是光电探测领域中探索和追求的重要目标。 对提高天文观测、空间侦察和资源探铡的信息容量及精度具有重要意义。 归纳总结了近年来国内外从光学系统结构、光电探测器及软件重建等方面对提高系统分辨能力所进行的部分研究和进展.结合本实验室在这一领城开展的研究,时其中的一些理论及工程方法探索进行了阐述和分析,旨在为进一步实现超高分辨光电成像系统的研究提供建设性参考意见。 关键词:光电成像、嵌入式系统、ADS调试、图像采集 一.光电成像系统的发展 现代人类是生活在信息时代,获取图像信息是人类文明生存和发展的基本需要,据统计,在人类接受的信息中,视觉信息占到了60%。但是由于视觉性能的限制,通过直接观察所获得的图像信息是有限的。首先是灵敏度的限制,在照明不足的情况下人的视觉能力很差;其次是分辨力的限制;还有时间上的限制,已变化过的景象无法留在视觉上。总之,人的直观视觉只能有条件地提供图像信息。在很久以前,人们就已经开始为开拓自身的视觉能力而探索,望远镜、显微镜、胶片照相机等的应用,为人类观察和保留事物景象提供了方便。直到上世纪20年代,爱因斯坦完善了光与物质内部电子能态相互作用的量子理论,人类从此揭开了内光电效应的本质。同时,随着半导体理论发展和随之研制出来的各种光电器件,内光电效应得到了广泛的应用。而在外光电效应领域,1929年科勒制成了第一个实用的光电发射体一银氧铯光阴极,随后成功研制了红外变像管,实现了将不可见的红外图像转换为可见光图像。随之而来的是紫外变像管和X射线变像管,人类的视觉光谱范围获得了很大的扩展。上世纪30年代,人类又开始为扩展视界而致力于电视技术的研究。以弗兰兹沃思开发的光电析像器为起端,伴随而来的是众多摄像器件的诞生,超正析像管、分流摄像管、视像管、热释电摄像管等。1976年,美国贝尔实验室发现电荷通过半导体势阱发生转移的现象,利用

相关文档