文档库 最新最全的文档下载
当前位置:文档库 › 手机等电子产品的热设计方法

手机等电子产品的热设计方法

手机等电子产品的热设计方法
手机等电子产品的热设计方法

电子产品的热设计方法(一)

为什么要进行热设计?

高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。

温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。

热设计的目的

控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。

在本次讲座中将学到那些内容

风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。

授课内容

风路的设计方法20分钟

产品的热设计计算方法40分钟

风扇的基本定律及噪音的评估方法20分钟

海拔高度对热设计的影响及解决对策20分钟

热仿真技术、热设计的发展趋势50分钟

概述

风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。

风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。

海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。

热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。

热设计的发展趋势:了解最新散热技术、了解新材料。

风路设计方法

自然冷却的风路设计

设计要点

机柜的后门(面板)不须开通风口。

底部或侧面不能漏风。

应保证模块后端与机柜后面门之间有足够的空间。

机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。

对散热器采用直齿的结构,模块放在机柜机架上后,应保证散热器垂直放置,即齿槽应垂直于水平面。对散热器采用斜齿的结构,除每个模块机箱前面板应开通风口外,在机柜的前面板也应开通风口。

风路设计方法

自然冷却的风路设计

设计案例

风路设计方法

自然冷却的风路设计

典型的自然冷机柜风道结构形式

风路设计方法

强迫冷却的风路设计

设计要点

如果发热分布均匀,元器件的间距应均匀,以使风均匀流过每一个发热源. 如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键发热器件。

如果风扇同时冷却散热器及模块内部的其它发热器件,应在模块内部采用阻流方法,使大部分的风量流入散热器。

进风口的结构设计原则:一方面尽量使其对气流的阻力最小,另一方面要考虑防尘,需综合考虑二者的影响。

风道的设计原则

风道尽可能短,缩短管道长度可以降低风道阻力;

尽可能采用直的锥形风道,直管加工容易,局部阻力小;

风道的截面尺寸和出口形状,风道的截面尺寸最好和风扇的出口一致,以避免因变换截面而增加阻力损失,截面形状可为园形,也可以是正方形或长方形;风路设计方法

强迫冷却的风路设计

典型结构

风路设计方法

强迫冷却的风路设计

电源系统典型的风道结构-吹风方式

风路设计方法

热设计的基础理论

自然对流换热

大空间的自然对流换热

Nu=C(Gr.Pr)n.

定性温度:tm=(tf+tw)/2

定型尺寸按及指数按下表选取

热设计的基础理论

自然对流换热

有限空间的自然对流换热

垂直封闭夹层的自然对流换热问题分为三种情况:

(1) 在夹层内冷热壁的两股流道边界层能够相互结合,形成环流;

(2) 夹层厚度δ与高度之比δ/h>0.3时,冷热的自然对流边界层不会相互干扰,也不会出现环流,可按大空间自然对流换热计算方法分别计算冷热的自然对流换热;

(3) 冷热壁温差及厚度均较小,以厚度为定型尺寸的Gr=(Bg△t δ3)/υ3<2000时,通过夹层的热量可按纯导热过程计算。

热设计的基础理论

自然对流换热

有限空间的自然对流换热

水平夹层的自然对流换热问题分为三种情况:

(1) 热面朝上,冷热面之间无流动发生,按导热计算;

(2) 热面朝下,对气体Gr.Pr<1700,按导热计算;

(3) 有限空间的自然对流换热方程式:

Nu=C(Gr.Pr)m(δ/h)n

定型尺寸为厚度δ,定性温度为冷热壁面的平均温度Tm=(tw1+tw2 )

热设计的基础理论

流体受迫流动换热

管内受迫流动换热

管内受迫流动的特征表现为:流体流速、管子入口段及温度场等因素对换热的影响。

入口段:流体从进入管口开始需经历一段距离后管两侧的边界层才能够在管中心汇合,这时管断面流速分布及流动状态才达到定型。这段距离称为入口段。入口段管内流动换热系数是不稳定的,所以计算平均对流换热系数应对入口段进行修正。在紊流时,如果管长与管内径之比L/d>50则可忽略入口效应,实际上多

属于此类情况。

管内受迫层流换热准则式:

Nu=0.15Re0.33 Pr0.43Gr0.1(Pr/Prw)0.25

管内受迫紊流换热准则式:

tw>tf Nu=0.023Re0.8 Pr0.4.

tw

热设计的基础理论

流体动力学基础

流量与断面平均流速

流量:单位时间内流过过流断面的流体数量。如数量以体积衡量称为体积流量Q;单位为m3/s(CFM);如数量用重量衡量称为重量流量G,单位为Kg/s。二者的关系为:

G=γQ

断面平均流速:由于流体的粘性,过流断面上各点的流速分布不均匀,根据流量相等原则所确定的均匀流速称为断面平均流速。单位m/s(CFM)

V=Q/A

湿周与水力半径

湿周:过流断面上流体与固体壁面相接触的周界长度。用x表示,单位m。

水力半径:总流过过流断面面积A与湿周x之比称为水力半径,应符号R表示,单位M。

恒定流连续性方程

对不可压缩流体:V1A1=V2A2.

对可压缩流体:ρ1V1A1=ρ1V2A2

热设计的基础理论

流体动力学基础

恒定流能量方程

对理想流体:Z+p/γ+v2/2g=常数

实际流体:由于粘性作为会引起流动阻力,流体阻力与流体流动方向相反作负功,使流体的总能量不断衰减,每个断面的Z+p/y+v2/2g≠常数,假设流体从断面1到断面2的能量损失为hw,则元流的能量方程式为:

Z1+p1/γ+v12/2g=Z2+p2/γ+v22/2g+hw

热设计的基础理论

流体动力学基础

流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种。

沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力。

局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力。

层流、紊流与雷诺数

层流:流体质点互不混杂,有规则的层流运动。

Re=Vde/ν<2300 层流

紊流:流体质点相互混杂,无规则的紊流运动。

显然层流状态下只存在粘性引起的摩檫阻力,而紊流状态下除摩檫阻力外还存在由于质点相互碰撞、混杂所造成的惯性阻力,因此紊流的阻力较层流阻力大的多。

Re=Vde/ν<2300 紊流

热设计的基础理论

流体动力学基础

管内层流沿程阻力计算(达西公式)

hf=λ(L/de)(ρV2/2)

λ-沿程阻力系数,λ=64/Re

管内紊流沿程阻力计算

hf=λ(L/de)(ρV2/2)

λ=f(Re,ε/d),即紊流时沿程阻力系数不仅与雷诺数有关,还与相对粗糟度ε有关。尼古拉兹采用人工粗糟管进行试验得出了沿程阻力系数的经验公式:紊流光滑区:4000

λ=0.3164/Re 0.25

热设计的基础理论

流体动力学基础

非园管道沿程阻力的计算

引入当量水力半径后所有园管的计算方法与公式均可适用非园管,只需把园管直径换成当量水力直径。

de=4A/x

局部阻力

hj=ξρV2/2

ξ-局部阻力系数

突然扩大:按小面积流速计算的局部阻力系数:ζ1=(1-A1/A2)

按大面积流速计算的局部阻力系数:ζ2=(1-A2/A1)

突然缩小:可从相关的资料中查阅经验值。

电子产品的热设计方法(二)

散热器的设计方法

散热器设计的步骤

通常散热器的设计分为三步

1:根据相关约束条件设计处轮廓图。

2:根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化。

3:进行校核计算。

散热器的设计方法

自然冷却散热器的设计方法

考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,如果散热器齿高低于10mm,可按齿间距≥

1.2倍齿高来确定散热器的齿间距。

自然冷却散热器表面的换热能力较弱,在散热齿表面增加波纹不会对自然对流效果产生太大的影响,所以建议散热齿表面不加波纹齿。

自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热。

由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm以上。

散热器的设计方法

强迫冷却散热器的设计方法

在散热器表面加波纹齿,波纹齿的深度一般应小于0.5mm。

增加散热器的齿片数。目前国际上先进的挤压设备及工艺已能够达到23的高宽比,国内目前高宽比最大只能达到8。对能够提供足够的集中风冷的场合,建议采用低温真空钎焊成型的冷板,其齿间距最小可到2mm。

采用针状齿的设计方式,增加流体的扰动,提高散热齿间的对流换热系数。当风速大于1m/s(200CFM)时,可完全忽略浮升力对表面换热的影响。

散热器的设计方法

在一定冷却条件下,所需散热器的体积热阻大小的选取方法

在一定的冷却体积及流向长度下,确定散热器齿片最佳间距的大小的方法

不同形状、不同的成型方法的散热器的传热效率比较

散热器的相似准则数及其应用方法

相似准则数的定义

散热器的相似准则数及其应用方法

相似准则数的应用

散热器的基板的优化方法

不同风速下散热器齿间距选择方法

不同风速下散热器齿间距选择方法

优化散热器齿间距的经验公式及评估风速变化对热阻的影响的经验公式

辐射换热的考虑原则

如果物体表面的温度低于50℃,可忽略颜色对辐射换热的影响。因为此时辐射波长相当长,处于不可见的红外区。而在红外区,一个良好的发射体也是一个良好的吸收体,发射率和吸收率与物体表面的颜色无关。

对于强迫风冷,由于散热表面的平均温度较低,一般可忽略辐射换热的贡献。如果物体表面的温度低于50℃,

可不考虑辐射换热的影响。

辐射换热面积计算时,如表面积不规则,应采用投影面积。即沿表面各部分绷紧绳子求得的就是这一投影面积,如图所示。辐射传热要求辐射表面必须彼此可见。

热设计的计算方法

冷却方式的选择方法

确定冷却方法的原则

在所有的冷却方法中应优先考虑自然冷却,只有在自然冷却无法满足散热要求时,才考虑其它冷却。

冷却方式的选择方法1:根据温升在40℃条件下各种冷却方式的热流密度或体积功率密度值的范围来确定冷却方式,具有一定的局限性。

热设计的计算方法

冷却方式的选择方法

冷却方式的选择方法2:根据热流密度与温升要求,按图2所示关系曲线选择,此方法适应于温升要求不同的各类设备的冷却

热设计的计算方法

冷却方式的选择方法

冷却方式的选择方法案例

某电子设备的功耗为300W,机壳的几何尺寸为248×381×432mm,在正常大气压下,若设备的允许温升为40℃,试问采用那种冷却方法比较合理?

计算热流密度:q=300/2(2.48×2.2.48+2.48×4.32+2.2.81×4.32)=0.04W/cm2

当△t=40℃,q=0.04W/cm2时,其交点正好落在自然冷却范围内,所有采用自然冷却方法就可以满足要求。

若设备的温升有严格限制,假设只允许10℃,由图2可以看出,需强迫风冷才能满足要求。

机箱的热设计计算

密封机箱

WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT

对通风机箱

WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+1000uAΔT

对强迫通风机箱

WT=1.86(Ss+4St/3+2Sb/2)Δt 1.25+4σεTm3ΔT+ 1000QfΔT

自然冷却时进风口面积的计算

在机柜的前面板上开各种形式的通风孔或百叶窗,以增加空气对流,进风口的面积大小按下式计算:

S in=Q/(7.4×10-5 H×Δt 1.5)

s-通风口面积的大小,cm2

Q-机柜内总的散热量,W

H-机柜的高度,cm,约模块高度的1.5-1.8倍,

Δt=t2-t1-内部空气t2与外部空气温度t1 之差,℃

出风口面积为进风口面积的1.5-2倍

强迫风冷出风口面积的计算

模块

有风扇端的通风面积:

Sfan=0.785(φin2-φhub2)

无风扇端的通风面积S=(1.1-1.5) Sfan

系统

在后面板(后门)上与模块层对应的位置开通风口,通风口的面积大小应为:

S=(1.5-2.0)(N×S模块)

N---每层模块的总数

S模块---每一个模块的进风面积

热设计的计算方法

通风面积计算的案例

[案例] 铁道信号电源机柜模块及系统均为自然冷却,每层模块的散热量为

360W,模块的高度为7U,进出口温差按20℃计算,机柜实际宽度为680mm,试计算每层进出风口的面积?

H按2倍模块的高度计算,即H=2×7U=14U

进风口的面积按下式计算:

Sin=Q/(7.4×10-5×H×△t1.5)

=360/(7.4×10-5×14 ×4.44×201.5)=875 cm2

进风口高度h

机柜的宽度按B=680mm计,则进风口的高度为:

H=Sin/B=875/68=128.7mm

b 出风口面积Sout

Sout=(1.5-2.0)Sin=2×875=1750 cm2

热设计的计算方法

实际冷却风量的计算方法

q`=Q/(0.335△T)

q`---实际所需的风量,M3/h

Q----散热量,W

△T-- 空气的温升,℃,一般为10-15℃。

确定风扇的型号经验公式:

按照1.5-2倍的裕量选择风扇的最大风量:

q=(1.5-2)q` 按最大风量选择风扇型号。

热设计的计算方法

实际冷却风量的计算方法

案例:10K UPS主功率管部分的实际总损耗为800W,空气温升按15℃考虑,请选择合适的风扇。

实际所须风量为:

q`=Q/(0.335△t)=800/(0.335×15)=159.2m3/h

按照2倍的裕量选择风扇的最大风量:

q=2q`=2×159.2=318.4m3/h

下表风扇为可选型号

热设计的计算方法

型材散热器的计算

散热器的热阻

散热器的热阻是从大的方面包括三个部分。

R SA=R对+R导+ R辐

R对=1/(hc F1)

F1--对流换热面积(m), hc –对流换热系数(w/m2.k)

R辐--辐射换热热阻,对强迫风冷可忽略不计

εTm3)

对自然冷却R辐=1/(4б

R导=R 基板+R肋导

=δ/(λF2)+((1/η)-1)R对流

λ--导热系数,w/m.h.℃

δ-- 散热器基板厚度(m)

η-- 肋效率系数

F2--基板的导热面积(m)

F2=0.785*(d+δ)2

d- 发热器件的当量直径(m)

热设计的计算方法

型材散热器的计算

对流换热系数的计算

自然对流

垂直表面

hcs=1.414(△t/L)0.25 ,w/m.k

式中: △t--散热表面与环境温度的平均温升,℃

L--散热表面的特征尺寸,取散热表面的高,m

水平表面,热表面朝上

hct=1.322(△t/L)0.25 ,w/m.k

式中: △t--散热表面与环境温度的平均温升,℃

L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m 水平表面,热表面朝下

hcb=0.661(△t/L)0.25 ,w/m.k

式中: △t--散热表面与环境温度的平均温升,℃

L--散热表面的特征尺寸,取L=2(长×宽)/(长+宽),m

电子产品的热设计方法(三)

热设计的计算方法

型材散热器的计算

对流换热系数的计算

强迫对流

层流Ref<105

hc=(1.1-1.4) λ空气0.66Ref 0.5/L

湍流Ref>105

hc=(1.1-1.4) λ空气0.032Ref 0.8/L

肋片效率

对直齿肋:

η=th(mb)/(mb))

m=(2 hc/λδ0)

δ0:肋片根部厚度(m)

b. 肋高(m)

热设计的计算方法

型材散热器的计算

散热器的流阻计算

散热器的流阻包括沿程阻力损失及局部阻力损失

△P=hf+hj

=λf?L/de?ρV22/2+ζρV22/2

λf --沿程阻力系数

L--流向长度(m)

de--当量水利直径(m),de=4A流通/湿周长

V--断面流速(m/s)

沿程阻力系数计算λf

2300 λf=64/Re

层流区:Re=Vd/υ≤

紊统光滑区4000

υ--运动粘度系数(m2/s),从文献中查找

热设计的计算方法

型材散热器的计算

散热器的流阻计算

局面阻力系数ζ

突然扩大

按小面积流速计算的局部阻力系数:ζ1=(1-A1A2) 按大面积流速计算的局部阻力系数:ζ2=(1-A2/A1)

突然缩小可从相关的资料中查阅经验值。

热设计的计算方法

型材散热器的计算

【案例】散热器DXC-616(天津铝合金厂编号),截面图略,散热器的截面积为77.78cm2,周长为2.302m,单位长度的重量为21KG/m。风扇采用PAPST 4656Z ,风扇功率19W,最大风量为160m3/h,压头为70Pa.

风道阻力曲线的计算

入口面积:Fin=0.785×D2 =0.785×0.1192=0.01116m2

流通面积:Ff=Fin-Fc=0.01116-0.007778=3.338×10-3m2

水力直径:de=4Ff/x=4×3.338×10-3/2.302=5.8×10-3m

由于风速较低,一般最大不会超过6m/s,雷诺数<2300,沿程阻力系数按下式计算:λ=64/Re=64 ν/Vde

沿程阻力按下式计算:

hf=λ(L/de)(ρV2/2)=(64 ν/Vde)(L/de)(ρV2/2)

=(64×16.96×10-6×0.24/(V×0.00582))(ρV2/2)

=(8.07/V)(ρV2/2)

局部阻力按下式计算:

hj=ξρV2/2

对于突然缩小,A2/A1=0.003338/0.01116=0.3,查表得ξ=0.38

总阻力损失H=hf+ hj=(0.38+8.07/V )(ρV2/2)

热设计的计算方法

型材散热器的计算

【案例】续

确定风扇的工作点

10KVA UPS 的选择风扇为PAPST 4656Z,我们把风道曲线与风扇的曲线进行叠加,其交点即为风扇的工作点,给工作点对应的风速为5m/s,压力为35Pa.

散热器的校核计算

雷诺数Ref=V×L/ν=5×0.24/16.96×10-6=5.6604×104

努谢尔特数:Nuf=0.66Ref0.5=0.66(5.6604×104)0.5=157

对流换热系数:hc=1.4λNuf/L=21.7w/m.k

m=(2 hc/λδ)0.5=9.82

ml=9.82×0.03=0.295,查得:η=0.96

该散热器的最大散热量为(散热器台面温升按最大40℃考虑):

Q=hcF△t η=460.4W

计算结果表面,散热器及风扇选型是合理的。

热设计的计算方法

冷板的计算方法

传热计算

确定空气流过冷板后的温升:t=Q/qmCp

确定定性温度tf=(2ts+t1+t2)/4,冷板台面温度ts为假定值

设定冷板的宽度为b,则通道的横截面积为Ac ,Ac=b×Ac0

确定定性温度下的物性参数(μ、Cp、ρ、Pr)。

流体的质量流速和雷诺数G=qm/Af Re=deG/μ

根据雷诺数确定流体的状态(层流或紊流),Re<1800, 层流,Re>105, 湍流

根据流体的状态(层流或紊流)计算考尔本数J

Re<1800,层流J=6/Re 0.98 Re>105,湍流J=0.023/Re 0.2也可以根据齿形及雷诺数从GJB/Z 27-92 图12-18查得

热设计的计算方法

冷板的计算方法

传热计算

计算冷板的换热系数:h= JGCpPr2/3

计算肋片的效率m=(2h/λδ)0.5,ηf=th(ml)/ml(也可以根据ml值查相应的图表得到肋片效率)

计算冷板的总效率:忽略盖板及底版的效率,总效率为:A=At+Ar+Ab,η0=1-Ar(1-ηf)/A

计算传热单元数NTU=hη0A/qmCp

计算冷板散热器的台面温度

ts=(eNTUt2-t1)/(eNTU-1)

热设计的计算方法

冷板的计算方法

流体流动阻力计算

计算流通面积与冷板横截面积之比

σ=Af/Ac

查空气进入冷板时入口的损失系数Kc=f(Re,σ):根据雷诺数Re及σ从GJB/Z 27-92 图12-16及图12-16查得

查摩擦系数f=f(Re,σ):根据雷诺数Re从GJB/Z 27-92 图12-18查得

计算流动阻力

△P=G2[(Kc+1-σ2)+2(ρ2/ρ1-1)+f ρ1A/(Afρm)-(1-σ2-Ke)ρ1/ρ2]/(2ρ1)

热设计的计算方法

冷板的计算方法

判断准则

确定是否满足ts<[ts],如果不满足,需增大换热面积或增大空气流量。

确定是否满足△P<[△P],如果不满足,需减小冷板的阻力(如选择阻力较小的齿形、增大齿解决等)或重新选择压头较大的风扇

热设计的计算方法

冷板的计算方法

案例:10KVA UPS 冷板散热器,器件的损耗为870.5W,要求冷板散热器台面温升小于30℃(在40℃的环境温度下)。

冷板散热器的截面图略

梯形小通道面积:Ai=(3.8+2.6)×9.5/2=30.4mm2

每排有29个梯形小通道,共22排,n=29×22=638个

基板厚度为:9mm

总的流通面积Af =30.4×29×22=0.0193952 m2

冷板的横截面积Ac=120×120×2=0.0288 m2

=4×30.4/(2×9.5+3.8+2.6)=4.787mm

水力半径:de=4Afi/х

热设计的计算方法

冷板的计算方法

【案例】续

确定风扇的工作点

Re=de G/μ=deqm/μAf

在40℃空气的物性参数为:μ=19.1×10-6kg/m.s, ρ1=1.12kg/m3

Re=(4.787×10-3×1.12×0.30483 qm1/(60×19.1×10-6×0.0193952)

=6.831 qm1(qm1的单位为:CFM)

σ=Af/Ac=0.0193952/0.0288=0.673

热设计的计算方法

冷板的计算方法

【案例】续

先忽略空气密度的变化,不同流量的流阻计算如下表所示:

我们把两个NMB4715的风扇流量相加,静压不变,得出两个风扇并联后的静压曲线,再把上表的数据绘制成风道曲线并与风扇静压曲线进行画在同一张图上,其交点即为风扇的工作点,即为(170CFM,0.13in.H2O),工作点对应的风速为4.14m/s。

热设计的计算方法

冷板的计算方法

【案例】续

空气流过冷板后的温升

空气口温度为40 ℃,ρ1=1.12kg/m3,Cp=1005.7J/kg. ℃

μ=19.1×10-6kg/m.s,Pr=0.699

质量流量qm=0.080231×1.12=0.08986kg/s

△t= Q/qmCp=870.5/0.08986×1005.7=9.63 ℃

定性温度:tf=(2ts+t1+t2)= (2×80+40+49.63)/4=62.4℃

按定性温度查物性得:ρ1=1.06kg/m3,Cp=1005.7J/kg.℃μ=20.1×10-6kg/m.s,Pr=0.696

换热系数

质量流速G=qm/Af =4.14×1.12=4.64kg/m2.s

雷诺数Re=deG/μ=4.787×10-3×4.64/(20.1×10-6)=1105.1

层流J=6/Re 0.98=6/1105.10.98=6.25×10-3

h= JGCpPr-2/3=6.25×10-3×4.64×1005.7×0.696-2/3 =37.14W/m2.℃

肋片效率m=(2h/λδ)0.5=(2×37.14/(180 ×0.001))0.5=20.3

ml=20.3×0.11=2.23

ηf=th(ml)/ml=th(2.23)/2.23=0.433

传热单元数:NTU=hη0A/qmCp=37.14×0.433×3.241 =0.5772

冷板的表面温度:Ts=(eNTUt2-t1)/(eNTU-1)=61.9 ℃<70℃

冷板设计方案满足散热要求。

风扇的基本定律及噪音的评估方法

风扇定律

风扇的基本定律及噪音的评估方法

风扇的噪音问题

风扇产生的噪音与风扇的工作点或风量有直接关系,对于轴流风扇在大风量,低风压的区域噪音最小,对于离心风机在高风压,低风量的区域噪音最小,这和风扇的最佳工作区是吻合的。注意不要让风扇工作在高噪音区。

风扇进风口受阻挡所产生的噪音比其出风口受阻挡产生的噪音大好几倍,所以一般应保证风扇进风口离阻挡物至少30mm的距离,以免产生额外的噪音。

对于风扇冷却的机柜,在标准机房内噪音不得超过55dB,在普通民房内不得超过65dB。风扇的基本定律及噪音的评估方法

风扇的噪音问题

对于不得不采用大风量,高风压风扇从而产生较大噪音的情况,可以在机柜的进风口、出风口、前后门内侧、风扇框面板、侧板等处在不影响进风的条件下贴吸音材料,吸音效果较好的材料主要是多孔介质,如玻璃棉,厚度越厚越好。

有时由于没有合适的风机而选择了转速较高的风机,在保证设计风量的条件下,可以通过调整风机的电压或其他方式降低风扇的转速,从而降低风扇的噪音。相应的噪音降低变化按下式计算:

N2 = N1 + 50 log10 (RPM2/RPM1)

风扇的基本定律及噪音的评估方法

风扇的噪音问题

【案例】:一电源模块采用一个轴流风扇进行冷却,为了有效抑止噪音,要求风扇只有在监控点的温度高于85℃才全速运转,其余情况风扇必须半速运转。已知风扇全速运转时转速为2000RMP,噪音为40db,求在半速运转时风扇的噪音为多少?如果已知全速运转时风扇的工作点为(50CFM,0.3IN.H2O),试求风扇在

半速运转时的工作点。

解:根据风扇定律

N2 = N1 + 50 log10 (RPM2/RPM1)

=40+50 log10 (1000/2000) =24.9db

P2 =P1 (RPM2/RPM1)2

=0.3(1000/2000)2=0.075 IN.H2O

CFM2 = CFM1 (RPM2/RPM1)

=50(1000/2000)=25CFM

海拔高度对热设计的影响及解决对策

海拔高度对自然冷却条件的热设计要求

对于自然对流,其传热机理是由于冷却空气吸热后其密度减小,迫使重力场中的空气上升而形成冷热空气的对流而产生热量传递。由于随着海拔高度的增加,空气的密度逐渐减小,空气上升的能力也就减少,自然对流换热的能力减弱。自然对流换热能力的变化最终体现在对流换热系数的变化上,根据美国斯坦伯格的经验公式,如果忽略空气温度的变化,可按下式计算海拔高度对自然对流的影响强弱。

hc(高空)=hc(海平面)(ρ高空/ρ海平面)0.5

=hc(海平面) (p高空/p海平面)0.5

hc(高空),hc(海平面)-分别为高空及海平面的自然对流换热系数,W/m.k

ρ高空,ρ海平面-分别为高空及海平面的空气密度,Kg/m3

p高空,p海平面-分别为高空及海平面的空气压力,帕斯卡

海拔高度对热设计的影响及解决对策

海拔高度对强迫冷却条件的热设计要求

海拔高度对强迫风冷影响的机理是由于随着海拔高度的增加,空气密度减小,质量流速减小,空气分子间碰撞的概率降低,对流换热能力减弱。同样,强迫对流换热随海拔高度的变化最终体现在对流换热系数的变化上,美国军用标准规定,低于5000米以下的高空,如果忽略空气温度的变化,可按下式计算海拔高度对强迫风冷换热影响的强弱。

层流:hc(高空)=hc(海平面)(ρ高空/ρ海平面)0.5

湍流:hc(高空)=hc(海平面)(ρ高空/ ρ海平面)0.8

hc(高空),hc(海平面)-分别为高空及海平面的强迫风冷对流换热系数,W/m.k p高空,p海平面-分别为高空及海平面的空气压力,帕斯卡

航空器电子产品热设计

航空器电子产品热设计 现代机(弹)载电子设备由于受条件限制,都要求重量轻、体积小。另外,为了提高电子产品的工作性能,其功率往往很大,也就是说电子元器件的发热量非常大,一般电子元器件的正常工作温度要求低于100°C。根据美国空军的统计,在机(弹)载电子设备失效的原因中,有超过50%是由于温度引起的,因此电子产品的热设计是电子产品可靠性设计的最主要内容。 机(弹)载电子产品的冷却可采用循环水冷(二次冷却)和风冷,而风冷又有自然风冷和强迫风冷。 图7-1、7-2采用ANSYS CFX对某机载电子产品进行水冷分析,图示为散热冷板上的温度分布和冷却水的流线图。 传统的机(弹)载电子产品的热设计以经验设计为主,根据机(弹)载电子产品热设计手册,利用半经验、半解析的估算公式确定冷却方式、流量(压差)及流道,然后制造相应的1:1模型进行测试验证。这种热设计的成功率主要取决于设计者的经验,由于试验验证成本高、周期长,设计者只能选取少数几种自己认为最可行的设计方案进行试验,从而可能疏漏了更好的设计方案。另外,如果测试验证后发现了设计中的问题,回过来重新更改设计,再测试验证,这样的设计周期就更长,这与激烈的市场竞争不相适应。

计算流体动力学(CFD)的飞速发展和计算机性能的提高为机(弹)载电子产品热设计的数值仿真提供了保障。ANSYS CFX流体分析功能就是利用基于有限元的有限体积法求解三维湍流Navier-Stokes方程。ANSYS CFX是热、流耦合计算软件,在流体单元中求解质量、动量、能量方程,而同时在固体单元中耦合求解能量方程,由此可得出流场中的速度、压力、温度分布,固体中的温度分布,同时可得出流、固表面的对流换热系数(图7-4)和热流密度。 图7-5采用ANSYS CFX对某机载电子设备机箱进行强迫风冷分析,图示结果为机箱内外表面的对流换热系数分布。 机(弹)载电子产品的冷却效率取决于流、固表面对流换热系数的大小,因此热设计仿真分析的最主要任务是准确求解对流换热系数。对流换热系数的大小与近壁面的流体温度分布梯度成正比,而近壁面的流体温度分布梯度与近壁面的流体速度分布有关,因此,要得到准确的对流换热系数,必须精确求解流体速度分布,尤其是近壁面附面层内的速度分布。八十年代末九十年代初,由于受计算机速度的限制,直接求解三维复杂流场的湍流Navier-Stokes方程从而得到准确的流体速度分布几乎是不可能,因此发展了一些半经验、半解析的电子系统冷却分析软件,这些分析中的流体剖面速度分布是根据经验给定的解析式,对于简单流场,这样的解析表达式能较好地符合,而对于真实复杂流场,误差较大。ANSYS CFX通过直接求解三维湍流Navier-Stokes方程来得到准确的流体速度分布,从而能准确给出对流换热系数

电子产品散热设计概述(doc 45页)

电子产品散热设计概述(doc 45页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

YEALINK 行业 dell

电子产品的散热设计 一、为什么要进行散热设计 在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。所以电失效的很大一部分是热失效。 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。 由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。 二、散热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 三、散热设计的方法 1、冷却方式的选择 我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量 / 热通道面积。 按照《GJB/Z27-92 电子设备可靠性热设计手册》的规定(如下图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

电子产品热设计、热分析及热测试

电子产品热设计、热分析及热测试培训 各有关单位: 随着微电子技术及组装技术的发展,现代电子设备正日益成为由高密度组装、微组装所形成的高度集成系统。电子设备日益提高的热流密度,使设计人员在产品的结构设计阶段必将面临热控制带来的严酷挑战。热设计处理不当是导致现代电子产品失效的重要原因,电子元器件的寿命与其工作温度具有直接的关系,也正是器件与PCB中热循环与温度梯度产生热应力与热变形最终导致疲劳失效。而传统的经验设计加样机热测试的方法已经不适应现代电子设备的快速研制、优化设计的新需要。因此,学习和了解目前最新的电子设备热设计及热分析方法,对于提高电子设备的热可靠性具有重要的实用价值。所以,我协会决定分期组织召开“电子产品热设计、热分析及热测试讲座”。现具体事宜通知如下 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 一、课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 一、热设计定义、热设计内容、传热方法 1 热设计定义 2 热设计内容 3 传热方法简介 二、各种元器件典型的冷却方法 1 哪些元器件需要热设计

2 冷却方法的选择 3.常用的冷却方法及冷却极限各种元器件典型的冷却方法 4. 冷却方法代号 5 各种冷却方法的比较 三、自然冷却散热器设计方法 1 自然冷却散热器设计条件 2 热路图 3 散热器设计计算 4 多个功率器件共用一个散热器的设计计算 5 正确选用散热器 6 自然冷却散热器结温的计算 7 散热器种类及特点 8 设计与选用散热器禁忌 四、强迫风冷设计方法 1 强迫风冷设计基本原则 2 介绍几种冷却方法 3. 强迫风冷用风机 4. 风机的选择与安装原则 5 冷却剂流通路径的设计 6 气流倒流问题及风道的考虑 7 强迫风冷设计举例(6个示例) 五、液体冷却设计方法

电子产品热设计规范

电子产品热设计规范 1概述 1.1热设计的目的 采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。 1.2热设计的基本问题 1.2.1耗散的热量决定了温升,因此也决定了任一给定结构的温度; 1.2.2热量以导热、对流及辐射传递出去,每种形式传递的热量与其热阻成反比; 1.2.3热量、热阻和温度是热设计中的重要参数; 1.2.4所有的冷却系统应是最简单又最经济的,并适合于特定的 电气和机械、环境条件,同时满足可靠性要求; 1.2.5热设计应与电气设计、结构设计、可靠性设计同时进行,当出现矛盾时,应进行权衡分析,折衷解决; 1.2.6热设计中允许有较大的误差; 1.2.7热设计应考虑的因素:包括 结构与尺寸 功耗 产品的经济性

与所要求的元器件的失效率相应的温度极限 电路布局 工作环境 1.3遵循的原则 1.3.1热设计应与电气设计、结构设计同时进行,使热设计、结构设计、电气设计相互兼顾; 1.3.2热设计应遵循相应的国际、国内标准、行业标准; 1.3.3热设计应满足产品的可靠性要求,以保证设备内的元器件均能在设定的热环境中长期正常工作。 1.3.4每个元器件的参数选择及安装位置及方式必须符合散热要求; 1.3.5在规定的使用期限内,冷却系统(如风扇等)的故障率应比元件的故障率低; 1.3.6在进行热设计时,应考虑相应的设计余量,以避免使用过程中因工况发生变化而引起的热耗散及流动阻力的增加。 1.3.7热设计不能盲目加大散热余量,尽量使用白然对流或低转速风扇等可靠性局的冷却方式。使用风扇冷却时,要保证噪首指标符合标准要求。 1.3.8热设计应考虑产品的经济性指标,在保证散热的前提下使其结构简单、可靠且体积最小、成本最低。 1.3.9冷却系统要便于监控与维护 2热设计基础 2.1术语 2.1.1 温升

电子产品热设计

目录 摘要: (2) 第1章电子产品热设计概述: (2) 第1.1节电子产品热设计理论基础 (2) 1.1.1 热传导: (2) 1.1.2 热对流 (2) 1.1.3 热辐射 (2) 第1.2节热设计的基本要求 (3) 第1.3节热设计中术语的定义 (3) 第1.4节电子设备的热环境 (3) 第1.5节热设计的详细步骤 (4) 第2章电子产品热设计分析 (5) 第2.1节主要电子元器件热设计 (5) 2.1.1 电阻器 (5) 2.1.2 变压器 (5) 第2.2节模块的热设计 (5) 电子产品热设计实例一:IBM “芯片帽”芯片散热系统 (6) 第2.3节整机散热设计 (7) 第2.4节机壳的热设计 (8) 第2.5节冷却方式设计: (9) 2.5.1 自然冷却设计 (9) 2.5.2 强迫风冷设计 (9) 电子产品热设计实例二:大型计算机散热设计: (10) 第3章散热器的热设计 (10) 第3.1节散热器的选择与使用 (10) 第3.2节散热器选用原则 (11) 第3.3节散热器结构设计基本准则 (11) 电子产品热设计实例三:高亮度LED封装散热设计 (11) 第4章电子产品热设计存在的问题与分析: (15) 总结 (15) 参考文献 (15)

电子产品热设计 摘要: 电子产品工作时,其输出功率只占产品输入功率的一部分,其损失的功率都以热能形式散发出去,尤其是功耗较大的元器件,如:变压器、大功耗电阻等,实际上它们是一个热源,使产品的温度升高。因此,热设计是保证电子产品能安全可靠工作的重要条件之一,是制约产品小型化的关键问题。另外,电子产品的温度与环境温度有关,环境温度越高,电子产品的温度也越高。由于电子产品中的元器件都有一定的温度范围,如果超过其温度极限,就将引起产品工作状态的改变,缩短其使用寿命,甚至损坏,使电子产品无法稳定可靠地工作。 第1章电子产品热设计概述: 电子产品的热设计就是根据热力学的基本原理,采取各种散热手段,使产品的工作温度不超过其极限温度,保证电子产品在预定的环境条件下稳定可靠地工作。 第1.1节电子产品热设计理论基础 热力学第二定律指出:热量总是自发的、不可逆转的,从高温处传向低温处,即:只要有温差存在,热量就会自发地从高温物体传向低温物体,形成热交换。热交换有三种模式:传导、对流、辐射。它们可以单独出现,也可能两种或三种形式同时出现。 1.1.1 热传导: 气体导热是由气体分子不规则运动时相互碰撞的结果。金属导体中的导热主要靠自由电子的运动来完成。非导电固体中的导热通过晶格结构的振动实现的。液体中的导热机理主要靠弹性波的作用。 1.1.2 热对流 对流是指流体各部分之间发生相对位移时所引起的热量传递过程。对流仅发生在流体中,且必然伴随着有导热现象。流体流过某物体表面时所发生的热交换过程,称为对流换热。 由流体冷热各部分的密度不同所引起的对流称自然对流。若流体的运动由外力(泵、风机等)引起的,则称为强迫对流。 1.1.3 热辐射 物体以电磁波方式传递能量的过程称为热辐射。辐射能在真空中传递能量,且有能量方

电子产品热仿真规范

电子产品热仿真规范

1.目的 1.1.规范我司产品热仿真建模标准。 1.2.供热传工程师在建模过程中作参考。 2.范围 2.1.本规范明确规定我司产品热仿真过程中的方法和要求,适用于我司单板级、系统级 等所有产品的热仿真。 2.2.本规范适用于FLOTHERM热仿真软件。 3.定义 3.1.导热系数:是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C), 在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/(米.度),w/(m.k)3.2.辐射:是能量以电磁波或粒子(如阿尔法粒子、贝塔粒子等)的形式向外扩散。自 然界中的一切物体,只要温度在绝对温度零度以上,都以电磁波和粒子的形式时刻不停地向外传送热量,这种传送能量的方式被称为辐射。 4.职责 4.1.热仿真负责人 4.1.1.热传工程师:负责产品开发阶段的热仿真分析,并按模板要求输出热仿真报告。 4.2.热仿真报告审核人: 4.2.1.直接主管:负责对热仿真报告及散热方案进行审核。 4.2.2.项目经理:组织项目成员对热仿真报告及散热方案评审。 5.工作程序 5.1.背景 5.1.1.热仿真分析技术介绍 电子设备热仿真软件是基于计算传热学技术(NTS)和计算流体力学技术(CFD),发展电子设备散热设计辅助分析软件。它可以帮助热设计工程师验证、 优化热设计方案,满足产品快速开发的需要,并可以显著降低产品验证热测试 的工作量。 其主要思想是:把原来在时间域和空间域上连续的物理量的场,如温度场、速度场、压力场等,用一系列有限个离散点上的变量值的集合来代替,通过一 定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后 计算机数值计算求解代数方程组获得场变量的近似值。 目前商业的热仿真软件种类繁多,有基于有限体积法的Flotherm、I-deas、Icepak、CFDesign、Thermal、Cool it、Betasoft,及基于有限元的Ansys等, 其中Flotherm、I-deas、Icepak占据绝大部分的市场份额。 5.1.2.热仿真优点和作用

浅谈热设计

浅谈电子产品热设计 (一)、热设计中的常用词汇 电子产品中经常会用到“热阻”(K/W)这个词。在图1的示例中,连接A和B 的管道越细,水就越难流出,A和B之间的水位差也就越大。相反,加粗管道后,AB之间的水位差将会消失。这种阻碍水流动的作用就相当于热阻。举例来说,当热流量为1W、温度上升1K时,热阻就是1K/W。在热设计中,热阻扮演着非常重要的角色。因为只要知道热阻,就能构思出散热措施,例如“如果要制造热阻为5K/W的散热片,尺寸大约会达到50mm×50mm×30mm”、“热阻为0.1K/W、因此必须要有风扇”等等。 发热量和散热量也是热设计的常用词汇,但二者都属于“热流量”(W),表示1秒的时间中产生或转移的热量。 “热容量”(J/K)也是一个重要参数。热容量相当于图1中水箱A的底面积。如果底面积大,即使加入大量的水,水位也不容易上升。相反,如果底面积小,即使只加入少量的水,水位也会猛涨。热也是如此,如果是热容量大的大铁块,就算发热量大,温度也很难升高。相反,如果是热容量小的小塑料容器,哪怕发热量不大,温度也会迅速升高。 也就是说,热容量代表的是水位上涨1m需要注入多少L水,即使温度升高1K需要多少J热量。假设热容量为1J/K,热流量为1W。此时,1 秒钟将有1J的热能流入;而每吸收1J的热量,温度会升高1K。因此,如果忽略热量的流失,1秒的时间中温度会升高1K。由此可知,只要知道了热容量,就能推算出温度的升降。 热容量等于“比热×重量”,计算非常简单(注1)。比热是单位质量物质的热容量,单位为J/kg·K(或J /kg·℃)。质量则是体积×密度。比热和密度都是物理性质,可以在手册中查到,而且,体积是由尺寸决定的,因此,只要知道材料和尺寸,就能计算出热容量。至于印刷电路板等复合材料,在计算出各种材料的热容量之后,相加即为总的热容量。 (注1)热阻的计算方式因热传导、热对流、热辐射等热移动的方式而异,非常复杂。 “热流密度”(W/m2)在图1中指的通过管道时热流量的密度,也叫热通量。通常来说,通过的热量是发热量,发热量除以表面积即为热流密度。因为发热量代表发热能力,表面积代表散热能力,所以,热流密度就相当于发热能力与散热能力之比。因为物体内的热量只能通过该物体与空气接触的面、也就是表面释放,所以,在热量通过的部分中,表面积是最重要的条件。 热流密度与温度的上升量成正比,热流密度越大,温度上升越多。反言之,通过管理热流密度,可以使温度控制在一定水平以下。例如,在印刷电路板上安装部件时,热流密度等于部件的总发热量除以印刷电路板的总表面积。如果采用自然空冷,一般来说,热流密度达到400W/m2以上就容易发生故障,因此要控制在300W/m2左右。如上所述,通过

产品的热设计介绍

本课程详细讲述了风路的设计方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC 增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 介绍 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 风路的设计方法 20分钟 产品的热设计计算方法 40分钟 风扇的基本定律及噪音的评估方法 20分钟 海拔高度对热设计的影响及解决对策 20分钟 热仿真技术、热设计的发展趋势 50分钟 概述 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。 热设计的发展趋势:了解最新散热技术、了解新材料。 风路设计方法 自然冷却的风路设计 设计要点 ?机柜的后门(面板)不须开通风口。 ?底部或侧面不能漏风。 ?应保证模块后端与机柜后面门之间有足够的空间。 ?机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。

电子产品的热设计方法讲解

电子产品的热设计方法 v 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 v 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 v 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 v 风路的设计方法20分钟 v 产品的热设计计算方法40分钟 v 风扇的基本定律及噪音的评估方法20分钟 v 海拔高度对热设计的影响及解决对策20分钟 v 热仿真技术、热设计的发展趋势50分钟 概述 v 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。 v 产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 v 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。v 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。 v 热仿真技术:了解热仿真的目的、要求,常用热仿真软件介绍。 v 热设计的发展趋势:了解最新散热技术、了解新材料。 风路设计方法 v 自然冷却的风路设计 ? 设计要点 ü机柜的后门(面板)不须开通风口。 ü底部或侧面不能漏风。 ü应保证模块后端与机柜后面门之间有足够的空间。 ü机柜上部的监控及配电不能阻塞风道,应保证上下具有大致相等的空间。

手机等电子产品的热设计方法

电子产品的热设计方法(一) 为什么要进行热设计? 高温对电子产品的影响:绝缘性能退化;元器件损坏;材料的热老化;低熔点焊缝开裂、焊点脱落。 温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于95C;温度过高还会造成焊点合金结构的变化—IMC增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致元件失效。 热设计的目的 控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的最高温度。最高允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。 在本次讲座中将学到那些内容 风路的布局方法、产品的热设计计算方法、风扇的基本定律及噪音的评估方法、海拔高度对热设计的影响及解决对策、热仿真技术、热设计的发展趋势。 授课内容 风路的设计方法20分钟 产品的热设计计算方法40分钟 风扇的基本定律及噪音的评估方法20分钟 海拔高度对热设计的影响及解决对策20分钟 热仿真技术、热设计的发展趋势50分钟 概述 风路的设计方法:通过典型应用案例,让学员掌握风路布局的原则及方法。产品的热设计计算方法:通过实例分析,了解散热器的校核计算方法、风量的计算方法、通风口的大小的计算方法。 风扇的基本定律及噪音的评估方法:了解风扇的基本定律及应用;了解噪音的评估方法。 海拔高度对热设计的影响及解决对策:了解海拔高度对风扇性能的影响、海拔高度对散热器及元器件的影响,了解在热设计如何考虑海拔高度对热设计准确度的影响。

电子产品结构设计规范--范文

电子产品结构件设计规范—范文 一,目的 本规范的目的是指导结构件工程师快速和准确的完成产品的结构件设计工作,能更好的与流程保持同步,提高产品设计的标准化。 二,范围 本规范适用于塑胶电子产品的结构件设计工作。本规范可作为结构件工程师的工作指导书和新进工程师的培训资料。 三,权责 结构件工程师应严格按照本规范进行结构件设计工作,同时按照此规范进行文件的输出和召开结构件评审会议。 四,定义 工业设计:在塑胶电子产品行业,工业设计指产品的造型设计,包括产品的外形设计,产品的颜色搭配。 结构件设计:产品的各组成部分的结构尺寸设计,装配关系的确定,模具加工工艺的确定,产品制造工艺的确定,产品检测工艺的确定。 模具设计:产品中塑胶部分和五金部分在开制模具过程中需遵照的尺寸范围和性能的规定。 五,内容 1,产品结构件设计在开发工作中的作用 产品开发的工作一般分为;产品的工业设计,产品的结构件设计,产品的电路设计,产品工艺设计,产品的包装设计。具体见附表1-产品的开发流程表。产品开发工作的细化要求各个部门之间要有良好的协作关系。在产品开发初期,项目经理对产品可行性作大量的工作,如产品的市场前情的调查,样品的试制,性能的测试和成本的核算等。产品的设计工作主要是将成功的试验室产品转化成可量产化产品的过程,即实现产品设计和检测的电子化,

产品制造的流水线化的过程。 在产品开发中,无论何种电子产品,无论结构件部分占主导,还是电路部分占主导,结构件设计应该是主要部分,结构设计的好坏直接决定产品是否能够成功实现预期的目标,产品开发的工作是否按期完成,电路设计的空间是否得到充分保障,空间位置是否得到优化,生产工艺是否合理,生产效率是否得到保证,这些将决定产品开发的成功与否。 2.结构件设计流程 2.1.产品开发的工作应该以产品质量为目标进行的产品设计过程。在国际上,产品开发已经被列入质量考核的一项内容。如ISO9000,APQP,六西格马等。在各个行业中,为了统一产品的质量标准,行业标准同样规范了产品的开发标准。因此,公司会根据以上标准制定适合本公司的开发标准规范。产品开发工程师应熟悉本公司标准规范,并以此规范为指导进行设计工作。 2.2.产品开发工作同样涉及到开发部与其他部门的协作。项目经理应该清楚产品开发过程中,各协作部门的信息的沟通,保证产品开发工作的顺利完成,应该以会议的形式将协作的部分列入开发的流程中。 2.3.在产品开发过程中,项目经理按照开发流程,应及时将每一阶段的工作完成并形成文件,从DR1~DR4的过程中,应及时进行检讨的工作,保证产品开发的每个阶段工作完成的同时,检讨工作和文件也应及时完成。 3.结构件设计的技术性 3.1.结构件工程师应具有相关专业的技术知识,如机械结构的组成,相关专业数语的掌握,产品组成部分的材质和成型工艺;掌握相关设计软件的使用方法,如熟练使用PROE 等三维软件,和AUTOCAD等二维软件。 3.2.结构件工程师应积极了解同行业产品的结构设计水平,收集优质产品的技术性资料。并结合本公司的技术水平进行技术的革新,完善本公司的开发的技术工作。 3.3.公司应建立完善的技术培训机制,提高设计人员的技术水平,培养内部优秀的技术人员。建立高水平的技术平台,组建优秀的技术开发团队。 4.结构件设计工程师成长的连续性 4.1.技术人员的稳定性是保证公司产品质量的重要部分,因此,技术人员成长必须要有连续性,即工程师始终具有向上的精神,技术无止境,而是缺少动力,保证技术人员的工

PCB的热分析与热设计(doc 6)

PCB的热分析与热设计(doc 6)

PCB的热设计 热分析、热设计是提高印制板热可靠性的重要措施。基于热设计的基本知识,讨论了PCB设计中散热方式的选择、热设计和热分析的技术措施。 1、热设计的重要性 电子设备在工作期间所消耗的电能,除了有用功外,大部分转化成热量散发。电子设备产生的热量,使内部温度迅速上升,如果不及时将该热量散发,设备会继续升温,器件就会因过热失效,电子设备的可靠性将下降。 SMT使电子设备的安装密度增大,有效散热面积减小,设备温升严重地影响可靠性,因此,对热设计的研究显得十分重要。 2、印制电路板温升因素分析 引起印制板温升的直接原因是由于电路功耗器件的存在,电子器件均不同程度地存在功耗,发热强度随功耗的大小变化。 印制板中温升的2种现象: (1)局部温升或大面积温升; (2)短时温升或长时间温升。 在分析PCB热功耗时,一般从以下几个方面来分析。 2.1电气功耗 (1)分析单位面积上的功耗; (2)分析PCB板上功耗的分布。 2.2印制板的结构 (1)印制板的尺寸; (2)印制板的材料。 2.3印制板的安装方式 (1)安装方式(如垂直安装,水平安装); (2)密封情况和离机壳的距离。

2.4热辐射 (1)印制板表面的辐射系数; (2)印制板与相邻表面之间的温差和他们的绝对温度; 2.5热传导 (1)安装散热器; (2)其他安装结构件的传导。 2.6热对流 (1)自然对流; (2)强迫冷却对流。 从PCB上述各因素的分析是解决印制板的温升的有效途径,往往在一个产品和系统中这些因素是互相关联和依赖的,大多数因素应根据实际情况来分析,只有针对某一具体实际情况才能比较正确地计算或估算出温升和功耗等参数。 3、热设计原则 3.1选材 (1)印制板的导线由于通过电流而引起的温升加上规定的环境温度应不超过125 ℃(常用的典型值。根据选用的板材可能不同)。由于元件安装在印制板上也发出一部分热量,影响工作温度,选择材料和印制板设计时应考虑到这些因素,热点温度应不超过125 ℃。尽可能选择更厚一点的覆铜箔。 (2)特殊情况下可选择铝基、陶瓷基等热阻小的板材。 (3)采用多层板结构有助于PCB热设计。 3.2保证散热通道畅通 (1)充分利用元器件排布、铜皮、开窗及散热孔等技术建立合理有效的低热阻通道,保证热量顺利导出PCB。 (2)散热通孔的设置 设计一些散热通孔和盲孔,可以有效地提高散热面积和减少热阻,提高电路板的功率密度。如在LCCC器件的焊盘上设立导通孔。在电路生产过程中焊锡将其填充,使导热能力提高,电路工作时产生的热量能通过通孔或盲孔迅速地传至金属散热层或背面设置的铜泊散发掉。在一些特定情况下,专门设计和采用了

相关文档