文档库 最新最全的文档下载
当前位置:文档库 › 181192_如何在招标中减少人为因素干扰的探讨

181192_如何在招标中减少人为因素干扰的探讨

181192_如何在招标中减少人为因素干扰的探讨
181192_如何在招标中减少人为因素干扰的探讨

如何在招标中减少人为因素干扰的探讨

简介:在目前水利工程招标中,存在着一些易受人为因素干扰的环节,本文通过对这些具体环节进行分析,得出减少人为因素干扰的预防措施和办法,从而使招标活动真正做到"公开、公正、公平"。

关键字:招标人为因素干扰预防措施

1.目前工程招标中的一般做法及其存在问题

目前,县(市)一级的水行政主管部门在地方性的水利工程建设招标工作中,常以邀请招标的方式、采用综合打分评标法来选择施工企业。一般做法是:在招标前,委托有资质的单位预先计算出该项目的预算价;然后成立评标小组,采用百分制打分法对各投标商的施工组织设计和企业信誉进行打分;再以该项目的预算价为基准,计算各投标企业商务标的得分;最后从中选择总得分最高者为中标企业。

在引入市场竞争机制后,采用招标方式来选择施工队伍,对防止腐败行为,确保工程质量,确实起到了非常重要的作用,但是由于在我国水利工程建设中采用仅10多年历史,在具体的操作方法上还有不少待完善之处,招标过程中有许多环节易受人为因素干扰。有的人在个人利益或小集体利益的驱使下,置招标法和国家利益不顾,钻政策空子,如邀请招标时凭关系选择投标商;编制标底预算价时人员不

保密且编标时间过早造成泄密;评标标底没有采用复合标底;过早确定评标小组成员给少数人以可乘之机,打组织设计分和企业信誉分时凭关系打人情分等等,所有这些均使招标失去了实质意义。

2.易受人为因素干扰的环节及预防措施

2.1邀请招标时投标商的选择

在采用邀请招标方式时,应严格按照有关规定,对企业资质和项目经理资质等级标准要有明确要求,严禁凭关系随便破例。若一个标段报名企业较多时,对经资格预审后符合要求的企业,不应从中人为指定邀请对象,而应采用随机抽签方法产生,数量以每个标段选5~6家为宜;如遇堤防工程、河道疏浚砌石等有大批工程将陆续招标时,可采用按顺序排队的方式,将资格预审合格的企业先预以登记,然后每轮招标时按一个标段选6家从上到下按报名顺序邀请施工企业。这样,可避免有关系的企业每次均被邀请,而没有关系的则很少有机会参加。

2.2预算价编制的人员、时间、方式

编制预算的所有工作应在投标企业全部交标以后方可着手进行;编制预算的单位应选择非当地的有资质的单位,编制人员要有造价工

程师(员)资格,并注意严格保密;编制预算必须给予足够的时间;编制预算应体现工程招标“统一量、指导价、竞争费”这一基本指导原则,不能任意压低工程直接费和背离定额计价依据。编制方式宜采用量与价分离的办法,即由一组人员负责工程量计算,另一组负责预算单价分析,待各自校核无误后再合成总价;或先通过电脑建好预算系统,待投标企业交标以后,再商定出材料价格,输入到预算系统中,即可产生总价。预算价编制完成后,须报当地招标办审定。另外须注意的是,编制预算价及审标工作应在封闭环境中,在监察、公证等部门监督下进行。

为保证公开竞争,防止不正当的压价、串标和泄漏标底行为,合理控制标底价,应遂步推广“无标底招标、有标底评标”(明标暗投)的招标方法,即招标单位不设标底,只参考定额,并结合市场行情编制出招标方预算价,在招标文件中向投标单位公布。采用这一方法将有利于制约发包方、承包方、中介方和管理方,排除这一环节中的不正当人为因素。

2.3复合标底的产生办法

评标时应采用复合标底来作为评定商务标的基准。具体产生办法如下:

①招标方控制造价:

开标后, 应首先确定招标方预算价下浮率N%。

下浮率N%由招标领导小组和评标专家组一起,结合当时的造价管理政策、工程难易程度和其他相关因素,采用记名打分方式确定,幅度宜掌握在92%~97%之间。

招标方控制造价=招标方预算价×N%

(注:如有必要,下浮率N%也可以抽签产生,幅度可在94%~96%之间)

②投标单位期望报价:

以招标方控制造价为基准,各投标企业的总报价只有在控制造价的90%~105%范围内,才为有效报价。投标单位有效报价平均值即为投标单位期望报价。

③复合标底价:

以随机抽签办法产生招标方的控制造价在复合标底中所占的权

重M%(以50%~70%为宜)。

复合标底价=招标方控制造价×M%+投标单位期望报价×(100%-M%)

④计算各投标企业的商务分:分别按投标企业有效报价计算出相对于复合标底价下浮或上浮的百分率,即:

K%=〔(各投标企业的有效投标报价-复合标底价)÷复合标底价〕×100%。

最后,根据上面百分率计算报价分或查招标文件中事先按规定编制的附表,得出此企业工程报价的得分。

2.4施工组织设计打分

首先,在招标书中应明确规定技术标为暗标,即技术标中不应有任何隐含投标单位身份的内容。要求投标企业在递交施工组织设计时,封面必须采用招标方提供的统一式样,纸张规格采用16K复印纸,内容不得出现投标企业名称、企业人员姓名及其能推断出投标企业的文字与图案,否则为废标。通常在组织设计中需提供的项目班子及主要人员资料一律并入《资格后审资料》中,供打企业信誉分时参

考。

评标小组对施工组织设计打分时,宜分成二步进行。第一步是确定类别。评标小组根据投标企业对招标文件的响应程度和所提交施工组织设计的科学性、针对性、可行性、先进性和合理完善程度,包括施工进度计划、质量保证措施、施工现场布置、主要工序施工方法、施工工艺、投入的机械设备及项目班子的配备计划等,针对不同工程对其中每一项内容又具体进行细化、量化。经集体充分讨论后,将投标企业的施工组织设计分成:一类(20-19分),二类(19-18分),三类(18-17分),四类(17-16分),五类(16-15分)。对某一施工组织设计类别划分意见分歧较大的,应以记名投票方式确定。第二步是具体打分。在该类别的分值范围内,由评标小组成员分别以记名方式打分,去掉一个最高、一个最低分后的平均值作为投标企业的施工组织设计得分。

2.5企业信誉打分

招标领导小组和评标小组成员根据投标书中所提供的资格后审资料,对投标企业特别是项目班子组成人员的实力、素质、信誉、近几年来的业绩情况(包括年施工产值、工程质量、安全和文明施工情况、合同履约情况、类似工程施工情况等),进行综合评议,评议后分别将投标企业信誉评为一类(10-9.5分),二类(9.5-9分),三

类(9-8.5分),四类(8.5-8分)。然后在该类别的分值范围内,由招标领导小组和评标小组成员分别以记名方式打分,去掉一个最高、一个最低分后的平均值作为投标企业的信誉得分。

2.6评标人员的产生时间及评分办法

招标法规定:评标委员会成员的名单在中标结果确定前应当保密,同时也没有规定开标由评标委员会主持。因此,可以在开标后再临时确定评标小组成员,再辅以必要的隔离措施,可以较好地解决保密问题。在市(地)一级均须建立评标专家库,每次开标时技术专家全部从中随机抽取组成。评标小组成员从接到通知起,到评标结束为止,严禁私下与招标企业接触,更不得泄露评标情况和结果。评标宜在商务标未开之前,在封闭环境中,关闭所有的通讯工具,在监察、公证等部门监督下进行。

如有必要,汇总评标小组打分可采用下列办法:在当场公布全部评标专家的打分后,从中随机抽出三分之二组成某一标段的专家评分;再在全部打分中抽出三分之二组成另一标段的专家评分;以此类推。(上述招标方预算价下浮率N%及企业信誉分数汇总时也可依此操作。)

条件成熟的地区,要积极加入到当地的建设工程交易中心,组织

进场交易。同时,应组建具有独立法人资格的招投标代理机构,具体负责编制招投标文件、提出评标办法、组织报名、现场监测、答疑、招标、开标、评标等各项代理工作,把招投标工作中的服务职能从政府职能中分解出去,充分发挥专业优势,针对招投标活动中弄虚作假、串标压价、合法不合理等问题,及时提出操作性强的解决方法,使其招标工作能在符合国家有关法规的范围内运作,减少人为因素的影响和干扰。

3.结语

水利工程招投标工作是一项复杂的系统化工作,环节多,专业性强,涉及方方面面,情况错综复杂,每个地方、每项工程、每次招标均不完全相同,加上目前工程招标实施细则尚不完善,存在着许多环节易受人为因素的影响和干扰,这就需要我们在实际工作中密切注意,查漏补缺,不断加以总结和完善,制订出有针对性、公正合理、科学先进、可操作性强的评标办法和措施,使工程招标发挥应有的作用。

同时,有关行政机关应加快制定、完善与《招标投标法》配套的较为科学的操作程序和严谨的法规,健全相应的管理监督机构及社会服务机构,使人为因素干扰降至最低,最大限度地减少招标过程中的腐败行为,使招标投标活动真正做到“公开、公正、公平”。

干扰观测器

6 干扰观测器的设计原理 干扰观测器的基本思想是,将外部力矩干扰及模型参数变化造成的实际对象与名义模型输出的差异等效到控制输入端,即观测出等效干扰。在控制中引入等效的补偿,实现对干扰完全抑制。基本结构如图(6.1)所示: 图6.1干扰观测器的基本结构 图中的()P G s 为对象的传递函数,d 为等效干扰,d ∧ 为观测的干扰,u 为控制输入。 由此图可求出等效干扰的估计值d ∧ 为: 1 ()()()P P d e d G s G s e d ∧ -=+??-= (6.1) 对实际物理系统,其实现存在如下问题: (1) 在通常情况下,()P G s 的相对阶不为零,其逆在物理上不可实现; (2) 对象()P G s 的精确数学模型无法得到; (3) 考虑到测量噪声的影响,该方法的控制性能将下降。 解决上述问题的唯一方法是在d ∧ 的后面串入低通滤波器()Q s ,并用名义模型() n G s 的逆1 ()n G s -来代替()P G s ,从而得到图(6.2)所示的干扰观测器原理 框图,其中虚线部分干扰观测器。 图6.2干扰观测器原理框图

图中 为控制器输出,d 为系统的外部干扰,n 为传感器的等效测量误差,f d 为预测 到的系统干扰,()P G s 为被控对象的传递函数,()n G s 为其参考模型,()Q s 为干扰观测器的低通滤波器。 控制器的输出为: f u c d d =-+ (6.2) 式中, 为PID 控制器的输出,f d 为干扰d 的估计值。 由图(2)可得: 111 1111 ()() ()()()(()()) P n CY n P n G z G z G z G z Q z G z G z -------=+- (6.3) 1111 1111 ()()(1()) ()()()(()()) P n DY n P n G z G z Q z G z G z Q z G z G z ---------=+- (6.4) 111 1111()() ()()()(()()) P NY n P n G z Q z G z G z Q z G z G z -------=+- (6.5) 设低通滤波器()Q s 的频带为 q f 。通过分析式(6.3),式(6.4)可知: (1) 当q f f ≤时,1,(),0,1CY n DY NY Q G G s G G =≈≈≈。 (2) 当q f f ≥时,0,(),()(),()0CY P DY P NY Q G G s G s G s G s =≈=≈。 通过低通滤波器()Q s 的设计可较好地抵抗外加干扰。 由上面分析可见,()Q s 的设计是干扰观测器中的一个重要环节 。()Q s 的性能决定整个干扰观测器的动态性能。从理论上分析,()Q s 的宽带越宽,阶数越高,干扰观测器的响应速度就越快,干扰的抑制效果就越好,则系统对干扰的灵敏度越低,但随着阶数的升高,大的相位滞后会使系统产生欠阻尼现象,甚至使系统变得不稳定。以上分析可知,如何使 干扰观测器获得好的动态性能和高的稳定性是()Q s 设计的关键。因此首先,为使1 ()()n Q s G s -正则,()Q s 的相对阶应不小于()n G s 的相对阶;其次,()Q s 带宽的设计应是在干扰观测器的鲁棒稳定性和干扰爱抑制能力之间的折中。 设()P G s 的名义模型为()n G s ,则不确定对象的集合可以用乘积摄动来描述,即: ()()(1())P n G s G s s =+? (6.6) 式中,()s ?为可变的传递函数。 图(6.3)示出转台伺服系统某框的实测频率特性()P G s 与名义模型()n G s 频率特性,由图可见,当频率增加时,对象的不确定性增大,()jw ?表现为频率ω的增函数。

基于干扰观测器的PID控制

《PID控制器设计》课程论文 题目:基于干扰观测器的PID控制 目录 内容摘要------------------------------------------------------------3 关键字--------------------------------------------------------------3 1 绪论--------------------------------------------------------------4 2 干扰观测器的设计--------------------------------------------------4 2.1 干扰观测器的基本原理--------------------------------------------4 2.2干扰观测器的性能分析--------------------------------------------5 2.3干扰观测器的稳定特性--------------------------------------------6 2.4干扰观测器的设计------------------------------------------------7 2.5干扰观测器的仿真结果及MATLAB程序-------------------------------8 2.5.1连续系统的控制仿真--------------------------------------------8 2.5.2离散系统的控制仿真 ------------------------------------------ 11 3结论-------------------------------------------------------------17 参考文献-----------------------------------------------------------18 Abstract-----------------------------------------------------------18 KEY WORDS----------------------------------------------------------18

电源滤波器基本知识

术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲:230V, 50Hz;美国:115V, 60Hz) 2. 额定电流 在额定电压和指定温度条件下(常为环境温度40C), EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出: 3. 试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。4. 泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出: 其中 F为工作频率, C为接地电容的容量, V为线-地电压 5. 插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Q系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL- 插入损耗(单位:dB) EO-负载直接接到信号源上的电压 E1-插入滤波器后负载上的电压

6. 气候等级指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注: XX/XXX/XX 前 2 位数字代表滤波器的最低工作温度中间数字代表滤波器的最高工作温度后 2 位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。 8. 电磁干扰(EMI) 电磁干扰经常与无线电频率干扰(RFI )交替使用。从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。滤波器用以消除EMI和RFI 中的多余电磁能。 9. 频率范围 电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz,每秒循环千次数)表示。电源滤波器的典型频率范围在150kHz to 30MHz (超过30MHz即为辐射)10. 阻抗失配 为了达到更好的滤波效果,要使滤波器与它的源阻抗和负载阻抗失配。如图所示。 11. 工作频率 电源滤波器的工作频率标称值为50/60Hz(中国、欧洲等为50Hz;北美为60Hz)。然而,电源滤波器在直流或400Hz的情况下工作,并不会损害其效力。 二、滤波器的作用 1. 什么是射频干扰(RFI)? RFI 是指产生在无线电通讯时,所用频率范围内的一种多余的电磁能。传导现象的频率范围介于10kHz到30MHN间;辐射现象的频率范围介于30MHz到1GHz间。 2. 为何要关注RFI? 之所以必须考虑RFI,基于两点原因:(1)他们的产品必须在其工作环境下正常运行,然而该工作环境常常伴随有严重的R F I。(2)他们的产品不能辐射RFI,以确保不干扰对健康及安全都至关重要的射频(RF)通讯。法律已对可靠的RF 通讯做出了规定,以确保电子设备的RFI 控制。 3. 什么是RFI 的传播模式?

干扰观测器设计开题报告

干扰观测器与PID复合控制系统设计 一、选题背景及依据(简述题目的技术背景和设计依据,说明选题目的、意义,列出主要参考文献) PID 以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。至今仍在控制系统的设计中充当着主要角色。然而随着工业生产规模的增大以及自动化程度的提高,控制系统变得大规模、复杂化,人们对控制系统的要求也不断提高。实际控制系统由于系统本身参数的时变性、外部干扰等不确定性因素的存在,使得传统PID控制很难达到人们期望的性能。 干扰观测器的基本思想是将外部力矩干扰及模型参数变化造成的实际对象与名义模型的差异等效到控制输入端即观测出等效干扰在控制中引入等效的补偿实现对干扰的完全抑制对外部干扰进行实时估计,并在PID控制器的输入端引入等效补偿,以抑制未知扰动和系统不确定性对系统性能产生的影响。它能够有效提高闭环系统的跟踪精度、及时抑制干扰且结构简单、易于实现,受到业界的广泛关注。 本次设计一种干扰观测器与PID复合控制的系统,实现对外部干扰的实时估计和实时补偿,提高水箱液位的控制精度及鲁棒性。 主要参考文献和技术资料 1 蔺辉,田新锋.基于干扰观测器PID的直流电机速度控制[J].微电机,2011,44(9):29-30,65. 2 黄国勇.基于神经网络干扰观测器的Terminal滑模控制[J].吉林大学学报(工学版),2011,41(6):1726-1730. 3 张伟伟,余岳峰,罗永浩.基于阶跃响应曲线拟合的链条锅炉快速建模方法[J].工业锅炉,2007,2:1-4. 4 薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社,2005.6. 5 陈夕松,汪木兰.过程控制系统[M] .北京:科学出版社,2011.1. 6 李利娜;窦丽华;蔡涛;潘峰;基于干扰观测器的滑模变结构控制器设计[A];第二十九届中国控制会议论文集[C];2010年 7 尹正男;具有鲁棒性的最优干扰观测器的系统性设计及其应用[D];上海交通大学;2012年

电磁干扰滤波器的构造原理与应用

电子知识 随着电子设备、计算机和家用电器的大量涌现与广泛普及,电网干扰正日益严重并形成一种公害,因为这个干扰可导致电子设备无法正常工作。特别是瞬态电磁干扰,其电压幅度高、上升速率快、持续时间短、随机性强、容易对数字电路产生严重干扰,常使人们防不胜防,这已引起国内外电子界在高度重视。电磁干扰滤波器(EMI FILTER)亦称电源噪声滤波器,是近年来被推广应用的一种组合器件,它能有效的抵制电网噪声,提高电子设备的抗干扰能力系统的可靠性。因此,被广泛应用于智能化温度测控系统、电子测量仪器、计算机机房设备、开关电源等领域。 一、电磁干扰滤波器的构造原理及应用 1、构造原理 2、基本电路及典型应用 二、电磁干扰滤波器的技术参数及测试方法 1、主要技术参数 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线

信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。IBIS尤其能够对高速振荡和串扰进行准确精细仿真,它可用于检测最坏情况上升时间条件下信号行为及一些用物理测试无法解决情况;模型可以免费从半导体厂商处获取,用户无需对模型付额外开销;兼容工业界广泛仿真平台。 IBIS模型核由一个包含电流、电压和时序方面信息列表组成。IBIS模型仿真速度比SPICE快很多,而精度只是稍有下降。非会聚是SPICE模型和仿真器一个问题,而在IBIS仿真中消除了这个问题。实际上,所有EDA供应商现在都支持IBIS模型,并且它们都很简便易用。大多数器件IBIS模型均可从互联网上免费获得。可以在同一个板上仿真几个不同厂商推出器件。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据

电磁干扰(EMI)滤波器电路

电磁干扰(EMI)滤波器电路 1、功能定义 所谓电磁干扰(EMI),是因电磁波造成设备、传输通道或系统性能降低的一种电磁现象。 EMI以辐射和传导两种方式传播。 辐射方式:能量通过磁场或电场耦合,或以干扰源与受扰设备间的电磁波形式传播。 传导方式:能量通过电源线、数据线、公共地线等而产生或接收。 传导干扰有差模(DM对称模式)和共模(CM非对称模式)两种类型。 目前抑制EMI的技术措施有屏蔽、接地(浮地、单点接地和接地网)与滤波。 我这里所说的即为滤波电路,它主要用于高频开关电源和电子镇流器的输入回路及电源的输出回路中中。该电路用于滤除电源的输入和输出的噪声(150kHz~30MHz),消减对直流稳压电源的传导干扰。 2、适用范围 A、CISPR标准(电机、家用电器、照明设备等射频干扰设备) B、VDE0871标准(有目的的高频波发生器的电磁兼容标准)

C、FCC标准(工业、科学、医疗设备的电磁兼容标准) D、VCCI标准(在工业和商业区使用的家用电器及其类似装置) 3、设计规范 3.1 电路原理图及其描述

该电路主要对输入进行滤波,削弱对稳压电源或电子镇流器的输入的传导干扰。其中,C1、C2和C4、C5及Lc用于滤除共模噪声,C3和C6用于滤除差模噪声。输出端一般接一电解电容,负载电流大时还需接高频电容,用于消除负载端对输入的噪声干扰。C1=C2、C4=C5、C3=C6,Lc=(7~30)mH、磁材使用铁氧体材料。 EMI滤波器有C型(纯电容)、L型(一个电感和一个电容)、T型(两只电感和一个电容)、π型(一个电感和两只电容)、双π型(对称绕在同一磁芯上的两个电感和两只电容)等。上图中电路为最常用的电路。 电源的滤波和保护电路 [作者:耗子转贴自:网上转载点击数:1477 更新时间:2004-4-28 文章录入:admin ] 一、滤波电路 1、电磁干扰 电脑电源是把工频交流整流为直流,再通过开关变为高频交流,其后再整流为稳定直流的一种电源,这样就有工频电源的整流波形畸变产生的噪声与开关波形会产生大量的噪声,噪声在输入端泄漏出去就表现为辐射噪声和传导噪声,在输出端泄漏出去就表现为纹波。辐射噪声频率高于30MHZ,会传播到空间中;传导噪声频率在30MHZ以下,主要干扰音频设备,通过电源线传播到电网中。 外部噪声会进入到电网中的其它电子设备中影响电子设备的运行,而供给负载的电源产生的噪声也会泄漏到电源外部,因此,电脑电源必须有阻止这些噪声进出的功能。 在电脑电源的输入端,需要有由电容和电感构成的滤波器,用于抑制交流电产生的EMI。在电源的输出端,工频电源的整流波形畸变引起的噪声,以及开关工作波形产生的噪声呈现为纹波,因此在输出端也需要接入滤波器,用于抑制直流电产生的EMI。 2、输入端第一道EMI滤波电路 第一道EMI滤波电容是由X电容(白盒子)、线圈型电感和两个Y电容构成的,用来抑制输入端的高频干扰,以及PWM自身产生的高频干扰对电网的污染。

选用射频滤波器(馈通滤波器、穿心电容)的方法

选用射频滤波器(馈通滤波器、穿心电容)的方法 随着电子设备工作频率的迅速提高,电磁干扰的频率也越来越高,干扰频率通常会达到数百MHz,甚至GHz以上。由于电压或电流的频率越高,越容易产生辐射,因此,正是这些频率很高的干扰信号导致了辐射干扰的问题日益严重。因此,对用来解决辐射干扰的滤波器的一个基本要求就是要能对这些高频干扰信号有较大的衰减,这种滤波器就是射频干扰滤波器。普通干扰滤波器的有效滤波频率范围为数kHz 数十MHz,而射频干扰滤波器的有效滤波频率范围从数kHz到GHz以上。 按照传统方式构造的滤波器不能成为射频滤波器。这是由于两个原因:第一个原因是:旁路电容寄生电感较大(导致串联谐振,增加了旁路阻抗),导致电容器在较高的频率并不具有较低的阻抗,起不到旁路的作用。第二个原因是:滤波器的输入端和输出端之间的杂散电容导致高频干扰信号耦合,使滤波器对高频干扰失去作用。解决这个问题的方法是用穿心电容作为旁路电容。穿心电容具有非常小的寄生电感,旁路阻抗非常小,并且由于采用隔离安装方式,消除了输入输出端之间的高频耦合。 选择射频滤波器需要考虑的因素有: 截止频率:滤波器的插入损耗大于3dB的频率点称为滤波器的截止频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带,干扰信号会受到较大的衰减。根据使用滤波器的场合不同(信号电缆滤波还是电源线滤波),可以用两个方法来确定滤波器的截止频率。在对信号电缆进行滤波时,根据有效信号的带宽来确定,截止频率要大于信号的带宽,这样才能保证有用信号不被衰减。在对电源线或直流信号线,滤波时,由于有效信号的频率很低,信号失真的问题不是主要因素,因此主要根据干扰信号的频率来定,要使干扰频率全部落在滤波器的阻带内。滤波器的截止频率越低,滤波器的尺寸越大,价格越高,因此没有必要时(干扰的频率不是很低时),不要盲目选用截止频率过低的滤波器。 插入损耗:指滤波器在阻带的损耗数值(dB),每一种滤波器都有一张插入损耗与频率对应的表格,选用滤波器时,根据干扰信号的频率和需要衰减的程度确定对插入损耗的要求。需要注意的一点是,产品样本上给出的插入损耗是在50 系统中测量的,实际使用条件如果不是50 ,插入损耗会有差异。 额定电压:滤波器在正常工作时能够长时间承受的电压,要注意正确选用直流和交流品种,在交流应用场合绝对不能使用直流的品种,否则容易发生击穿。由于几乎所有的电磁兼容试验都有脉冲干扰的项目,因此在选用滤波器时要考虑这种高压脉冲干扰的作用,耐压值需要留有一定的富裕量。 额定电流:滤波器在正常工作时能够长时间流过的电流值,额定电流由滤波器的引线直径决定,线径越大,额定电流越大。对于滤波器组件,额定电流还与电感线圈的饱和特性有关,当电流超过额定电流时,滤波器的性能会下降。 工作温度范围:滤波器件能保证预定性能和正常工作时所处的环境温度,本样本中的滤波器件除了特别标出的以外,工作温度范围为有-55 - +125 C。 滤波器的体积:滤波器的体积与滤波器的额定工作电压、工作电流、截止频率、插入损耗以及制造工艺有关。电气性能基本相同的滤波器,由于不同的制造工艺而导致不同的体积,电气性能接近时,体积较大的滤波器价格较低(适合安装空间较大的场合)。 射频滤波器的安装方式对滤波器的性能有很大影响。首先射频干扰滤波器必须以金属板为隔离板,将滤波器的输入和输出隔离开。其次,滤波器要与金属板之间保持低阻抗的接触,以保证滤波电容的旁路效果。最好将滤波器安装在镀锡或锌的铝板或钢板上。为了保证可靠的连接,一般要在滤波器的安装法兰与隔离板之间安装内齿垫片,而不能使用导电胶之类的物质来达到可靠连接的目的。需要注意的问题是,不同金属的接触面之间会发生电化学腐蚀,

滤波器的基本原理

滤波器的基本原理 1.滤波器是由电感和电容组成的低通滤波电路所构成,它允许有用信号的电流通过,对频率较高的干扰信号则有较大的衰减。由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰 都具有衰减作用。其基本原理有三种: A)利用电容通高频隔低频的特性,将火线、零线高频干扰电流导入地线(共模),或将火线高频干扰电流导入零线(差模); B)利用电感线圈的阻抗特性,将高频干扰电流反射回干扰源; C)利用干扰抑制铁氧体可将一定频段的干扰信号吸收转化为热量的特性,针对某干扰信号的频段选择合适的干扰抑制铁氧体磁环、磁珠直接套在需要滤波的电缆上即可 2电源滤波器高频插入损耗的重要性 尽管各种电磁兼容标准中关于传导发射的限制仅到30MHz (旧军标到50MHz,新军标到 10MHz ),但是对传导发射的抑制绝不能忽略高频的影响。因为,电源线上高频传导电流会导致辐射,使设备的辐射发射超标。另外,瞬态脉冲敏感度试验中的试验波形往往包含了很高的频率 成份,如果不滤除这些高频干扰,也会导致设备的敏感度试验失败。 电源线滤波器的高频特性差的主要原因有两个,一个是内部寄生参数造成的空间耦合,另一个是滤波器件的不理想性。因此,改善高频特性的方法也是从这两个方面着手。 内部结构:滤波器的连线要按照电路结构向一个方向布置,在空间允许的条件下,电感与电 容之间保持一定的距离,必要时,可设置一些隔离板,减小空间耦合。 电感:按照前面所介绍的方法控制电感的寄生电容。必要时,使用多个电感串联的方式。 差模滤波电容:电容的引线要尽量短。要理解这个要求的含义:电容与需要滤波的导线(火线和零线)之间的连线尽量短。如果滤波器安装在线路板上,线路板上的走线也会等效成电容的 引线。这时,要注意保证时机的电容引线最短。 共模电容:电容的引线要尽量短。对这个要求的理解和注意事项同差模电容相同。但是,滤波器的共模高频滤波特性主要靠共模电容保证,并且共模干扰的频率一般较高,因此共模滤波电 容的高频特性更加重要。使用三端电容可以明显改善高频滤波效果。但是要注意三端电容的正确 使用方法。即,要使接地线尽量短,而其它两根线的长短对效果几乎没有影响。必要时可以使用 穿心电容,这时,滤波器本身的性能可以维持到1GHz以上。 特别提示:当设备的辐射发射在某个频率上不满足标准的要求时,不要忘记检查电源线在这 个频率上的共模传导发射,辐射发射很可能是由这个共模发射电流引起的。 3滤波器的选择

基于干扰观测器的PID控制

《PID控制器设计》课程论文题目:基于干扰观测器的PID控制 学院:电子工程学院 专业: 2009级应用电子 学号:200912701149 姓名:黄婧宇

目录 内容摘要------------------------------------------------------------3 关键字--------------------------------------------------------------3 1 绪论--------------------------------------------------------------4 2 干扰观测器的设计--------------------------------------------------4 2.1 干扰观测器的基本原理--------------------------------------------4 2.2干扰观测器的性能分析--------------------------------------------5 2.3干扰观测器的稳定特性--------------------------------------------6 2.4干扰观测器的设计------------------------------------------------7 2.5干扰观测器的仿真结果及MATLAB程序-------------------------------8 2.5.1连续系统的控制仿真--------------------------------------------8 2.5.2离散系统的控制仿真 ------------------------------------------ 11 3结论-------------------------------------------------------------17 参考文献-----------------------------------------------------------18 Abstract-----------------------------------------------------------18 KEY WORDS----------------------------------------------------------18

几种常用的抗干扰滤波器件介绍

几种常用的抗干扰滤波器件介绍 2009-10-20 11:19:00 【文章字体:大中小】推荐收藏打印 北京科力亚特电子有限公司李华 伴随电子技术的高速发展,电磁环境日益恶化,大量的电子设备在这种电磁环境中很难正常工作。另一方面,电子设备的迅速增加,又进一步导致电磁环境的恶化。因此,现代电子产品设计技术中,如何选用干扰抑制滤波器件,是我们每一位电子产品设计人员必须面对的问题,本文对此进行了详细的阐述。 1. 穿心电容器 - 馈通滤波器 馈通滤波器常用于移动通讯设备、雷达导航等一些高频处理模块中,与屏蔽结构体配合,处理输入或输出的低频信号,是其他形式的电容器不能替代的产品。现在电子线路的工作频率和周围环境中的电磁干扰频率越来越高,将滤波器安装在线路板上所暴露出的高频滤波不足的问题比较突出。要想在UHF或更高的频段获得更好的滤波效果,特别是保护屏蔽体不被穿透时,必须使用馈通型滤波器解决。馈通型滤波器安装在金属面板上,具有很低的接地阻抗,并且利用金属面板隔离滤波器的输入和输出,因此滤波器具有非常好的高频滤波效果。馈通滤波器的电路结构分为C 型(穿心电容)、L 形(一个穿心电容加一个电感)、T 形(两个电感加一个穿心电容)、π形(两个穿心电容加一个电感)等;滤波器的器件越多,则滤波器的过渡带越短,阻带的插入损耗越大。其中C 型馈通滤波器一般成为穿心电容器。 图1 穿心电容 任何有引线的电容器的滤波效果都会受到接地电感的限制。如图1 所示,通过将电容器外表面直接用螺纹或焊接的方式接到金属屏蔽体或面板上构成电容器的接地。由于地电流分散在中心导体周围360°的范围内,实际上不存在引线电感,电容可以在很高的频率范围内保持良好的性能。 馈通滤波器的使用方法有以下三种:

电磁干扰滤波器要点

电磁干扰滤波器 只要有电子信号的存在,在其附近使用的电子产品就有可能存在着电磁干扰(EMI 的问题。电磁干扰是一个常见于日常生活中的问题,例如:电视噪声、收音机杂音,以及飞机起降时容易受到电子产品所发出电磁波讯号影响而导致电子仪表不正常的情形等。随着科技的日益进步,电子产品的普及和多样化也愈来愈广,日常生活周围所存在的电磁噪声随之愈来愈多,电磁干扰的问题也更加复杂。因此,电子产品在电路板及系统设计时,就应考虑电磁干扰的问题,以免产品出售后无法正常使用,或因严重影响其它电子产品的操作而遭到顾客退货。 随着电子产品集成度愈来愈高,所包含的功能愈来愈多,且售价愈来愈低,电子产品所遇到电磁干扰的问题自然也就更加严重。电子产品为实现重量轻、体积超薄、小巧的目标,以迎合消费者易于携带的需求,在电路板的设计上以高集成度为设计导向:采用相同功能、但体积或面积更小的组件,拿掉原本用作电磁干扰防护的金属屏蔽、改用更细的地线或更小块的地平面(ground plane用作接地等。这些措施不仅能达到使产品外形轻巧的目的,更能节省许多产品开发的费用以及量产后的成本,但却极不利于电磁干扰问题的解决。 为有效解决电子产品电磁干扰的问题,并能兼顾静电放电(ESD防护的功用,可以采用具有静电放电防护功能的电磁干扰滤波器(EMI+ESD filter。图1所示即为常见的π型低通滤波器。在Input及Output端点之间的组件,可以是电阻或是电感组件。是采用电阻还是电感,应视产品的实际应用所需而定。 由于电磁干扰滤波器多应用于电子产品的输出入端口,π型(π-model低通滤波器架构中的Input端点及Output端点对GND的电容,一般会采用静电放电防护组件,以兼做静电放电防护之用。 晶焱科技(Amazing Microelectronic Corp.在静电放电防护技术上已累积了丰富的经验与技术。公司开发的应用于液晶显示器的电磁干扰滤波器产品基本架构如图2所示。由图2电路示意图可知:π型低通滤波器的Input与Output之间是采用电阻(RI/O组件桥接,Input端点及Output端点对GND的电容则是采用双向导通(bi-directional的瞬时电压抑制器(TVS。因此,该系列产品除了可以提供良好的低通滤波效果之外,还拥有很好的静电放电防护效果。

电源滤波器基本知识

一、术语定义 1. 额定电压 EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲: 230V,50Hz;美国:115V, 60Hz) 2.额定电流 在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出: 3.试验电压 在EMI滤波器的指定端子之间和规定时间内施加的电压。试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。 4.泄漏电流 EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出: 其中 F为工作频率, C为接地电容的容量, V为线-地电压 5.插入损耗 是衡量滤波器效果的指标。指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。在50Ω系统内测试时,可用下式来表示: IL=20Lg(E0/E1) 其中,IL-插入损耗(单位:dB) EO-负载直接接到信号源上的电压 E1-插入滤波器后负载上的电压

6.气候等级 指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX 前2位数字代表滤波器的最低工作温度 中间数字代表滤波器的最高工作温度 后2位数字代表质量认定时在规定稳态湿热条件下的试验天数 7. 绝缘电阻 绝缘电阻是指滤波器相线,中线对地之间的阻值。通常用专用绝缘电阻表测试。 8. 电磁干扰(EMI) 电磁干扰经常与无线电频率干扰(RFI)交替使用。从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。滤波器用以消除EMI和RFI中的多余电磁能。 9. 频率范围 电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz, 每秒循环千次数)表示。电源滤波器的典型频率范围在150kHz to 30MHz(超过30MHz,即为辐射) 10.阻抗失配 为了达到更好的滤波效果,要使滤波器与它的源阻抗和负载阻抗失配。如图所示。 11.工作频率 电源滤波器的工作频率标称值为50/60Hz(中国、欧洲等为50Hz;北美为60Hz)。然而,电源滤波器在直流或400Hz的情况下工作,并不会损害其效力。 二、滤波器的作用 1.什么是射频干扰(RFI)? RFI是指产生在无线电通讯时,所用频率范围内的一种多余的电磁能。传导现象的频率范围介于10kHz到30MHz间;辐射现象的频率范围介于30MHz到1GHz间。 2.为何要关注RFI?

常用滤波器的频率特性分析[1]

常用滤波器的频率特性分析 摘要:滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。滤波器对实现电磁兼容性是很重要的。本文所述内容主要有滤波器概述及原理、种类等。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。故对常见滤波器中低通滤波器、高通滤波器、带通滤波器和带阻滤波器,EMI滤波器,从频率出发,进行特性分析。 一、引言 滤波器,是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。 滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。 二、原理 滤波器一般有两个端口,一个输入信号、一个输出信号 利用这个特性可以将通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。 滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为 XL·XC=K2 故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率者,称为m常数滤波器。所谓截止频率,亦即与滤波器有尖锐谐振的频率。通带与带阻滤波器都是m常数滤波器,m为截止频率与被衰减的其他频率之衰减比的函数。每一m常数滤波器的阻抗与K常数滤波器之间的关系,均由m常数决定,此常数介于0~1之间。当m接近零值时,截止频率的尖锐度增高,但对于截止频的倍频之衰减率将随着而减小。最合于实用的m值为0.6。至于那一频率需被截止,可调节共振臂以决定之。m常数滤波器对截止频率

防电磁干扰的重要措施

防电磁干扰的重要措施——滤波技术 时间:2009-10-16 14:01:09 来源:电源世界作者: 1引言 防主要有三项措施,即屏蔽、滤波和接地。往往单纯采用屏蔽不能提供完整的电磁干扰防护,因为设备或系统上的电缆是最有效的干扰接收与发射天线。许多设备单台做实验时都没有问题,但当两台设备连接起来以后,就不满足电磁兼容的要求了,这就是电缆起了接收和辐射天线的作用。唯一的措施就是加滤波器,切断电磁干扰沿信号线或电源线传播的路径,与屏蔽共同构成完美的电磁干扰防护,无论是抑制干扰源、消除耦合或提高接收电路的抗能力。都可以采用。 2线上干扰的类型 线上的干扰电流按照其流动路径可以分为两类:一类是差模干扰电流,另一类是共模干扰电流。差模干扰电流是在火线和零线之间流动的干扰电流,共模干扰电流是在火线、零线与大地(或其它参考物体)之间流动的干扰电流,由于这两种干扰的抑制方式不同,因此正确辨认干扰的类型是实施正确滤波方法的前提。 两种干扰 共模干扰一般是由来自外界或电路其它部分的干扰电磁波在电缆与“地”的回路中感应 产生的,有时由于电缆两端的接“地”电位不同,也会产生共模干扰。它对电磁兼容的危害很大,一方面,共模干扰会使电缆线向外发射出强烈的电磁辐射,干扰电路的其它部分或周边电子设备;另一方面,如果电路不平衡,在电缆中不同导线上的共模干扰电流的幅度、相位发生差异时,共模干扰则会转变成差模干扰,将严重影响正常信号的质量,所以人们都在努力抑制共模干扰。

差模干扰主要是电路中其它部分产生的电磁干扰经过传导或耦合的途径进入信号线回路,如高次谐波、自激振荡、电网干扰等。由于差模干扰电流与正常的信号电流同时、同方向在回路中流动,所以它对信号的干扰是严重的,必须设法抑制。 综上所述可知,为了达到电磁兼容的要求,对共模干扰和差模干扰都应设法抑制。 3滤波器的分类 滤波器是由集中参数的电阻、电感和电容,或分布参数的电阻、电感和电容构成的一种网络。这种网络允许一些频率通过,而对其它频率成份加以抑制。根据要滤除的干扰信号的频率与工作频率的相对关系,干扰滤波器有低通滤波器、高通滤波器、带通滤波器、带阻滤波器等种类。 低通滤波器的类型 低通滤波器是最常用的一种,主要用在干扰信号频率比工作信号频率高的场合。如在数字设备中,脉冲信号有丰富的高次谐波,这些高次谐波并不是电路工作所必需的,但它们却是很强的干扰源。因此在数字电路中,常用低通滤波器将脉冲信号中不必要的高次谐波滤除掉,而仅保留能够维持电路正常工作最低频率。电源线滤波器也是低通滤波器,它仅允许50Hz的电流通过,对其它高频干扰信号有很大的衰减。 ●常用的低通滤波器是用电感和电容组合而成的,电容并联在要滤波的信号线与信号地之间(滤除差模干扰电流)或信号线与机壳地或大地之间(滤除共模干扰电流)电感串联在要滤波的信号线上。按照电路结构分,有单电容型(C型),单电感型,L型和反Γ型,T型,π型。 ●高通滤波器用于干扰频率比信号频率低的场合,如在一些靠近电源线的敏感信号线上滤除电源谐波造成的干扰。 ●带通滤波器用于信号频率仅占较窄带宽的场合,如通信接收机的天线端口上要安装带通滤波器,仅允许通信信号通过。

滤波器选择需注意的十个问题

1、电压 这个电压值要求是一个范围,是稳态电压±纹波电压的综合。 2、电流 电流的指标很关键,它决定了滤波器内部的电感的绕组铜线和引出线的线径。如果选细了,细导线上跑大电流,如小马拉大车,会引起严重发热以至烧毁。这个电流也是一个范围,稳态电流+波动电流的最大值。 3、电磁兼容标准要求 既然是滤波器,为的就是滤掉一些不期望的频段,而滤除的效果一般是由EMC测试标准和现场应用的直观结果来确定。尤其是电源滤波器,最好能确定用此滤波器的产品需要通过的是哪个标准,根据标准要求的不同,在选择时也有其特定的测试频段要求。 电源滤波器的主要针对指标是传导发射CE和传导抗扰CS,信号滤波器的则主要看EMC标准里对不期望输入频段和不期望输出频段的要求了。 比如无极灯用的整流器,本身就是一个开关工作状态,会有对外的发射,EMC测试时候会重点检查其开关频率以及其高次谐波成分的传导干扰,滤波器就需要针对这些特定频段或频点具有足够的滤除效果。 4、安规标准要求 读者可能会觉得奇怪,选滤波器,说安规标准干啥?这是因为滤波器一般用在电源输入端和板卡的接口处,这些部位都是安规问题的重灾区。等于是滤波器一身承担了多个要求。与滤波器有关的安规重点是三个指标:绝缘耐压、漏电流、剩余电压剩余能量。 5、滤波器电路结构形式 电路结构形式和期间的参数选择是滤波器的核心,但就是在这一部分,应用工程师的选择常常两眼一摸黑着选,虽然大多时候也差不多可以用,但既不知己也不知彼的设计方式,浪费资源、埋留隐患的可能性就大大增加。这在需要精益设计、从中国制造到中国创造的电子制造业,从初级工程师向资深工程师的成长期望上来说,都是不合时宜的。 滤波器的作用是对通过其的不同频率有不同的放大效果,对通带内频段的则不衰减,对通带外要抑制的则以几十个dB的级别进行衰减,从而达到过筛子的目的。但就是滤波器在对不同频率的电压幅值采取不同放大倍数的时候,电磁波的相位也在发生变化,因为相位也是和频率有关的,所以滤波器结构形式的选取,也还是有些学问的。 滤波器结构形式常用的是三种: a、巴特沃思滤波器:特点是通带内放大倍数平整,通带内,随着频率的变化,滤波器放大倍数基本维持不变;但缺点是通带向截止段的过渡段,过渡的较为平缓。意思是说,敌人和朋友的界限不是很清楚,有一部分朋友也在干着敌人的事情,有一部分敌人也在帮我们,对这一部分是杀掉还是留在组织里,让人很纠结。如果有用频率和干扰频率离得很近,这种滤波器的作用就很有问题。 b、切比雪夫滤波器:它可以很好的解决巴特沃思过渡带平缓的缺点,在这种形式的滤波器中,过渡带很陡峭,即使有用频率和干扰频率很近,因为过渡带很陡峭,所以其截止频率点前后两个频段放大倍数的差别很大,非友即敌,很好区分,是朋友就没干过对不起我们的事,是敌人的就没干过对我们好的事,所以朋友拉入组织优厚待遇,是敌人则干净利落的消灭之。高山之侧必有深谷,一个优点必然伴随着一个缺点,

相关文档