文档库 最新最全的文档下载
当前位置:文档库 › Experimental and computational study of concrete filled steel tubular columns under axial loads

Experimental and computational study of concrete filled steel tubular columns under axial loads

Experimental and computational study of concrete filled steel tubular columns under axial loads
Experimental and computational study of concrete filled steel tubular columns under axial loads

Journal of Constructional Steel Research63(2007)

182–193

https://www.wendangku.net/doc/ff5920014.html,/locate/jcsr

Experimental and computational study of concrete?lled steel tubular

columns under axial loads

P.K.Gupta?,S.M.Sarda,M.S.Kumar

Civil Engineering Group,Birla Institute of Technology and Science Pilani,Rajasthan333031,India

Received2November2005;accepted11April2006

Abstract

The paper presents an experimental and computational study on the behaviour of circular concentrically loaded concrete?lled steel tube columns till failure.Eighty-one specimens were tested to investigate the effect of diameter and D/t ratio of a steel tube on the load carrying capacity of the concrete?lled tubular columns.The effect of the grade of concrete and volume of?yash in concrete was also investigated.The effect of these parameters on the con?nement of the concrete core was also studied.Diameter to wall thickness ratio between25

c 2006Elsevier Ltd.All rights reserved.

Keywords:Concrete?lled steel tubes;Concrete;Concentric loading;Columns;Con?nement;Circular hollow sections;Finite element method

1.Introduction

Composite concrete-?lled steel tubes(CFTs)have been used increasingly as columns and beam–columns in braced and unbraced frame structures.Their use worldwide has ranged from compression members in low-rise,open-?oor plan construction,using cold-formed steel circular or rectangular tubes?lled with precast or cast-in-situ concrete,to large-diameter cast-in-situ members used as the primary lateral-resistance columns in multi-story braced and unbraced frames. Concrete?lled steel box columns,fabricated from four welded steel plates,and concrete-?lled steel fabricated circular pipes have been used in some of the world’s tallest structures.In addition,concrete-?lled steel box columns are commonly used as bridge piers.

Concrete-?lled steel tubular structural members have a number of distinct advantages over equivalent steel,reinforced

?Corresponding address:Civil Engineering Group,Indian Institute of Technology,Roorkee,Uttaranchal,India.Tel.:+911596245073x254;fax:+91 1596244183.

E-mail address:spramod3@https://www.wendangku.net/doc/ff5920014.html,(P.K.Gupta).concrete,or steel-reinforced concrete members.Steel members have the advantages of high tensile strength and ductility,while concrete members have the advantages of high compressive strength and https://www.wendangku.net/doc/ff5920014.html,posite members combine steel and concrete,resulting in a member that has the bene?cial qualities of both materials.The steel tube serves as a form for casting the concrete,which reduces construction cost.No other reinforcement is needed since the tube acts as longitudinal and lateral reinforcement for the concrete core.In addition, the placement of longitudinal steel at the perimeter of the section is the most ef?cient use of the material since it provides the highest contribution of the steel to the section moment of inertia and?exural capacity.The continuous con?nement provided to the concrete core by the steel tube enhances the core’s strength and ductility.The concrete core delays local buckling of the steel tube by preventing inward buckling,while the steel tube prevents the concrete from spalling.

Experimental research on concrete?lled tubular metallic columns has been ongoing throughout the world for many years,with signi?cant contributions having been made

0143-974X/$-see front matter c 2006Elsevier Ltd.All rights reserved. doi:10.1016/j.jcsr.2006.04.004

P.K.Gupta et al./Journal of Constructional Steel Research63(2007)182–193183

particularly by researchers in the past few years.Neogi et al.[1]investigated numerically the elasto-plastic behaviour of concrete?lled tubular metallic columns pinned at both ends,loaded either axially or with some eccentricity about one https://www.wendangku.net/doc/ff5920014.html,plete interaction between the steel and concrete was assumed so triaxial and biaxial effects were not considered.To compare the experimental results with the numerical solution eighteen eccentric loaded columns were taken.They found good agreement between the experimental and theoretical behaviour of columns with L/D ratios greater than15. Moreover they also inferred that triaxial effects were small for such columns,whereas for columns with smaller L/D ratios there was a gain in strength due to the triaxial effect.

A series of tests were carried out by O’Shea and Bridge[2] to study the behaviour of circular thin-walled concrete?lled steel tubes having D/t ratio ranging between55and200.These tests were conducted on bare steel tubes,tubes with unbounded concrete with only the steel section loaded,tubes with concrete in?ll with the steel and concrete loaded simultaneously and tubes with concrete in?ll loaded alone.The obtained load carrying strengths were compared with the strengths calculated using the design standards and speci?cations.The results showed that the concrete in?ll for the thin-walled circular steel tubes has little effect on the local buckling strength of the steel tubes.

O’Shea and Bridge[3]also tried to estimate the strength of CFTs under different loading conditions.The loading conditions examined include axial loading of the steel only, axial loading of the concrete only,and simultaneous loading of the concrete and steel both axially and at small eccentricities. All the tested specimens were short with a L/D ratio of3.5 and D/t ratio between60and220.The used concrete had a compressive strength of50,80and120MPa.From these experiments,O’Shea and Bridge concluded that the degree of con?nement offered by a thin-walled circular steel tube to the internal concrete is dependent upon the loading condition. The con?nement effect was highest when only the concrete was loaded axially and the thin-walled steel was used as pure circumferential restraint.They also concluded that Eurocode4 can be used for the design of thin-walled steel tubes?lled with very-high-strength concrete if care is taken in the formulation of the design equations.

Kilpatrick et al.[4,5]also examined the applicability of Eurocode4for the design of CFTs which use high strength concrete and compared146columns from six different investigations with Eurocode4.The concrete strength of the columns ranged from23to103MPa.The mean ratio of measured/predicted column strength was1.10with a standard deviation of0.13.The Eurocode safely predicted the failure load in73%of the columns analysed.

Brauns[6]declared that the con?nement effect exists at high stress level and when structural steel acts in tension and concrete in compression and that the ultimate limit state of material strength was not attained for all parts simultaneously.In his study of the constitutive relationships for material components,the stress state in composite columns was Table1

Details of basic ingredients of control concrete mix

Quantities of basic ingredients(kg/m3)Grade of concrete

M30M40 Cement342410 Fine aggregate720638 Coarse aggregate11731187 Water205205

determined by considering the dependence of the modulus of elasticity and Poisson’s ratio on the stress level in concrete.

Recently the behaviour of circular concrete-?lled steel tubes(CFT)with various concrete strengths under axial load was also presented by Georgios Giakoumelis and Dennis Lam[7].In their study they examined the effects of steel tube thickness,the bond strength between the concrete and the steel tube,and the con?nement of concrete.Measured column strengths were compared with the results predicted using Eurocode4,Australian standards and American codes. All three codes predicted lower values than that measured during the experiments.Eurocode4gave the best estimation for both CFT with normal and high-strength concrete.They also found that the effect of concrete shrinkage was critical for high-strength concrete and negligible for normal strength concrete.

Since the Finite Element Method has reached a state of maturity,numerical simulation can be carried out as an alternative to experiments to understand the behaviour of CFTs.Therefore in this paper an attempt has been made to understand the axial compression process of CFTs having D/t values between25and39between two parallel rigid plates under quasi-static loading with Finite Element simulations.But to develop and validate the computational Finite Element model experiments were also performed and the results are compared with the computations.On the basis of the experimental observations a?nite element computational model using ANSYS code has been presented for the prediction of load–deformation curve of the CFTs and their deformed shapes.For the in situ conditions it is dif?cult to achieve full compaction in CFT columns,or it may require expensive technology to do so.To eliminate this problem an attempt is also made to design and develop a concrete,which gets compacted without the use of any vibrators.Since?yash is the waste product of thermal power plants and can be used to make the concrete more economical,therefore in making the concrete ?yash is also used.

2.Experimental details

2.1.Concrete properties

Concrete of design strength of30and40MPa was produced using commercially available materials with mixing using vibrators and simple curing techniques.Mix design of both grades was carried out in accordance to the British standards. The mix designs are shown in Table1.These grades of concrete are designated as controlled concrete.Standard cube tests were used to determine the compressive strength of the concrete.

184

P .K.Gupta et al./Journal of Constructional Steel Research 63(2007)182–193

Table 2

Details of concrete

Specimen designation Details of the admixures 28days compressive strength (N /mm 2)%Flyash

Admixtures in %M30grade M40grade

Gl-B233Gl-Stream2Control mix

C1Nil Nil Nil

25.1537.60C2Nil Nil Nil 28.8940.00C3Nil Nil Nil 28.2237.77C4Nil Nil Nil 24.4433.46C5Nil Nil Nil 28.8831.46C6Nil Nil Nil 31.7733.6015%?yash

F1115 1.5 1.227.1535.68F1215 1.5 1.225.3336.67F1315 1.5 1.222.2238.31F1415 1.5 1.228.8830.00F1515 1.5 1.226.8830.00F1615 1.5 1.224.4437.4620%?yash

F2120 1.5 1.229.0231.42F2220 1.5 1.228.2238.32F2320 1.5 1.229.7336.88F2420 1.5 1.225.7734.13F2520 1.5 1.225.7332.88F2620 1.5 1.224.4434.9325%?yash

F3125 1.5 1.228.5330.88F3225 1.5 1.225.2032.44F3325 1.5 1.222.4434.66F3425 1.5 1.226.1737.11F3525 1.5 1.227.9137.46F36

25

1.5

1.2

25.55

34.00

Percentage is with weight of

cement.

Fig.1.Test arrangement for (a)concrete cube,(b)concrete ?lled tube testing.

After that some percentage of ?yash to replace the cement and two admixtures,namely Gl-B233and Gl-Stream2,were added to the concrete to produce self-compacting concrete.In these concretes a vibrator was not employed for compaction.A total of 48cubes (as presented in Table 2)were prepared by adding different percentage of ?yash and two discussed admixtures and tested after 28days of curing on a compression testing machine of 2000kN capacity.The pace rate of about 5.3kN /s (140kg /cm 2)was fed to the machine for testing the specimens (see Fig.1(a)).Two dial gauges were placed on either side of the specimen to measure the compression and the readings were tabulated at regular intervals of loading.No radial measurements of the CFTs were made during the experiments.

2.2.CFT details

In order to study the behaviour of the composite CFT column,81specimens of circular cross section with different concrete strength and wall thickness were tested under concentric axial quasi-static compressive loading.Details of the specimens are presented in Table 3(see Fig.2).Among these 81specimens,9specimens of hollow tube,three for each diameter are taken as shown in Table 3.For convenience,a mix of M30and M40is designated as M3and M4respectively.Similarly,D2,D3and D4represent tubes of diameters 2in.(50mm),3in.(75mm)and 4in.(100mm)respectively.Flyash compositions of 15%,20%and 25%are considered as F1,F2and F3respectively.The three repeated specimens of each diameter are numbered 1,2and 3.

Although the nominal dimension of each tube is given,outside dimensions and wall thickness are measured at several locations.These measured values are used in determining the cross-sectional properties.All steel tubes are cold-formed mild steel with a speci?c yield strength of 360MPa.These tubes are seam welded and the edges of the tubes are machine ?nished after cutting to avoid eccentricity while loading.Type I Portland cement,sand,and a maximum aggregate size of 16mm are used to obtain a 28-day compressive strength of 30and 40MPa and a slump value of 0–10mm for control mix and 160–180mm for admixture used concrete.The concrete for composite columns is mixed in four batches,each comprising of 0.0232m 3of

P.K.Gupta et al./Journal of Constructional Steel Research63(2007)182–193185 Table3(a)

Experimental specimens cross sectional details for M30concrete

Specimens Outer diameter D(mm)Wall thickness t(mm)D/t L(mm)L/D P exp(kN) D2M3C147.28 1.8725.2833407.2215

D2M3C247.28 1.8725.2833407.2215

D2M3C347.28 1.8725.2833407.2210

D2M3F1147.28 1.8725.2833407.2167

D2M3F1247.28 1.8725.2833407.2178

D2M3F1347.28 1.8725.2833407.2187

D2M3F2147.28 1.8725.2833407.2145

D2M3F2247.28 1.8725.2833407.2166

D2M3F2347.28 1.8725.2833407.2176

D2M3F3147.28 1.8725.2833407.2171

D2M3F3247.28 1.8725.2833407.2168

D2M3F3347.28 1.8725.2833407.2160

D3M3C189.32 2.7432.598340 3.8610

D3M3C289.32 2.7432.598340 3.8635

D3M3C389.32 2.7432.598340 3.8630

D3M3F1189.32 2.7432.598340 3.8524

D3M3F1289.32 2.7432.598340 3.8494

D3M3F1389.32 2.7432.598340 3.8530

D3M3F2189.32 2.7432.598340 3.8540

D3M3F2289.32 2.7432.598340 3.8494

D3M3F2389.32 2.7432.598340 3.8560

D3M3F3189.32 2.7432.598340 3.8571

D3M3F3289.32 2.7432.598340 3.8582

D3M3F3389.32 2.7432.598340 3.8557

D4M3C1112.56 2.8938.9483403754

D4M3C2112.56 2.8938.9483403730

D4M3C3112.56 2.8938.9483403745

D4M3F11112.56 2.8938.9483403635

D4M3F12112.56 2.8938.9483403720

D4M3F13112.56 2.8938.9483403650

D4M3F21112.56 2.8938.9483403686

D4M3F22112.56 2.8938.9483403716

D4M3F23112.56 2.8938.9483403681

D4M3F31112.56 2.8938.9483403687

D4M3F32112.56 2.8938.9483403700

D4M3F33112.56 2.8938.9483403674

D2—2in.diameter tube,M3—M30grade of concrete,M4—M40grade of concrete,C—control mix.FXY:X—percentage of?yash,Y—sample number.

X=1indicates15%?yash,2indicates20%?yash,and3indicates25%?yash.So F32designates25%?yash with specimen number

2.

Fig.2.Specimens of concrete?lled tubes.

concrete,and cylinders along with cubes are cast.Cylinders and cubes are tested after28days for their compressive strength. The curing of the CFT specimens was done by sealing the top surface with a polyethylene sheet,after wetting the top surface in order to avoid shrinkage of the concrete.2.3.Testing of CFTs

The total81tubes,including9hollow tubes(as shown in Table3)were tested after28days on the compressive testing machine of2000kN capacity.The test specimen and location of the instrumentation are shown in Fig.1(b).The pace rate of about5.3kN/s(140kg/cm2)was fed to the machine for testing the specimens.At every regular interval the deformation of the tube was tabulated from the dial gauges.The deformation was allowed up to25mm where the ultimate load was observed and readings were tabulated up to the falling of the load after the attainment of peak load.

Tables3(a)and3(b)show the parameters for different specimens in the test series with their maximum peak experimental compressive load obtained with testing.During the experiments all the D2specimens(both bare and CFTs) having50mm diameter were collapsed by Euler buckling while all the D3and D4specimens having75mm and100mm diameters respectively(both bare and CFTs)collapsed due to triggering of local buckling.For the control mix of M30

186P.K.Gupta et al./Journal of Constructional Steel Research63(2007)182–193

Table3(b)

Experimental specimens cross sectional details for M40concrete

Specimens Outer diameter D(mm)Inner diameter D i(mm)D/t Length L(mm)L/D P exp(kN) D2M4C147.2843.5425.2833407.20250

D2M4C247.2843.5425.2833407.20225

D2M4C347.2843.5425.2833407.20246

D2M4F1147.2843.5425.2833407.20177

D2M4F1247.2843.5425.2833407.20192

D2M4F1347.2843.5425.2833407.20165

D2M4F2147.2843.5425.2833407.20157

D2M4F2247.2843.5425.2833407.20156

D2M4F2347.2843.5425.2833407.20162

D2M4F3147.2843.5425.2833407.20190

D2M4F3247.2843.5425.2833407.20203

D2M4F3347.2843.5425.2833407.20194

D3M4C189.3283.8432.598340 3.80644

D3M4C289.3283.8432.598340 3.80620

D3M4C389.3283.8432.598340 3.80650

D3M4F1189.3283.8432.598340 3.80599

D3M4F1289.3283.8432.598340 3.80620

D3M4F1389.3283.8432.598340 3.80605

D3M4F2189.3283.8432.598340 3.80603

D3M4F2289.3283.8432.598340 3.80577

D3M4F2389.3283.8432.598340 3.80552

D3M4F3189.3283.8432.598340 3.80613

D3M4F3289.3283.8432.598340 3.80599

D3M4F3389.3283.8432.598340 3.80605

D4M4C1112.56106.7838.948340 3.00822

D4M4C2112.56106.7838.948340 3.00788

D4M4C3112.56106.7838.948340 3.00801

D4M4F11112.56106.7838.948340 3.00785

D4M4F12112.56106.7838.948340 3.00755

D4M4F13112.56106.7838.948340 3.00757

D4M4F21112.56106.7838.948340 3.00735

D4M4F22112.56106.7838.948340 3.00727

D4M4F23112.56106.7838.948340 3.00747

D4M4F31112.56106.7838.948340 3.00745

D4M4F32112.56106.7838.948340 3.00758

D4M4F33112.56106.7838.948340 3.00770

and M40,the variation of load vs deformation curves are compared for different diameter tubes.It was observed that the initial gradient of the curves remained unchanged for all three diameters.

Fig.3depicts the typical load–compression curves for two modes of collapse for different concretes.It can be observed from these curves that the strength of concrete reduces with the increase in percentage of?yash up to20%of?yash but at25%?yash the strength was seen to be higher than that at15%and 20%.Fig.4shows the graphs plotted between energy absorbed and compression.It can be observed that at a given deformation the energy absorbing capacity decreases with the increase in ?yash up to20%but again at25%?yash it increases.

Fig.5shows variation of percentage con?nement for different grades of concrete for two modes of collapse with different percentage of?yash.Variation of percentage con?nement with percentage of?yash is also quite similar with the variation of the load carrying capacity of the CFTs with percentage of?yash(see Tables4(a)and4(b)).

The load carried by different bare tubes per unit of their volume was calculated and depicted in Fig.6.It can be observed that as the D/t value increases load carried per unit volume decreases.Therefore it is suggested to?x the correct D/t ratio to optimize the usage of material.

https://www.wendangku.net/doc/ff5920014.html,parison of test results with different formulas available

Results for the load carrying capacity of the CFT specimens (P exp)were obtained from the corresponding load–compression curves in experiments.These values are tabulated in Tables3(a) and3(b)for M30and M40concretes.

The obtained experimental peak values of compressive loads were compared with the theoretical values(P the),which were calculated as the summation of the individual ultimate axial capacities of both the steel tube and concrete and as given by the equation:

P the=A c f c+A s f y(1) where A c is the cross-sectional area of the concrete core,A s is the cross-sectional area of the steel tube,f c is the concrete compressive strength and f y is the yield stress of the steel tube.

It has been observed that the experimental results are greater than the theoretical ones,which is due to the increase in the

P .K.Gupta et al./Journal of Constructional Steel Research 63(2007)182–193

187

Fig.3.Variation of load–compression curves for (a)75mm and (b)50mm diameter CFTs for different

concretes.

Fig.4.Variation of energy–compression curves for (a)75mm and (b)50mm diameter CFTs for different

concretes.

Fig.5.Variation of %con?nement with %?yash for (a)50mm and (b)100mm diameter CFTs for different concretes.

strength of concrete by the con?nement effect produced due to the presence of the external steel tube.The ratios of the load carrying capacity values of experimental to theoretical ones were obtained and tabulated.The percentage con?nement was calculated by the ratio of the difference in values between the experimental and theoretical ones to the theoretical values and reported in Tables 4(a)and 4(b).

Mander et al.[8]proposed a model for con?ned concrete applicable to circular shaped transverse reinforcements.In this

model,the con?ned concrete compressive strength is given by the following equation

f cc =f co ?1.254+2.254 1+7.94f 1f co ?2

f 1

f co

(2)where f cc is the compressive strength of con?ned concrete,f co

is the uncon?ned concrete strength and f 1is the effective lateral con?ning stress on the concrete.

188P.K.Gupta et al./Journal of Constructional Steel Research63(2007)182–193

Table4(a)

Comparison of load carrying capacity of CFTs for M30concrete

Specimens P the(kN)P exp(kN)%Con?nement P exp/P the f cc(MPa)P man(kN)P exp/P man P ACI(kN)P exp/P ACI D2M3C1137.70621556.13 1.5644.043161.581 1.33150.207 1.43

D2M3C2137.70621556.13 1.5644.043161.581 1.33150.207 1.43

D2M3C3137.70621052.50 1.5244.043161.581 1.30150.207 1.40

D2M3F11136.21816722.60 1.2342.94159.941 1.04148.273 1.13

D2M3F12136.21817830.67 1.3142.94159.941 1.11148.273 1.20

D2M3F13136.21818737.28 1.3742.94159.941 1.17148.273 1.26

D2M3F21134.731457.62 1.0841.833158.2920.92146.3380.99

D2M3F22134.7316623.21 1.2341.833158.292 1.05146.338 1.13

D2M3F23134.7317630.63 1.3141.833158.292 1.11146.338 1.20

D2M3F31133.24217128.34 1.2840.72156.633 1.09144.403 1.18

D2M3F32133.24216826.09 1.2640.72156.633 1.07144.403 1.16

D2M3F33133.24216020.08 1.2040.72156.633 1.02144.403 1.11

D3M3C1422.861044.28 1.4440.96322.026 1.89469.151 1.30

D3M3C2422.863550.19 1.5040.96322.026 1.97469.151 1.35

D3M3C3422.863049.01 1.4940.96322.026 1.96469.151 1.34

D3M3F11417.28252425.57 1.2639.886316.128 1.66461.977 1.13

D3M3F12417.28249418.39 1.1839.886316.128 1.56461.977 1.07

D3M3F13417.28253027.01 1.2739.886316.128 1.68461.977 1.15

D3M3F21411.76454031.14 1.3138.813310.2 1.74454.804 1.19

D3M3F22411.76449419.97 1.2038.813310.2 1.59454.804 1.09

D3M3F23411.76456036.00 1.3638.813310.2 1.81454.804 1.23

D3M3F31406.246957140.55 1.4137.736304.261 1.88447.631 1.28

D3M3F32406.246958243.26 1.4337.736304.261 1.91447.631 1.30

D3M3F33406.246955737.11 1.3737.736304.261 1.83447.631 1.24

D4M3C1609.07375423.79 1.2439.108446.078 1.69684.258 1.10

D4M3C2609.07373019.85 1.2039.108446.078 1.64684.258 1.07

D4M3C3609.07374522.32 1.2239.108446.078 1.67684.258 1.09

D4M3F11600.122635 5.81 1.0638.056436.665 1.45672.6220.94

D4M3F12600.12272019.98 1.2038.056436.665 1.65672.622 1.07

D4M3F13600.1226508.31 1.0838.056436.665 1.49672.6220.97

D4M3F21591.17268616.04 1.1637.001427.22 1.61660.986 1.04

D4M3F22591.17271621.12 1.2137.001427.22 1.68660.986 1.08

D4M3F23591.17268115.19 1.1537.001427.22 1.59660.986 1.03

D4M3F31582.22168718.00 1.1835.943417.748 1.64649.35 1.06

D4M3F32582.22170020.23 1.2035.943417.748 1.68649.35 1.08

D4M3F33582.22167415.76 1.1635.943417.748 1.61649.35 1.04 The con?ning stress f1is determined from the equilibrium

of forces as:

f1=2σθt

D

(3)

where D and t are the diameter and wall thickness of tube respectively,The value ofσθis assumed to be0.1f y.

The value of the load carrying capacity of CFT is given by P man=A c f cc+A s f y.(4) The values of the loads proposed by the Mander technique were calculated and were compared with those of the experimental ones and a ratio of the experimental to Mander’s values was obtained.

Georgios Giakoumelis[7]had proposed a modi?ed coef?cient for the equation given by ACI for calculating the squash load of a CFT column by taking into consideration the concrete con?nement.The modi?ed equation is given as:

P ACI=1.3A c f c+A s f y.(5) The values obtained from the above equation are comparable to those obtained from the experimental results,especially for D/t ratios between30and40.The ratio of P exp to P ACI is calculated and theses values are shown in Tables4(a)and4(b) for M30and M40grades of concrete.

4.Numerical study

Two dimensional axisymmetric nonlinear?nite element models were developed to study and to compare the experimental results of the axial load behaviour of concrete ?lled tubes.The numerical simulations of the deformation process were conducted using?nite element code ANSYS8.0. The concrete core of the CFT was modeled using PLANE42 element,which is de?ned by four nodes having two degrees of freedom at each node:translations in the nodal x and y directions as shown in Fig.7(a).The special feature of the element has plasticity,creep,swelling,stress stiffening,large de?ection,and large strain capabilities.The element can be used either as a plane element(plane stress or plane strain)or as an axisymmetric element.

The steel tube was modeled using2D axisymmetric SHELL51element,which has four degrees of freedom at each node:translations in the nodal x,y,and z directions and a

P.K.Gupta et al./Journal of Constructional Steel Research63(2007)182–193189 Table4(b)

Comparison of load carrying capacity of CFTs for M40concrete

Specimens P the(kN)P exp(kN)%Con?nement P exp/P the f cc(MPa)P man(kN)P exp/P man P ACI(kN)P exp/P ACI D2M4C1151.125065.45 1.6553.76176.046 1.42167.619 1.49

D2M4C2151.122548.91 1.4953.76176.046 1.28167.619 1.34

D2M4C3151.124662.81 1.6353.76176.046 1.40167.619 1.47

D2M4F11149.61217718.31 1.1852.697174.46 1.01165.684 1.07

D2M4F12149.61219228.33 1.2852.697174.46 1.10165.684 1.16

D2M4F13149.61216510.29 1.1052.697174.460.95165.684 1.00

D2M4F21148.124157 5.99 1.0651.628172.870.91163.7490.96

D2M4F22148.124156 5.32 1.0551.628172.870.90163.7490.95

D2M4F23148.1241629.37 1.0951.628172.870.94163.7490.99

D2M4F31146.63519029.57 1.3050.556171.274 1.11161.815 1.17

D2M4F32146.63520338.44 1.3850.556171.274 1.19161.815 1.25

D2M4F33146.63519432.30 1.3250.556171.274 1.13161.815 1.20

D3M4C1472.46164436.31 1.3650.435374.337 1.72533.71 1.21

D3M4C2472.46162031.23 1.3150.435374.337 1.66533.71 1.16

D3M4C3472.46165037.58 1.3850.435374.337 1.74533.71 1.22

D3M4F11466.94459928.28 1.2849.392368.58 1.63526.537 1.14

D3M4F12466.94462032.78 1.3349.392368.58 1.68526.537 1.18

D3M4F13466.94460529.57 1.3049.392368.58 1.64526.537 1.15

D3M4F21461.42560330.68 1.3148.346362.81 1.66519.363 1.16

D3M4F22461.42557725.05 1.2548.346362.81 1.59519.363 1.11

D3M4F23461.42555219.63 1.2048.346362.81 1.52519.363 1.06

D3M4F31455.90761334.46 1.3447.3357.028 1.72512.19 1.20

D3M4F32455.90759931.39 1.3147.3357.028 1.68512.19 1.17

D3M4F33455.90760532.70 1.3347.3357.028 1.69512.19 1.18

D4M4C1689.62882219.19 1.1948.466529.838 1.55788.979 1.04

D4M4C2689.62878814.26 1.1448.466529.838 1.49788.979 1.00

D4M4C3689.62880116.15 1.1648.466529.838 1.51788.979 1.02

D4M4F11680.67778515.33 1.1547.434520.6 1.51777.343 1.01

D4M4F12680.67775510.92 1.1147.434520.6 1.45777.3430.97

D4M4F13680.67775711.21 1.1147.434520.6 1.45777.3430.97

D4M4F21671.7277359.42 1.0946.4511.346 1.44765.7080.96

D4M4F22671.7277278.23 1.0846.4511.346 1.42765.7080.95

D4M4F23671.72774711.21 1.1146.4511.346 1.46765.7080.98

D4M4F31662.77674512.41 1.1245.364502.077 1.48754.0720.99

D4M4F32662.77675814.37 1.1445.364502.077 1.51754.072 1.01

D4M4F33662.77677016.18 1.1645.364502.077 1.53754.072 1.02

Fig.6.Variation of speci?c load with D/t ratio.

rotation about the nodal z-axis as shown in Fig.7(b).Extreme

orientations of the conical shell element result in a cylindrical

shell element or an annular disc element.The shell element

may have a linearly varying thickness.The special features of

element have plasticity,creep,swelling,stress stiffening,large

de?ection,and torsion capability.

Multilinear elastic material and geometric nonlinear

behaviour were used for the computational model.Nonlinear

buckling analysis is more accurate than eigenvalue analysis

because it employs non-linear large-de?ection static analysis to Fig.7.Geometry of the(a)PLANE42and(b)SHELL51elements.

190P .K.Gupta et al./Journal of Constructional Steel Research 63(2007)

182–193

Fig.8.Typical (a)computed and (b)experimental deformed shapes for 50and 100mm diameter CFTs.

predict buckling loads.Its mode of operation involves gradual increase in the applied load until a load level is found at which the structure becomes unstable (i.e.suddenly a very small increase in the load will cause very large de?ections).The true non-linear nature of this analysis thus permits the modeling of geometric imperfections,load perturbations,material nonlinearities and gaps.

The Young’s modulus,yield stress and Poisson’s ratio of the mild steel tubes were approximately taken from the actual tests and selected to be 200GPa,360MPa and 0.3,respectively.The frictional coef?cient was taken equal to 0.2,whereas Young’s modulus and Poisson’s ratio for the concrete were also chosen from the experimental values and were about 27.386GPa and 0.15,https://www.wendangku.net/doc/ff5920014.html,ing the contact pair option,the top and bottom lines of the tube were picked as target surface and composite tube as contact surface,in which the target was made rigid and the contact body ?exible.The top line of the tube was made rigid target and constrained in all degrees of freedom and the bottom line was constrained in all degrees of freedom except in the y -direction,whereas the axis of symmetry was constrained from the x -direction only.The upward displacement of about 20mm was assigned to the bottom line.

4.1.Numerical results

The nonlinear solution of the simulated models was run in ANSYS 8.0release package using ANSYS-LS DYNA utility menu and the tubes were allowed to deformed up to 20mm deformation.The deformed shapes of the tubes are fairly matching with the corresponding experimental deformed shapes.In the computational study it was observed that the hollow tubes and CFTs having diameters 100and 75mm,collapsed due to local buckling,whereas the hollow tubes and CFTs having diameter 50mm collapsed due to development of Euler buckling.The same types of modes of collapse were also observed during experiments.The deformed shapes of 100mm diameter model,75mm diameter model and 50mm diameter model are on a par with the experimental deformed shapes (see Fig.8).

https://www.wendangku.net/doc/ff5920014.html,parison of numerical and experimental results The computational values,which are simulated using ANSYS,are compared with the experimental results in Fig.9(a)and (b).The peak load values from the experimental results are in fairly good agreement with the computational ones.The initial slope of the load–deformation curve is found to be

P.K.Gupta et al./Journal of Constructional Steel Research63(2007)182–193

191

https://www.wendangku.net/doc/ff5920014.html,parison of experimental and computed load–deformation curves for(a)M30and(b)M40grades of concrete for different CFTs.

larger in the case of the computational graph as compared to the experimental graph.The displacement at the yield point is found to be2–3mm(about20%–30%)less in the case of the computational graphs when compared with the experimental one for all types of specimens.

5.Conclusions

This paper presents an experimental study on circular concentrically loaded concrete?lled steel tube columns. Parameters for the study included the diameter and D/t ratio of steel tube,grade of concrete and effect of addition of?yash to concrete.The in?uence of these parameters on the con?nement of the concrete core,the compression shared by the steel tube and ultimately load carrying capacity of the CFTs was investigated.A computational study was further carried out to simulate the load carrying mechanism of the CFTs using Finite Element code https://www.wendangku.net/doc/ff5920014.html,parison of the experimental and computational results of load–deformation curves and mode of collapse is presented.It is found that the actual and numerically simulated modes of collapse of different CFTs are quite similar to each other.On the other hand at the beginning of the collapse process a difference was observed between the experimental and computed deformations of the CFTs.

Several aspects from these studies are worth noting.

1.In the CFT columns,which fail essentially by local buckling,

as the concrete strength increases the con?nement effect of

192P .K.Gupta et al./Journal of Constructional Steel Research 63(2007)

182–193

Fig.9.(continued )

the concrete core decreases.

2.The failure mode of the 50mm diameter CFT specimen was found to be Euler buckling and the de?ected shape matches with the experimental deformed shape.

3.It was seen that for smaller D /t ratio,a steel tube provides good con?nement effect to concrete.

4.

From the bare tube results it was observed that the load carrying capacity of the steel tube per unit volume decreases as the D /t ratio increases.Hence it is suggested to ?x the correct D /t ratio in order to make optimum usage of the material.

5.

It was observed that at a given deformation the energy absorbing capacity decreases with the increase in ?yash up to 20%but at 25%?yash it again increases.

6.The initial slope of the load–deformation curves obtained by the analytical model is found to be greater than that of the experimental one.

7.In the analytical model,the deformation of the CFT specimens at the yield point is about 2–3mm (about 20%–30%)less than their experimental counterparts.References

[1]Neogi PK,Sen HK,Chapman JC.Concrete-?lled tubular steel columns

under eccentric loading.Struct Eng 1969;47(5):195–207.

[2]O’Shea M,Bridge R.Circular thin-walled tubes with high strength concrete

in?https://www.wendangku.net/doc/ff5920014.html,posite construction in steel and concrete II.Irsee (Germany):ASCE 1996;780–93.

P.K.Gupta et al./Journal of Constructional Steel Research63(2007)182–193193

[3]O’Shea MD,Bridge RQ.Design of circular thin-walled concrete?lled steel

tubes.J Struct Engng ASCE2000;126(11):1295–303.

[4]Kilpatrick A,Rangan BV.Behaviour of high-strength composite columns.

In:Composite construction—conventional and innovative.Innsbruck, Austria;1997.p.789–94.

[5]Kilpatrick A,Taylor T.Application of Eurocode4design provisions to high

strength composite https://www.wendangku.net/doc/ff5920014.html,posite construction—conventional and

innovative.Innsbruck,Austria;1997.p.561–6.

[6]Brauns J.Analysis of stress state in concrete-?lled steel column.J Constr

Steel Res1998;49(2):189–96.

[7]Georgios G,Dennis L.Axial capacity of circular concrete-?lled tube

columns.J Constr Steel Res2004;60:1049–68.

[8]Mander JB,Priestley MJN,Park R.Theoretical stress–strain model for

con?ned concrete.J Struct Engng ASCE1988;114(8):1804–48.

建筑工程施工房屋建筑管理及创新 高志磊

建筑工程施工房屋建筑管理及创新高志磊 发表时间:2019-06-06T16:32:37.040Z 来源:《建筑学研究前沿》2019年3期作者:高志磊 [导读] 当今社会,我国经济水平不断提高,人民的物质生活水平也越来越好,在追求温饱得到解决时,人民注重高质量的精神生活。对于住房要求自然也在不断提高。 潍坊市文化艺术中心山东潍坊 261061 摘要:当今社会,我国经济水平不断提高,人民的物质生活水平也越来越好,在追求温饱得到解决时,人民注重高质量的精神生活。对于住房要求自然也在不断提高。这也为建筑行业带来了很多商机和利润。在这其中,建筑工程的质量问题不可小觑。一些建筑企业开始寻找更先进的管理手段对建筑施工质量进行管理,而施工管理就是一种方法一个科学有效的管理方案能够使管理人员如虎添翼,能够更好地处理施工过程中出现的各种复杂问题,对任何突发因素都能进行有效掌控。此文就如何提升施工管理成效进行了如下研究。 关键词:建筑工程;施工;房屋建筑管理;创新 1建筑工程施工管理存在的问题 1.1管理方法手段过于落后 高投资、大规模、长周期是现代建筑的显著特点。如果对工程质量不能进行有效的监督和控制,一定会在短期或长期出现质量安全问题。施工管理虽已经在许多城市建筑施工中得到了试验,但并没有取得理想的效果。究其原因,应该归咎于施工管理这一事物在我国发展起步较晚,还不够完善。没能形成系统的制度体系,缺乏可以参考的经验。建筑工程质量管理人员在工作时,仍旧实施传统的方式方法,毫无新意。如,签订工程合同中包括的施工操作规范、施工范围等内容应该由施工管理人员进行监督,使建筑工程的质量得到保障,但在实际工作中,由于外部各种因素以及自身因素等,造成监督不力,从而为整个建筑工程的安全问题埋下隐患。 1.2工程项目经常性变更过多 现代建筑在施工时所需要的知识涵盖方方面面,内容复杂且环节众多。因此,在施工之前做好万全的准备是十分必要的。根据工程用途选择不同的建筑材料,制定适宜的施工进度等都是需要认真规划考虑的方面,只有这样才能保证施工的质量不受影响,按照计划完成任务。但是想法和实践往往不能匹配,施工过程会遇到很多意料不及的事情。如果前期准备不充分,导致管理人员对潜在的有利或者不利因素分析不到位,导致整个施工过程十分被动,不得不在遇到问题是停止进度,来思考合适的解决办法或是相应的对策。如此反复很容易对施工质量和进度带来影响,也会使施工质量管理不能发挥作用。 2房屋建筑管理创新策略 2.1创建完备的管理体系 科学合理的管理制度体系对于建筑施工管理工作意义重大。当下建筑行业施工工作出现的主要问题体现在责任到人制度不够完善、能力考核制度不够完善、成本预算不到位等方面。想要解决这一系列问题,管理制度体系的改革也应该围绕这些问题展开。首先,有关单位应明确施工过程中主要的责任人,力求做到责任到人,每一环节都能找到相应的负责人,不至于出现出了问题却无人承担责任解决问题等情况。其次,相关企业还应就对工程成本和质量做到心中有数,一旦出现材料或工程行为不符合规范等情况就要及时处理,以免为将来的安全问题埋下隐患。最后,管理人员在工作时应该将使用安全材料的观念深入到每一个工作人员的思想当中。不能为了节省成本而使用一些质量不过关材料,置工程质量的安全问题与不顾。 2.2制定周密的成本质量管理方针 成本管理与质量管理是施工管理工作核心要素。首先,在成本管理方面,工作人员要从计划、控制与分析这三个角度出发。管理人员应该依据施工要求及建筑用途对施工成本进行科学合理的预算,确保资金的合理配置。在成本规划方面,管理人员应该从现有的成本入手,对成本所带来的经济效益进行全面的分析规划,制定出适合工程所需要的成本方案。其次,在质量管理方面,管理人员应该全程跟踪管理,在施工的各个阶段都要处理好细节问题,任何一个环节都不能落下。工程事故频繁发生使得工程质量安全问题已经处于风口浪尖的位置。房屋建筑的安全问题是全社会的责任,安全问题不光会给施工人员带来灾难,也会对社会造成不利影响。 2.3引入高效的施工控制手段 上文中已经指出,工程控制宽松是这个行业存在的较为普遍的一个问题。为了解决这个问题,高效的施工控制手段是一个有效的解决方案。为实现高效的工程控制,施工准备、施工中、施工结束后这三个阶段是重中之重,工作人员应该对这三个阶段引起足够重视。在施工准备阶段,设计图纸自然是重头戏。设计图纸是每一个建筑的“母亲”,但就目前情况而言,建筑从业人员对于设计图纸并没有较强的管理意识,在发现施工图纸存在问题时,施工人员往往只注重自身的工作,而认为图纸问题与自身工作毫不相干,进而不去提出图纸所存在的问题。这些纰漏都会对建筑的质量和施工进度带来不利影响。为解决这个问题,工作人员应保证图纸的质量,进行详细周全的检查,经过多道检查工序,从而保证图纸不会存在问题。而在施工过程当中,相关人员应对施工中的造价影响因素进行适度的细化分类。如,施工人员应该根据材料、进度、质量等方面,将工程造价的工作内容细化成若干个模块,来保证工程造价的效果更好实现。在工程结束以后,对于工程质量的验收步骤不可省略。对于工程质量安全存在问题的地方要进行返工,确保建筑的安全性。 2.4提高计算机应用水平 在互联网的时代,计算机能做的事情太多,它们高超的计算水平,精确的数据统计能力无一不为人类的工作提供着便利。建筑行业也不例外,利用现代化的设备可以为建筑施工管理提供许多便利。预结算、资料、流程处理、信息处理等方面计算机都能高效完美地完成。BIM技术的计算机信息管理就是在互联网时代出现的产物,它的工作流程是:第一步。根据建筑需求特点建立BIM信息中心,将项目全方位的信息连续打通和无缝对接,将零散的数据信息进行统一整合管理,第二步,商家根据自身需求在同一BIM信息中心处理数据,同时把本专业的信息加到BIM中,以供其他专业共享协同作业。这样既能使信息及时性有效交互,也能提高工作效率,同时提高了整个工程的质量。 2.5强化绿色施工与安全文明施工管理 在施工过程中,绿色施工和安全文明施工也是值得重视的一个问题。近年来环境问题已经成为全社会关注的热点问题,国家也提出

房屋建筑施工方法与技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 房屋建筑施工方法与技术 措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6573-88 房屋建筑施工方法与技术措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、工程概况: 本工程为东方红林业局住宅楼,总建筑面积为xxm2,砖混结构,共六层,由建筑照明和防雷接地两部分组成,共计两处进户,其近户电缆型号为YJV22×4 ×70mm2,穿SC-80钢管埋地进户,进至总配电箱,然后分别分到其他集中电表箱,为其全楼供电,配电方式为三项五线制,即TN-C-S系统。 二、施工方案、施工内容、施工程序: 在电气施工过程中,首先做好施工现场临时用电的架设安装,并注意现场安全施工操作,然后进行住宅楼内电气工程施工 施工程序可分为:

1、电气配管隐蔽工程; 2、管内穿线工程; 3、电气器具及配电箱安装工程; 4、防雷重复接地隐蔽; 5、等电位安装; 6、通电试验验收工程; 三、施工方法: 1、配管 (1)室内配线为铜芯塑料绝缘导线穿难燃塑料管,沿墙、楼板等处暗设,在接头处管用大一号管径套接,弯曲半径不得小于管外径的10倍。UAN超过下列长度,中间应加装拉线盒,两个拉线点之间距离应符合以下要求:30无弯曲,20m一个弯,15m二个弯,8m三个弯。 (2)孔洞与灯具位置的眼子,要用木楔堵住,要防止造物或灰浆进入空洞内。 2、穿线

脐带干细胞综述

脐带间充质干细胞的研究进展 间充质干细胞(mesenchymal stem cells,MSC S )是来源于发育早期中胚层 的一类多能干细胞[1-5],MSC S 由于它的自我更新和多项分化潜能,而具有巨大的 治疗价值 ,日益受到关注。MSC S 有以下特点:(1)多向分化潜能,在适当的诱导条件下可分化为肌细胞[2]、成骨细胞[3、4]、脂肪细胞、神经细胞[9]、肝细胞[6]、心肌细胞[10]和表皮细胞[11, 12];(2)通过分泌可溶性因子和转分化促进创面愈合;(3) 免疫调控功能,骨髓源(bone marrow )MSC S 表达MHC-I类分子,不表达MHC-II 类分子,不表达CD80、CD86、CD40等协同刺激分子,体外抑制混合淋巴细胞反应,体内诱导免疫耐受[11, 15],在预防和治疗移植物抗宿主病、诱导器官移植免疫耐受等领域有较好的应用前景;(4)连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于组织工程和细胞替代治疗。1974年Friedenstein [16] 首先证明了骨髓中存在MSC S ,以后的研究证明MSC S 不仅存在于骨髓中,也存在 于其他一些组织与器官的间质中:如外周血[17],脐血[5],松质骨[1, 18],脂肪组织[1],滑膜[18]和脐带。在所有这些来源中,脐血(umbilical cord blood)和脐带(umbilical cord)是MSC S 最理想的来源,因为它们可以通过非侵入性手段容易获 得,并且病毒污染的风险低,还可冷冻保存后行自体移植。然而,脐血MSC的培养成功率不高[19, 23-24],Shetty 的研究认为只有6%,而脐带MSC的培养成功率可 达100%[25]。另外从脐血中分离MSC S ,就浪费了其中的造血干/祖细胞(hematopoietic stem cells/hematopoietic progenitor cells,HSCs/HPCs) [26, 27],因此,脐带MSC S (umbilical cord mesenchymal stem cells, UC-MSC S )就成 为重要来源。 一.概述 人脐带约40 g, 它的长度约60–65 cm, 足月脐带的平均直径约1.5 cm[28, 29]。脐带被覆着鳞状上皮,叫脐带上皮,是单层或复层结构,这层上皮由羊膜延续过来[30, 31]。脐带的内部是两根动脉和一根静脉,血管之间是粘液样的结缔组织,叫做沃顿胶质,充当血管外膜的功能。脐带中无毛细血管和淋巴系统。沃顿胶质的网状系统是糖蛋白微纤维和胶原纤维。沃顿胶质中最多的葡萄糖胺聚糖是透明质酸,它是包绕在成纤维样细胞和胶原纤维周围的并维持脐带形状的水合凝胶,使脐带免受挤压。沃顿胶质的基质细胞是成纤维样细胞[32],这种中间丝蛋白表达于间充质来源的细胞如成纤维细胞的,而不表达于平滑肌细胞。共表达波形蛋白和索蛋白提示这些细胞本质上肌纤维母细胞。 脐带基质细胞也是一种具有多能干细胞特点的细胞,具有多项分化潜能,其 形态和生物学特点与骨髓源性MSC S 相似[5, 20, 21, 38, 46],但脐带MSC S 更原始,是介 于成体干细胞和胚胎干细胞之间的一种干细胞,表达Oct-4, Sox-2和Nanog等多

高层房屋建筑施工技术分析 宋振铎

高层房屋建筑施工技术分析宋振铎 摘要:建筑施工技术的成熟使得高层房屋建筑获得迅速发展。本文在阐述高层 房屋建筑施工特征的基础上,对其基础施工、灌注桩施工、模板施工和钢结构施 工技术进行分析。以期有利于高层房屋建筑施工技术应用水平的提升,进而推动 建筑工程行业的进一步发展。 关键词:高层房屋;建筑施工;技术 引言 新时代背景下,社会的发展和科技的进步,以及城市化进程的不断深入,促 使高层房屋建筑如雨后春笋般纷纷林立。而随着人们生活水平的显著提高,使得 其对高层房屋建筑的施工技术有着更为严格的要求。对此,本文对高层房屋建筑 施工技术做出了简要的分析与思考,这对于我国建筑行业的可持续发展,将形成 不同程度的促进力与推动力。 1高层房屋建筑的施工特点 1.1施工工期偏长 对于高层房屋建筑结构而言,施工工期偏长,是其主要施工特点之一。通常 情况下,高层房屋建筑的施工工期在1年-2年左右。因此,高层房屋建筑在施工 中便会涉及到季节的更替。一些建筑企业或施工单位则通过缩短结构的方法,来 进行施工工期的缩短。同时,部分企业也会通过优质施工模板的选取与应用,来 进行施工成本的降低和施工周期的缩短。 1.2施工高度高 高空作业是高层房屋建筑施工中的另一主要特点。施工人员不仅要做好施工 材料、机械设备以及操作人员的高空垂直性运输与作业,更要在各个施工环节中 确保高空防护工作的完善。既不应出现高空用水、用电以及通讯等方面的问题, 又要严格避免施工过程中所出现的高空坠物等情况。除此之外,进行高层房屋建 筑施工的人员,也要在施工中具备完善的高空作业安全知识与意识,以此杜绝因 操作不当而造成的经济损失或人员伤亡现象。 1.3基础埋置较深 高层房屋建筑在施工中的基础埋置相对较深,受建筑高度因素的影响,使得 其基坑深度较深。通常情况下,高层房屋建筑的基础埋置深度应大于5m。但在 施工中,深基坑、深基础也会出现不同程度的问题。因此,需依照土质情况来进 行地基的处理,并由此选取出适合土质情况的施工方案,以此在提升高层房屋建 筑施工质量的基础上,减少造价成本与工期长度。 2高层房屋建筑施工技术分析 2.1基础工程施工 高层房屋建筑基础施工按照《高层建筑结构设计与施工规范》进行施工操作。在施工过程中,工程建设人员应进行以下内容的具体保护:其一,确保深基坑开 挖与支护控制的合理,避免基坑位移、侧滑或变形状况的发生;其二,进行基坑 防水、防沉降工作的处理;其三,对基坑填筑的稳定性和强度进行保证,确保深 坑基础具有较强的基础支撑能力。需要注意的是,一旦基坑的深度超过5m,则 建设单位应对其进行必要的专家论证,并组好项目总监的控制审核,唯有如此, 才能在避免施工干扰的状况下,实现施工质量的有效控制。 2.2灌注桩施工 钢筋混凝土是当前高层房屋建设施工的主要结构形式。在其施工过程中,灌

房屋建筑物及其安全管理的基本概念和定义(正式版)

文件编号:TP-AR-L7760 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 房屋建筑物及其安全管理的基本概念和定义(正 式版)

房屋建筑物及其安全管理的基本概 念和定义(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 房屋建筑物安全管理制度的建立是一项系统工 程,准确定义该系统的概念与范畴有助于系统的准确 建立与实施。 房屋建筑物是房屋建筑施工活动的直接产品,因 此,为了明确房屋建筑物的概念,首先要明确房屋建 筑施工活动在建筑业中的位置。 我国的国家标准《国民经济行业分类》 (GB/T4754—2002)将编号为E的“建筑业”分为房 屋和土木工程建筑业、建筑安装业、建筑装饰业和其 他建筑业四个大类,见表1-1。

表1-1中,序号为48、49和50的建筑安装业、建筑装饰业和其他建筑业三个大类,都是序号为47的房屋和土木工程建筑业大类的配套行业,其产品基本不能独立存在,因此应根据房屋和土木工程建筑业大类对建筑施工活动的产品(即各类建筑物)进行分类。 房屋和土木工程建筑业大类在表1-1中又分为房屋工程建筑和土木工程建筑两个中类。这两个中类的主要区别有: (1)从立项审批程序、规划设计、施工工艺难度和维修保养等角度,房屋工程建筑的产品与土木工程建筑的产品有显著区别; (2)从行政主管部门分工的角度,房屋工程建筑和土木工程建筑分别由不同部门管理;

脐带血造血干细胞库管理办法(试行)

脐带血造血干细胞库管理办法(试行) 第一章总则 第一条为合理利用我国脐带血造血干细胞资源,促进脐带血造血干细胞移植高新技术的发展,确保脐带血 造血干细胞应用的安全性和有效性,特制定本管理办法。 第二条脐带血造血干细胞库是指以人体造血干细胞移植为目的,具有采集、处理、保存和提供造血干细胞 的能力,并具有相当研究实力的特殊血站。 任何单位和个人不得以营利为目的进行脐带血采供活动。 第三条本办法所指脐带血为与孕妇和新生儿血容量和血循环无关的,由新生儿脐带扎断后的远端所采集的 胎盘血。 第四条对脐带血造血干细胞库实行全国统一规划,统一布局,统一标准,统一规范和统一管理制度。 第二章设置审批 第五条国务院卫生行政部门根据我国人口分布、卫生资源、临床造血干细胞移植需要等实际情况,制订我 国脐带血造血干细胞库设置的总体布局和发展规划。 第六条脐带血造血干细胞库的设置必须经国务院卫生行政部门批准。 第七条国务院卫生行政部门成立由有关方面专家组成的脐带血造血干细胞库专家委员会(以下简称专家委

员会),负责对脐带血造血干细胞库设置的申请、验收和考评提出论证意见。专家委员会负责制订脐带血 造血干细胞库建设、操作、运行等技术标准。 第八条脐带血造血干细胞库设置的申请者除符合国家规划和布局要求,具备设置一般血站基本条件之外, 还需具备下列条件: (一)具有基本的血液学研究基础和造血干细胞研究能力; (二)具有符合储存不低于1 万份脐带血的高清洁度的空间和冷冻设备的设计规划; (三)具有血细胞生物学、HLA 配型、相关病原体检测、遗传学和冷冻生物学、专供脐带血处理等符合GMP、 GLP 标准的实验室、资料保存室; (四)具有流式细胞仪、程控冷冻仪、PCR 仪和细胞冷冻及相关检测及计算机网络管理等仪器设备; (五)具有独立开展实验血液学、免疫学、造血细胞培养、检测、HLA 配型、病原体检测、冷冻生物学、 管理、质量控制和监测、仪器操作、资料保管和共享等方面的技术、管理和服务人员; (六)具有安全可靠的脐带血来源保证; (七)具备多渠道筹集建设资金运转经费的能力。 第九条设置脐带血造血干细胞库应向所在地省级卫生行政部门提交设置可行性研究报告,内容包括:

高层房屋建筑施工技术

高层房屋建筑施工技术 1高层房屋建筑施工的自身特点 第一点,高层建筑比一般建筑物的物理深度更深,由于高层建筑比较高,所以为了确保其稳定性,必须深挖地基。国家规定,一般其深度是其高度的十二分之一。并且现在的高层建筑都设有地下停车场,所以,我们更加需要重视高层建筑的物理深度,确保其安全性。第二点,高层建筑的施工周期比一般建筑的周期更长,一般建筑的施工周期大概只需要八个月左右。而高层建筑由于其建筑的技术难度较大,所以其施工周期一般在两年左右。这样在其施工的过程中,就会很容易出现恶劣天气,例如雨季,连续下雪等等。所以,在建筑过程中,我们需要想方设法缩短建筑周期。由于不同建筑的结构不相同,所以,我们针对其不同性使用不同的施工方法来缩短建筑周期。第三点,高层建筑的施工条件比一般建筑物更加复杂,由于,高层建筑一般都建设在城市的中心位置,这些地方可以利用的施工用地面积相对来说比较小了。所以,在施工过程中,我们需要合理的摆放施工设备和储备的材料设备。如果施工现场的过于狭小的话,我们就得选购一些商品化的产成品。并且,我们还需要采取挡土或加固等方式来保护高层建筑周围的基础设施。 2高层建筑中各个分工程的技术要点

2.1钢筋工程施工的要点高层建筑目前已经大量的使用了钢筋混凝土材料。特别是是钢筋结构已经大量的运用在高层房屋的建筑施工过程中。钢筋结构的使用不仅可以明显缩短施工周期,并且使高层建筑的预制方便,技术参数优异。不过,钢筋结构的使用也得注意以下几个问题:钢结构的构件重量较大,竖直上升的难度较大,并且不能耐热。所以,在施工的过程中,钢筋混凝土混合使用的时候,需要考虑混凝土的承载性。在吊装时,需要选择良好的天气施工,降低施工的危险。施工人员在焊接钢结构构件时,一定要做好防火耐热工作,避免产生不必要的人身伤害。 2.2混凝土工程的施工要点在高层建筑的施工过程中,混凝土材料的使用需要注意两个方面的内容。第一个方面的内容是混凝土材料选择与运输,我们知道不同的混凝土等级的强度是不同的。在高层建筑中施工中,我们在搅拌混凝土的时候一般需要加入粉煤灰,粉煤灰的加入可以有效地改善混凝土的和易性降低了其坍落的可能性。如果是楼板混凝土的话,一般需要加入聚丙稀防裂纤维,避免混凝土产生收缩裂缝。混凝土一般都是使用输送泵进行垂直运输。如果运输过程时间过长或者受温度影响,造成拌合物出现了分层的现象的话,我们一般需要将混凝土进行二次搅拌,并检查它的坍落度,必须是所得到的数据均符合标准要求,才能将混凝土进行施工。第二个方面需要注意的内容是在混凝土的浇筑过程中,必须首先在一个部位浇筑,待其达到标高,形成扇形流动的混凝土斜坡面后再进行浇筑。其次,混

房屋建筑管理工作手册A版定稿版

房屋建筑管理工作手册 A版 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

深圳市花样年物业管理有限公司 S h e n Z h e n F a n ta s i a P r o p e r t y M a n a g e m e n t C o.,L T D 编号:HYNPM-WI/FW 版本:A 房屋建筑管理工作手册 编制:日期: 审核:日期: 批准:日期: 说明:红色印章为受控文件 括号内数字为文件分发号 文件受控章 声明:本手册未经许可,不得翻印。 责任单位:品质部 房屋建筑管理工作手册目录 WI/FW000

Fantasia A/0 1/1

001名词、术语解释 WI/ FW 001

Fantasia A/0 1/1 1、土建维修 指对房屋的基础、主体结构、门窗、屋面、楼面和地面、装饰装修部分及道路场地 等进行养护、修理。 2、精装修 业主或使用人为提高装修档次、或改变功能对房间进行的二次装饰、装修。 3、土建小修工程(日常养护) 凡以及时修复小损小坏,保持房屋原来完损登记为目的的日常养护工程为小修工程。 小修分零星养护和计划养护。 4、土建中修工程 凡需牵动或拆换少量主体构件,但保持原房屋的规模和结构的工程为中修工程。中修 工程一次费用在该建筑物同类结构新建造价的20%以上,中修后的房屋70%以上必须符合 基本完好或完好的要求。主要适用于一般损坏房屋。 5、土建大修工程 凡需牵动或拆换部分主体构件,但不需全部拆除的工程称为大修工程。大修工程一次 费用在该建筑物同类结构新建造价的25%以上,大修后的房屋必须符合基本完好或完好的 要求。主要适用于严重损坏房屋。

重型机械行业焊接技术现状参考文本

重型机械行业焊接技术现 状参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

重型机械行业焊接技术现状参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.国内外概况 焊接技术是重型机械金属结构设备制造与安装施工的 关键工艺技术之一,在工业发达国家重型机械制造业中得 到广泛应用。发展至今,我国的重型机械焊接技术与美国 (如P&H公司等)、德国(如西马克公司等)、法国(如 奥钢联公司等)、日本(如三菱重工、小松株式会社等) 等发达国家间存在很大的差距。目前,这些国家及地区采 用焊接结构件的比例日趋增大,其中自动化、机械化的气 体保护焊及多丝埋弧焊等高效焊接工艺方法消耗的焊接金 属材料约占全部焊材总量的50~70%,其焊接生产采用机 械化、自动化、高效的焊接工艺方法,带来焊接生产效率 高、焊接质量好的效果,国际竞争力强。

在我国重型机械金属结构行业,气体保护焊、双丝埋弧自动焊、龙门焊机、电渣焊等高效焊接工艺方法在大型金属结构制造企业中的应用日趋增多,高效焊接方法完成的金属结构件已占其总重量的50~80%左右,在中小型企业中,CO2气体保护实芯焊丝、埋弧自动焊等方法也得到一定应用。但总体来说,我国重型机械制造中劳动工资低廉的优势正在被生产效率低下、质量成本高昂的巨大差距所抵消,这应引起我们的足够重视。 2.产品情况 重型机械金属结构行业主要为国家大型骨干企业和国家重点工程项目提供重型机械装备。行业制造骨干企业如第一重型机械集团有限公司、第二重型机械集团有限公司、太原重型机械集团有限公司、大连重工?起重机集团有限公司、中信重型机械有限公司、郑州煤机厂、北京煤机厂、上海振华港口机械公司、齐齐哈尔第二机床厂等,主

房屋建筑技术标

房屋建筑技术标 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

目录 第一章技术标综合说明 (01) 第二章施工总体部署 (02) 第三章分部分项施工技术方案 (12) 第四章施工总进度及保证进度主要措施 (47) 第五章工程质量保证措施 (50) 第六章安全施工保证措施 (62) 第七章文明施工措施 (73) 第八章环境保护措施 (76) 第九章附件 (79) 附件一、施工现场总平面布置图 附件二、施工进度计划表 附件三、公司(营业执照、资质证书、安全生产许可证、诚信手册) 附件四、公司历年来获得的荣誉证书 附件五、现场管理人资质证书 第一章技术标综合说明 首先感谢贵院对本公司的信任,诚意邀请本公司参加金卫幼儿园(绿地园区)工程的投标。本公司作为房屋建筑工程总承包二级、建筑装修装饰工程施工二级、金属门窗工程施工二级、市政公用工程施工三级、防腐保温工程施工三级、机电设备安装工程施工三级的施工企业对承建贵工程具有极大的兴趣,对与贵方的合作充满诚挚的意愿。我们诚恳地表示,我们完全接受招标文件中提出的有关质量、工期、安全和文

明施工、安装配合、总包管理等各项要求,并落实各项方案和措施,与业主、监理单位、设计院、设备供应方一起以高度的责任感共同建设好贵工程。 我公司认真学习和研究了工程招标文件、有关图纸资料,并踏勘了施工现场,在分析了本工程的特点、难点和各种影响施工的因素后,我公司对以高质量、高速度全面完成该工程的建设任务充满了信心。现将本工程施工组织设计呈送贵方,供你们审阅。 一、工期目标 确保本工程以180个日历天完成全部竣工施工任务。如有幸中标,所报工期即为合同工期,并做到一接到通知,第二天立即进场。我公司一定精心组织施工、周密安排,千方百计做好开工前的施工准备工作,让业主放心满意。 如因我公司原因造成工期拖延,愿接受合同总价每天万分之五的罚款。 二、质量目标 确保金卫幼儿园(绿地园区)工程达到一次验收合格与区优质结构工程。针对本工程特点,我公司将以先进的技术、科学的管理落实措施,确保本工程达到质量目标。 如果达不到上述质量承诺,我公司愿接受按合同总价的5%给以罚款。 三、安全目标 实现无工伤、火灾、交通管线、设备等事故,创上海市标化合格工地。 四、施工现场管理目标 确保施工现场管理达到“区现场文明、标化工地”标准,争创上海市“市级文明工地”标准。

高层房屋建筑施工特点与技术的分析

高层房屋建筑施工特点与技术的分析 城市人口压力骤增促使各行各业改变了传统的经营模式,尤其是建筑行业在这样的压力下迅速发展,对质量的要求也更加严格,文章主要针对高层房屋建筑的施工特点与施工技术进行分析,并探讨其未来的发展方向。 标签:高层房屋建筑;施工特点;施工技术 前言 经济的发展、土地的紧张,城市人口的增加都使得建筑业迅速发展,而其质量问题也更加突出,因此,这些问题一旦发生将造成不可挽回的损失,在这样的形势下,必须要提高高层建筑施工的技术,确保工程质量。 1 高层建筑施工的技术特点 1.1 基坑“深” 基坑是保证施工结构稳定的基础,是高层建筑最重要的环节之一,也是出现问题较多的环节之一,高层建筑最大的特点就是高,为了气安全性与稳定性,埋置深度一般要达到整个建筑高度的8%,另外,一些高层建筑需要配置地下设备,因此高层建筑越高,要求地下埋置的深度也越高。另外,埋身工作受到土质等因素的影响,必须要充分考虑,确保施工安全。因此,在高层建筑施工过程中,“深”对技术的要求较高,必须要给予足够的重视。 1.2 施工的工期较长 建筑施工工作受到多种因素影响,因此施工的工期较长,而且现代高层建筑的施工技术也要确保高层建筑物具有长效性。高层建筑涉及到的工作更加复杂,对施工技术的要求也更高,一般的高层建筑施工都需要长达一两年,甚至更长,而且在施工中还会受到季节与天气的影响,给建筑施工造成麻烦,延长工期。 1.3 建筑物“高” 高显然是建筑物最大的特征,首先,建筑物自身的高度,这是高层建筑独有的特点,这从施工现场的情况也可以看出,垂直运送量较大,这就要求高层建筑物在施工中使用性能较为优越的垂直运送设备,提升施工效率。同时,由于高层建筑物高的特点,整个施工过程中都涉及到高空作业,高空材料运送等等,这些工作对技术的要求较高,必须要注意提高施工技术与施工标准。 1.4 建筑物的体积与施工难度大 由于高层建筑较高,因此其体积也较为庞大,而且施工量也较大。高层建筑

房屋建筑管理制度

房屋建筑管理制度 第一章总则 第一条为了确保房屋安全与使用寿命,确保员工得人身安全,特制定本制度,公司所有人员等均应遵守本制度。 第二章组织机构与管理职能 第二条安全生产部负责公司内建筑物、构筑物大修、维修管理工作。主要职责有: (一)负责公司内建筑物、构筑物固定资产得管理,分类编号,健全台帐卡片,做到帐物一致。 (二)负责组织对公司内房屋建筑物得技术状态管理、技术鉴定及组织实施工作。 第三条各使用单位负责各单位建筑物、构筑物得技术状态管理,负责包括房屋、构筑物、车间内电气线路、上水、排水系统、采暖系统、门窗、道路、天车轨道等得维修预检与月度维修计划得编制,上报主管部门。 第三章管理内容及要求 第四条计划管理 (一)安全生产部负责公司年度、月度大维修计划得编制。 (二)年度大修计划,应在上年年底前编制完成,上报公司领导批准后委托其它单位组织执行; (三)各单位提出得维修项目,应及时报安全生产部。

(四)由于生产需要而临时增加大维修内容时,采用先施工,后追补计划得方法处理. 第五条各使用单位维修预检人员对房屋建筑得日常维护管理: (一)及时清理厂房屋面积雪、屋面雨水管道、排水沟等,并运走垃圾; (二)定期维护门窗; (三)定期维修天车轨道与厂房地面轨道; (四)及时维护电气线路、给水、消防水及各类高低压动力管道及设施. 第六条建筑物、构筑物得管理使用规定 (一)未经公司批准,任何单位与个人不得改变与损坏建筑物、构筑物得基础、承重墙体、梁、柱等承重结构;不得拆改与破坏公共设备设施及公用管线。 (二)各单位使用得属于固定资产得建筑物、构筑物,不准自行调剂,确因工艺变动或生产需要时,须经公司领导批准后方能进行,固定资产同时转帐。 (三)建筑物、构筑物因管理使用不当,发生损坏,由责任单位向工程项目部提出书面报告;危及安全得应同时提出问题,进行事故分析。破损建筑物、构筑物由安全生产部负责技术处理。 (四)各使用单位负责建筑物、构筑物得使用与保护,

建筑工程施工房屋建筑管理及创新 王立甲 赵辉

建筑工程施工房屋建筑管理及创新王立甲赵辉 发表时间:2019-07-09T16:23:41.730Z 来源:《建筑模拟》2019年第21期作者:王立甲赵辉[导读] 房屋建筑非常重要,它是人们日常生活的主要场所,房屋建筑的质量关系着人民的生活和安全,房屋建筑的进步也能够给促进社会的发展和民众的进步。 王立甲赵辉 泰和隆丞装饰工程(沈阳)有限公司辽宁沈阳 110000 摘要:房屋建筑非常重要,它是人们日常生活的主要场所,房屋建筑的质量关系着人民的生活和安全,房屋建筑的进步也能够给促进社会的发展和民众的进步。现阶段的建筑工程中存在着很多的问题,只有了解目前施工房屋上存在的问题,才能够采取一些措施来加强管理,从而促进建筑工程的进步。笔者从事建筑工程工作多年,对建筑工程施工房屋建筑管理及创新也有一定的探究。 关键词:建筑工程;施工房屋建筑;质量控制;管理及创新 房屋建筑既能够反映城市发展的水平,也能够反映人民群众的生活水平和生活质量,房屋建筑业水平具有非常重要的作用,但是目前整个社会和整个行业都没有对建筑工程管理给予足够的重视,对于建筑工程的质量问题和安全问题都有很大的忽视。很多的建筑工程都存在多多少少的质量问题,比如房屋渗漏等,这些质量问题给人们的生活和工作都带来了极大的影响,甚至会成为极大的安全隐患。针对这种现状,建筑工程业的从业人员一定要重视工程管理工作,及时解决房屋建筑过程中存在的问题。 1建筑工程施工及管理现状 1.1房屋建筑施工技术需要创新 现阶段,随着科学技术的进步和信息化时代的到来,房屋建筑的施工技术需要紧跟时代的步伐,技术创新已是大势所趋。房屋建筑施工应该在应用传统技术的基础上,与新技术相结合,使现代建筑技术更上一层楼。技术创新不仅包括建筑技术的成本节约,同样包括建筑工程经济效益的提高以及建筑工程的发展符合环境保护的需求。 1.2建筑房屋工程施工遇到阻力 一些建筑单位在当前的发展过程中并没有从根本上重视技术和管理的创新,多数企业只是从成本出发,思考如何减少工程成本,从而提高经济效益,却没有想到从技术创新入手,提高自己的企业竞争力。所以公司中的管理人员对创新都没有过多兴趣;单位中的技术人员水平较低,多数为年岁已高或是进城务工人员,这些人员创新观念不足,或是已经掌握了传统的技术,不愿改变,也不愿花费过多时间学习一门新技术;对于新技术的应用,建筑单位中各个部门都有其自身的发展特色,如果不能和时代接轨,就不能发挥出科学技术的作用,当然,应用时也不是所有的科学技术都适合于现阶段的建筑工程发展,还存在一部分不适应状况;一些新技术被引进建筑工程中,建筑工程本身的管理体系就不是很完善,在融入新技术,依然难以得到提高。比如建立岗位责任制和创新奖惩制度,如果之前没有建立起相应的责任制度,就还是需要先完善,再创新。 1.3监督管理体制不够完善 一个企业的发展离不开完善的管理体制,但是因为一些企业本身管理体制就不完善,所以工程施工时安全事故时有发生,安全事故一旦发生就会给企业带来较大的经济损失。作为一个发展较好的企业,需要考虑到劳动力因素、成本因素以及科技因素,无论哪一方面没有做到位,都会最终影响企业的发展。 1.4人员缺乏系统的培训 一些企业在发展过程中考虑到经济成本的因素,不会对员工进行培训,即使部分员工专业素质较低,他们依然按照以往的技术经验进行施工,导致房屋建筑工程的质量无法得到保障,现阶段,科学技术的发展为施工质量打下了坚实的基础,但由于没有落实人员培训管理制度,就导致施工人员的培训制度无法贯彻落实,最终阻碍建筑单位的发展。 2建筑工程施工房屋建筑管理 2.1转变观念,顺应需要 建筑行业的管理必须要企业、个人的共同努力,首先是企业要加强对单位里的每个员工管理,要求每一个员工都要树立正确的安全管理观念,也要让每个员工明白自己的职责和肩负的责任,让企业里的每个员工共同进步,从而带动整个行业的进步。为了企业的进步,必须解决实际中存在的问题,比如任人唯亲、官僚主义等问题,建筑工程管理和创新需要企业根据市场发展趋势和社会的实际需求来进行。每个部分按照自己的分工,各司其职,大家都做好自己的事情,尤其是企业中和建筑工程部门相关的部门,比如财务部门、技术安全部门等,都要团结协作,和谐共存。还要让整个行业拥有强烈的竞争意识,让他们既能够提升高质量的完成建筑任务,又能够提升经济效益。 2.2适应市场发展的趋势 市场的变化日新月异,市场的竞争力也在不断增大,企业需要一直提升自身的竞争力,这样才能够在适者生存的大环境下更好地发展和进步,建筑行业想要能够更快更好地发展,还是需要企业不断适应市场发展的趋势,促进自身的进步。建筑行业管理改革体制需要做到把信息化和产业化与建筑业结合,伴随着社会的发展,建筑行业也开始大兴,我们需要对以往的管理模式进行调整,加入信息化,通过信息化的融入,让企业拥有更高级的管理技能,而且可以帮助企业改变原有的运营方式和运营理念,而且要让建筑行业变得更加透明化,无论是建筑材料的购买和工程业务的进展都要更加公开化,当账目和人员安排都更透明之后,建筑工程中会出现的问题也在不断减少。 2.3注重成本控制 成本管理是工程管理的关键环节,想要管理好房屋建筑施工情况,还是要建立完善的成本控制体系,想要真正做好成本管理,就一定要把公司利益放在首位,工程的成本一定要控制在合理的范围内,是要依据公司利益来设定的,建筑工程的成本一定要着眼于整体的成本,很多公司都是因为只谈工程成本,最后以至于成本过大,给整个公司的成本带来了巨大的压力。建筑工程中的成本需要建筑团队先根据建筑环节作出成本预算,再有公司的专业团队核对预算,在跟建筑团队的人商量之下,再次对预算表进行修改和调整,之后每个月都按照预算表严格执行,这样就能保证成本不超过预算。总的来说,有效的成本控制能够精密地把握每个施工项目的预算与盈亏状态,最终有利于施工项目顺利进行,并不干扰企业的切身利益。 3建筑工程施工管理的创新

焊接工艺介绍

焊接工艺介绍 一、概述 二、CO2气体保护焊 三、点焊 四、电极

一、概述 1、焊接工艺的基本概念 焊接工艺是根据产品的生产性质、图样和技术要求,结合现有条件,运用现代焊接技术知识和先进生产经验,确定出的产品加工方法和程序,是焊接过程中的一整套技术规定。包括焊前准备、焊接材料、焊接设备、焊接方法、焊接顺序、焊接操作的最佳选择以及焊后处理等。制订焊接工艺是焊接生产的关键环节,其合理与否直接影响产品制造质量、劳动生产率和制造成本,而且是管理生产、设计焊接工装和焊接车间的主要依据。 焊接结构生产的一船工艺过程如图所示。焊接是整个过程中的核心丁序,焊前准备和焊后处理的各个工序都是围绕着获得符合焊接质量要求的产品而做的工作。质量检验贯穿于整个生产过程,以控制和保证焊接生产的质量。每个工序的具体内容,由产品的结构特点、复杂程度、技术要求和生产量的大小等因素决定。 2 焊接工艺的发展概况 焊接方法是焊接工艺的核心内容,其发展过程代表了焊接工艺的进展情况。焊接方法的发明年代及发明国家见表2.1.1。按照焊接过程的特点,焊接分为熔焊、压焊和钎焊三大类,每一类根据工艺特点又分为若干不同方法,见图2.1.2。 目前许多新的焊接工艺正逐步用于焊接生产,极大地提高了焊接生产率和焊接质量。在重型机械、冶金矿山机械、工程机械、电站锅炉压力容器、石油化工、机车车辆、汽车等行业中普遍采用了数控切割技术、

埋弧自动焊、电渣焊、CO2气体保护焊、TIG焊、MIG焊、电阻焊和钎焊等焊接方法并具有成套的焊接工艺装备。尤其是汽车生产线中采用了co 2气体保护焊、TIG焊、MIG焊等焊接机器人、电阻焊机器人和自动生产线,大大提高了焊接质量和生产效率,焊接机械化、自动化水平己达到总焊接工作量的35%一45%。与工业发达国家相比,我国的焊接机械化和自动化水平还较低,按熔化焊来计算,目前日本为67%,德国为80%.美国为56%,原苏联为40%,而我国还不到20%,其主要原因是我国焊接生产主要还靠手工电弧焊,自动化水平高的气体保护焊和埋弧自动焊应用少。从焊接生产工艺装备水平来看,我国近年来,生产了成套的焊接工艺装备和焊接生产线,也有的厂家从国外引进了自动化水平较高的焊接辅助装置、焊接质量和生产效率有了很大提高。 计算机控制系统在焊接生产工艺中的应用、在国外已经比较普遍,除用于焊接工艺参数的控制之外,还可用于整条生产线、焊机的群控。它还可以根据材料厚度自动选择并预置焊接工艺参数.对焊接过程实现自适应控制、最佳控制以及智能控制等。 研究开发具有智能的焊接机器人,特别是具有自动路径规划,自动校正轨迹,自动控制熔深的机器人将是近期和21世纪的重点方向。 电子束、激光、等离子等高能束流用于焊接,可以完成难熔合金和难焊材料的焊接,焊接熔深大、热影响区小、焊缝性能好、焊接变形小、精度高,并具有较高的生产率。必将在核、航空、航天、汽车等工业中得到广泛的应用,推进焊接工艺的进步。 采用复合热源焊接是焊接工艺的又一发展动向。利用复合热源焊接

房屋建筑工程施工技术标准

工程施工技术标准 沉井施工技术标准 1、沉井制作尺寸的允许偏差应符合下列规定: 1.1 长、宽:±5%,且不大于±12cm; 1.2 曲线半径:±0.5%,且不大于±6cm; 1.3 对角线:±1%; 1.4 井壁厚(混凝土):±4cm。 2、沉井清基后位置的允许偏差应符合下列要求: 2.1 沉井地面平均高程应符合设计要求; 2.2 沉井的最大倾斜度不得大于沉井高度的1/50; 2.3 沉井顶、底面中心与设计中心在平面纵横向的位移(包括因倾斜而产生的位移)均不得大于沉井高度的1/50; 2.4 矩形、圆端形沉井平面扭角允许偏差≤1°。

清筛道床道技术标准 道床厚度(mm)标准 注:允许速度大干120 km/h的线路,无垫层时碎石道床厚度不得小于450mm;有垫层时碎石道床厚度不得小于300 mm,垫层厚度不得小于200mm。 道床顶面宽度及边坡坡度 线路连接技术标准 普通线路接头螺栓扭矩标准 注:①C值为接头阻力及道床阻力限制钢轨自由伸缩的数值。

②小于43 kg/m钢轨比照43 kg/m钢轨办理。 ③高强度绝缘接头螺栓扭矩不小于700 N·m。 线路维修技术标准 线路轨道静态几何尺寸容许偏差 注:①轨距偏差不含曲线上按规定设置的轨距加宽值,但最大轨距(含加宽值和偏差)不得超过I 456mm; ②轨向偏差和高低偏差为10m弦测量的最大矢度值; ③三角坑偏差不含曲线超高顺坡造成的扭曲量,检查三角坑时基长为 6.25m,但在延长18m的距离内无超过表列的三 角坑; ④专用线按其他站线办理。

道岔轨道静态几何尺寸容许偏差 注:①支距偏差为现场支距与计算支距之差; ②导曲线下股高于上股的限值:作业验收为0,经常保养为2mm,临时补惨为3 mm; ③三角坑偏差不含曲线超高顺坡造成的扭曲量,检查三角坑时基长为 6.25m。但在延长18。的距离内无超过表列 的三角坑; ④尖轨尖处轨距的作业验收的容许偏差管理值为±1 mm; ⑤专用线道岔按其他站线道岔办理。

相关文档
相关文档 最新文档