文档库 最新最全的文档下载
当前位置:文档库 › 溶胶

溶胶

溶胶
溶胶

溶胶-凝胶法

溶胶-凝胶法( Sol-Gel 法, 简称S-G 法) 就是以无机物或金属醇盐作前驱体, 在液相将这些原料均匀混合, 并进行水解、缩合化学反应, 在溶液中形成稳定的透明溶胶体系, 溶胶经陈化, 胶粒间缓慢聚合,形成三维空间网络结构的凝胶, 凝胶网络间充满了失去流动性的溶剂, 形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。溶胶-凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化, 再经热处理而成的氧化物或其它化合物固体的方法。近年来, 溶胶-凝胶技术在玻璃、氧化物涂层和功能陶瓷粉料, 尤其是传统方法难以制备的复合氧化物材料、高临界温度( T c) 氧化物超导材料的合成中均得到成功的应用。

一 Sol-Gel 法的基本原理

所用的起始原料(前驱物)一般为金属醇盐,也可用某些盐类、氢氧化物、配合物等,其主要反应步骤都是前驱物溶于溶剂(水或有机溶剂)中形成均匀的溶液,溶质与溶剂产生水解或醇解反应,反应生成物聚集成1 nm 左右的粒子并组成溶胶,溶胶经蒸发干燥转变为凝胶。其最基本的反应如下。

Sol-Gel 法的基本反应步骤如下:

1) 溶剂化: 金属阳离子M z+吸引水分子形成溶剂单元M(H2O)z+n , 为保持其配位数, 具有强烈释放H+的趋势。

M(H2O)z+n →M(H2O) n-1 (OH) ( z-1) + H+

2) 水解反应: 非电离式分子前驱物, 如金属醇盐M( OR)n 与水反应,反应可延续进行,直至生成M(OH)n。

M(OR)n+ xH2O= M(OH) x ( OR) n-x+ xROH-M( OH)n

3) 缩聚反应: 按其所脱去分子种类, 可分为两类

a) 失水缩聚

-M -OH+ HO-M-= -M-O-M-+ H2O

b) 失醇缩聚

-M -OR+ HO-M-= -M-O-M-+ ROH

二工艺过程

1 溶胶的制备

溶胶的制备是技术的关键, 溶胶的质量直接影响到最终所得材料的性能, 因此如何制备满足要求的溶胶成为人们研究的重点。近年来主要从以下几

个方面对它进行了研究。

1) 加水量: 加水量一般用物质的量之比R =n (H2O):n[M( OR) n ] 表示。加水量很少, 一般R 在0.5~ 1。0 的范围, 此时水解产物与未水解的醇盐分子之间继

续聚合, 形成大分子溶液, 颗粒不大于1nm, 体系内无固液界面, 属于热力学稳定系统; 而加水过多( R≥100) , 则醇盐充分水解, 形成存在固液界面的热力学不稳定系统。由此可见, 调节加水量可以制备不同性质的材料。

2) 催化剂: 酸碱作为催化剂, 其催化机理不同,因而对同一体系的水解缩聚, 往往产生结构、形态不同的缩聚物。研究表明, 酸催化体系的缩聚反应速率远大于水解反应, 水解由H3O+的亲电机理引起,缩聚反应在完全水解前已开始, 因而缩聚物的交联度低, 所得的干凝胶透明, 结构致密; 碱催化体系的水解反应是由OH-的亲核取代引起的, 水解速度大于亲核速度, 水解比较完全, 形成的凝胶主要由缩聚反应控制, 形成大分子聚合物, 有较高的交联度, 所得的干凝胶结构疏松, 半透明或不透明。

3) 溶胶浓度: 溶胶的浓度主要影响胶凝时间和凝胶的均匀性。在其它条件相同时, 随溶胶浓度的降低, 胶凝时间延长、凝胶的均匀性降低, 且在外界条件干扰下很容易发生新的胶溶现象。所以为减少胶凝时间, 提高凝胶的均匀性, 应尽量提高溶胶的浓度。

4) 水解温度: 提高温度对醇盐的水解有利, 对水解活性低的醇盐( 如硅醇盐) , 常在加热下进行水解, 以缩短溶胶制备及胶凝所需的时间; 但水解温度太高, 将发生有多种产物的水解聚合反应, 生成不易挥发的有机物, 影响凝胶性质。有时水解温度还会影响水解产物的相变化, 影响溶胶的稳定性。因此在保证能生成溶胶的情况下, 尽可能采取较低温度。

5) 络合剂的使用: 添加络合剂可以解决金属醇盐在醇中的溶解度小、反应活性大、水解速度过快等问题, 是控制水解反应的有效手段之一。

6) 电解质的含量: 电解质的含量可以影响溶胶的稳定性。与胶粒带同种电荷的电解质离子可以增加胶粒双电层的厚度, 从而增加溶胶的稳定性; 与胶粒带不同电荷的电解质离子会降低胶粒双电层的厚度, 降低溶胶的稳定性。电解质离子所带电荷的数量也会影响溶胶的稳定性, 所带电荷越多, 对溶胶的影响越大。7) 高分子化合物的使用: 高分子化合物可以吸附在胶粒表面, 从而产生位阻效应, 避免胶粒的团聚; 增加溶胶的稳定性。

2 溶胶-凝胶的转化

凝胶是一种由细小粒子聚集成三维网状结构和连续分散相介质组成的具有固体特征的胶态体系。按分散相介质不同而分为水凝胶( hydrogel) , 醇凝胶( alcogel) 和气凝胶( aerogel) 等, 而沉淀物( precipitate)是由孤立粒子聚集体组成的。溶胶向凝胶的转变过程, 可简述为: 缩聚反应形成的聚合物或粒子聚集体长大为小粒子簇( cluster)逐渐相互连接成三维网络结构, 最后凝胶硬化。因此可以把凝胶化过程视为两个大的粒了簇组成的一个横跨整体的簇, 形成连续的固体网络。在陈化过程中, 胶体粒子逐渐聚集形成网络结构。但这种聚

集和粒子团聚成沉淀完全不同。形成凝胶时, 由于液相被包裹于固相骨架中, 整个体系失去流动性, 同时胶体粒子逐渐形成网络结构, 溶胶也从Newton 体向Bingham 体转变, 并带有明显的触变性。Sol-Gel 的转化是胶体分散体系解稳。溶胶的稳定性是表面带有正电荷, 用增加溶液pH 的方法(加碱胶凝) , 由于增加了OH- 的浓度, 就降低了粒子表面的正电荷, 降低了粒子之间的静电排斥力, 溶胶自然发生凝结, 形成凝胶。除了加碱胶凝外, 脱水胶凝也能使溶胶转变为凝胶。

3 热处理

进一步热处理,消除干凝胶的气孔,使其致密化,并使制品的相组成和显微

结构能满足产品性能的要求。在加热过程中,须先在低温下脱去干凝胶吸附在表面的水和醇,在升温过程中速度不宜太快,因为热处理过程中伴随较大的体积收缩、各种气体的释放(二氧化碳、水、醇),且须避免发生炭化而在制品中留下炭质颗粒(-OR 基在非充分氧化时可能炭化)。热处理的设备主要有:真空炉、干燥箱等

三用溶胶—凝胶制备TiO2 粉体

溶胶—凝胶过程以钛酸四丁酯为原料, 一定条件下通过水解缩聚反应形成具有空间网络结构的醇凝胶, 在制得均匀、透明的凝胶过程中, 须保持一定的酸度, 这是因为初始pH 值对于胶凝时间有着显著的影响, pH 值越低, 胶凝时间越长. 在溶胶- 凝胶过程, 酸的作用有两种: ( 1) 抑制水解, 溶液中加入H+, 使得H2O→H++OH-的反应逆向进行, 水解反应变慢; ( 2) 使M—OR 中的OR 基团质子化, 从而使胶体粒子带正电荷, 阻止胶粒团聚. 实验表明, 只有当体系pH ≤4 时, 才能获得质量好的凝胶.体系中醇和水的量也需要控制, 由于钛酸四丁酯极易水解,所以水的量对成胶有较大影响, 水的配比越高, 水解速度越快, 成胶时间越短, 所得产物颗粒较大, 选用本实验中各物质的配比可得到较好的凝胶。

四溶胶-凝胶法的优缺点

1 优点

溶胶-凝胶法具有以下优点:(1)起始原料首先被分散在溶剂中而形成低粘度的溶液,因此在很短时间内就可以获得分子水平上的均匀性,在形成凝胶时,反应物之间很可能是在分子水平上补均匀地混合,从而能制备较均匀的材料;(2)所制材料具有较高的纯度;(3)材料组成成分较好控制,尤其适合制备多组分材料;(4)反应时温度比较低;(5)具有流变特性,可用于不同用途产品的制备;(6)可以控制孔隙度。

2 缺点

溶胶-凝胶法具有以下不足之处:(1)原料成本较高;(2)存在残留小孔洞;(3)热处理时温度处理不当,可能会导致残留的碳;(4)较长的反应时间;(5)有机溶剂对

人体有一定的危害性。

气溶胶灭火系统和七氟丙烷灭火系统的比较

气溶胶灭火系统和七氟丙烷灭火系统的比较 一、系统组成 (一)气溶胶灭火剂,是由氧化剂、还原剂及粘合物结合成的固体状态含能化学物质,属于烟火型灭火剂。气溶胶灭火系统由气溶胶灭火剂以及相应的贮存和启动装置组成,灭火剂在贮存装置内燃烧反应后直接喷放到防护区,属于无管网灭火系统。气溶胶胶粒具有高分散度、高浓度特点,大部分微粒直径小于1um,可较长时间悬浮在空气中,较易粘附在物体表面。其主要成份有金属盐类、金属氧化物以及水蒸汽、CO2、N2等,碱金属盐(钾盐等)和金属氧化物(K2O等)起主要灭火作用,灭火效率较高。 (二)七氟丙烷,HFC-227ea灭火剂是以物理灭火方式为主,化学灭火方式为辅的气体灭火剂,分子式为CF3CHFCF3,化学名称为七氟丙烷,其特点是无色、无味、不导电、无二次污染,对臭氧层的耗损潜能值(ODP)为零,符合环保要求。HFC-227ea灭火剂具有灭火效能高,不污染设备,电绝缘性好,灭火迅速等优点,是卤代烷灭火剂较理想的替代物。七氟丙烷灭火系统主要由:自动报警灭火控制系统、灭火剂储瓶、启动气体储瓶、瓶头阀、安全阀、电磁瓶头阀、选择阀、单向阀、压力开关、框架、喷嘴、管道系统等主要部件组成。根据使用要求,可组成单元独立系统、组合分配系统和无管网装置等多种形式,实施对单区和多区的消防保护。 二、灭火机理 (一)气溶胶的灭火机理主要是化学抑制,也有降温冷却的作用。 (二)HFC-227ea(七氟丙烷)灭火剂的灭火作用主要是化学抑制。 三、灭火效能 (一)全淹没的气溶胶灭火系统可以有效地扑灭A、B类火灾和E类电气火灾,对烃类(RH)物质的灭火效果尤其明显,如石油、柴油、天燃气和木材等。 (二)HFC-227ea灭火剂适用于扑救下列火灾: ●电气火灾; ●液体火灾或可熔化的固体火灾; ●固体表面火灾; ●灭火前能切断气源的气体火灾。

七氟丙烷、超细干粉、气溶胶各种灭火系统对比分析

七氟丙烷、超细干粉、气溶胶各种灭火系统对比分析

七氟丙烷、超细干粉、气溶胶各种灭火系统对比分析 发布日期:2016-05-07 来源:消防网浏览次数:384 七氟丙烷、超细干粉、气溶胶……各种灭火系统您了解多少?今天小编为您精心整理了三 者之间的用途和特点。 七氟丙烷气体自动灭火系统用途和特点 七氟丙烷(FM200)自动灭火系统是一种现代化消防设备。中华人民共和国公安部于2001年8月1日发布了公消【2001】217号《关于进一步加强哈龙替代品及其替代技术管理的 通知》。通知中第一推荐七氟丙烷(HFC-227e a)气体自动灭火系统为卤代烃类哈龙替代灭火系统。通知明确规定:七氟丙烷气体自动灭火系统属于全淹没系统,可以扑救A(表面火)、B、C类和电器火灾,可用于保护经常有人的场所和高精密电子仪器、设备、及贵重物品。七氟丙烷(FM200)灭火剂无色、无味、不导电、无二次污染。对臭氧层的耗损潜能值(ODP)为零,符合环保要求,其毒副作用比卤代烷灭火剂更小,是卤代烷灭火剂较理想的替代物。七氟

粉尘细小,微粒具有一定重量,在空气中漂浮时间有限,一旦沉降下来不会再运动。当有遮挡物时,很难超越过去,将影响灭火效能,灭火中和灭火后会产生二氧化碳、水蒸气等副产品。在灭火中和灭火后对所有设备和环境均有污染,很难将5~20μm小颗粒的灰尘清除干净,特别是安装在海滩、湿度较大环境中的风力发电机组,设备短时间内不能恢复正常工作,虽然成本低,若误启动或灭火后维护、清理成本较高,若清除不干净,设备会经常出现故障,甚至会报废。 气溶胶自动灭火装置用途和特点 气溶胶灭火剂可分为热气溶胶和冷气溶胶。目前国内工程上应用的气溶胶灭火装置都属于 热型,冷气溶胶灭火技术还处于研制阶段,无正式产品。气溶胶自动灭火装置只适用于较小的防护区,因气溶胶灭火气体从装置中喷出压力很小,大约为0.02MPa左右,喷射距离1~2m,气溶胶灭火气体比重很小,略比空气重一点,先飘向防护区顶部后,再逐步沉降于防护区底

纳米金溶胶形成过程的可见光吸收光谱研究_孙秀兰

第23卷第4期2004年7月 无锡轻工大学学报 Journal of Wuxi University of Light Industry Vol .23 No .4Jul .  2004  文章编号:1009-038X (2004)04-0086-04 收稿日期:2003-09-28; 修回日期:2003-11-27. 作者简介:孙秀兰(1976-),女,山东聊城人,食品科学与工程博士研究生. 纳米金溶胶形成过程的可见光吸收光谱研究 孙秀兰, 赵晓联, 汤坚 (江南大学食品学院,江苏无锡214036) 摘 要:利用紫外-可见吸收光谱研究了金溶胶的形成过程,制备了10~50nm 不同粒径的金溶 胶,研究了不同粒径金溶胶的可见吸收光谱变化和分散稳定性.研究结果表明:平均粒径为14nm 的金溶胶在生成的初级阶段,首先形成大的团状聚集体,随反应时间的延长,紫外吸收降低,可见光吸收逐步增强,最大吸收波长逐渐向短波方向蓝移,在反应时间为5min 左右时形成稳定分散的金胶.随着粒径的增大,反应过程加快,金溶胶的分散稳定性显著降低.金溶胶的可见吸收光谱还具有一定的尺寸效应,在平均粒径大于25.1nm 时,最大吸收峰值和峰宽随粒径的增大而增大;当平均粒径小于25.1nm 时最大吸收峰值和峰宽随粒径的减小而增大.关键词:可见吸收光谱;金溶胶;形成过程;稳定性中图分类号:RS 201文献标识码:A The UV -Visible Spectrum Studies on Formation Process of Colloidal Gold Particles S UN Xiu -lan , ZHAO Xiao -lian , TANG Jian (School o f F ood Science and T echnolo gy ,Southern Yang tze U niv ersity ,Wuxi 214036,China ) Abstract :The formation and stability of colloidal gold Nano -particles in different diameters by means of sodium citrate reduction w as studied in this paper .Reaction kinetics process of the solution behavior of colloidal gold fo rmation w as perfo rmed at different time by UV -visible spectrophotometer .Results showed that the absorption maximum w aveleng th at 200nm markedly decreased w ith the reduction beginning and an obvious visible light absorption occurred at 560nm as the colo r changing tw o minutes later during the 14nm gold particles 'formation .With the time continuing ,the visible light abso rption increased and m aximum w aveleng th decreased continuously ,the gold w as formed w ithin five minutes and the spectra w ill no t change .The formatio n process of big particles is much shorter than small gold solutions but show ed inferio r dispersion stability .It was also revealed that the pattern of spectra is dependent on the size of primary particles .While the average diameter is bigger than25.1nm ,the maximum absorption and width of abso rption peak increased with the diameter increasing ;while the average diameter is smaller than 25.1nm ,m aximum abso rption and width increased with the diameter decreasing . Key words :visible light absorption ;colloidal gold ;formation ;dispersion stability

S型气溶胶与七氟丙烷对比说明

S型气溶胶灭火系统与七氟丙烷灭火系统 在实际应用中对比说明 1.综合费用的比较 通过在多个项目系统招标的情况看,S型气溶胶灭火系统比七氟丙灭火系统系统低,消防建设项目综合费用涉及面很广,既包括灭火系统一次性工程投资费用,又包括系统投入运行后装置的维护保养费,如日常管理人员的正常开支,设备的年度定期检查检测费用,药剂的补充安装费用,零件的正常损坏更换费等。系统越复杂、庞大,设备就越多,工程投资费与维护保养费就越高。S型气溶胶灭火系统相对于七氟丙灭火系统的贮存压力为零,系统简单、维护简便,因此从综合费用方面比较,S型气溶胶灭火系统相对于七氟丙灭火系统有着相当明显的优势。 2.基站荷载比较 国家标准《建筑结构荷载规范》(GB50009-2001)规定:民用建筑面均布荷标准为200kg/m2,而90L规格的七氟丙灭火装置加上控制瓶组约300公斤,但其底面积只有0.3m2,已经大大超过国家标准,而以型气溶胶灭火系统最大规格10公斤为例,总重量为50公斤,且可根据实际需要挂在墙上,这就从根本上避免了基础的荷载问题,无须采取加固措施。 3.对防护区要求 《气体灭火系统设计规范》(GB50370-2005)第6.0.8条规定:防护区内设置预制灭火系统的充装压力不应大于2.5MPa,而七氟丙灭火系统的充装压力则在4.6-6.5MPa之间,从此可看出七氟丙灭火系统的充装压力已远远超出上述规定。 S型气溶胶灭火系统比七氟丙灭火系统对防护区的护围结构及环境的要求要低。S型气溶胶灭火系统在实施灭火时所产生的气体量比七氟丙灭火系统要少50%以上,再加上喷放相对缓慢,不会造成防护区内压力急速明显上升,所以,当采用S型气溶胶灭火系统时可以放宽对围护结构承压的要求。

纳米金制备

纳米金的制备 一、实验药品 氯金酸、柠檬酸钠、二蒸水、超纯水、铬酸洗液(H2SO4/K2Cr2O7) 二、实验器材 精密电子天平、电动搅拌器、500mL圆底烧瓶、100mL烧杯、玻璃棒、100mL容量瓶、1000μL移液枪 三、实验步骤 ①玻璃器皿的清洁 据文献表明,玻璃器皿的清洁是纳米金制备成功与否的关键,如果玻璃器皿内不干净或者有灰尘落入就会干扰胶体金颗粒的形成,形成颗粒大小不一、颜色微红、无色或浑浊不透明的溶液。所以在制备纳米金之前,必须认真地清洗所有玻璃器皿,先用自来水和一般的洗涤剂将所有玻璃器皿清洗一遍,然后用铬酸洗液(H2SO4/K2Cr2O7)充分浸泡,24小时之后用清水将铬酸洗液冲洗干净,最后再用高纯水冲洗3-4遍,放入烘箱中充分干燥后,待用。通过此方法处理过的玻璃器皿不需要硅化处理,可以直接制备胶体金,也可以用已经制备的胶体金溶液用同等大小颗粒的金溶液去包被所有的玻璃器皿的表面,然后弃去,再用蒸馏水清洗,即可使用,因为它减少了金颗粒的吸附作用。 ②溶液的配制 氯金酸(HAuCl4)水溶液的配制:将1g氯金酸一次溶解于新鲜的高纯水中,用100mL容量瓶配成1%的水溶液,移置于100mL广口瓶中,放置于阴暗处保存。 柠檬酸钠溶液的配制:将1g柠檬酸钠一次性溶解于新鲜的高纯水中,用100mL容量瓶配制成的1%水溶液,移置于100mL广口瓶中,放置于阴暗处保存。 所有配制试剂的容器均按照上述要求的酸处理洗净。 ③实验步骤 按班级人数分为1组~4组。1组作为对照组,第2组探究不同反应温度对纳米金颗粒大小形成的影响;第3组探究还原剂浓度对纳米金颗粒大小形成的影响;第4组探究在温度及其还原剂浓度同时变化对纳米金颗粒大形成的影响。 实验过程中,由于在一定范围内的搅拌强度和搅拌时间对制备纳米金影响不大,但考虑到化学反应的需要和水蒸发过多对实验结果造成的不良影响,实验时搅拌强度以不产生漩涡、搅拌时间控制在 15min左右。 第一组 所有操作均在室温下进行。在100mL圆底烧瓶中加入50mL超纯水,用1000μL的移液枪移取500μL事先配制好的1%的氯金酸水溶液于50mL超纯水中,使得溶液中氯金酸的浓度降低至0.01%(w/v),将此溶液在油浴中加热恒温于100℃内。在磁子的剧烈搅拌下,迅速加入4mL的事先配制好的柠檬酸三钠溶液(1%),继续搅拌,反应10 min 至合成液不再变色,停止加热,继续搅拌,待合成液冷却至室温后,放入 4℃冰箱储存,以备表征和标记应用。第二组 所有操作均在室温下进行。在100mL圆底烧瓶中加入50mL超纯水,用1000μL的移液枪移取500μL事先配制好的1%的氯金酸水溶液于50mL超纯水中,使得溶液中氯金酸的浓度降低至0.01%(w/v),将此溶液在油浴中加热恒温于100℃内。在磁子的剧烈搅拌下,迅速加入3mL的事先配制好的柠檬酸三钠溶液(1%),继续搅拌,反应10min至合成液不再变色,停止加热,继续搅拌,待合成液冷却至室温后,放入 4℃冰箱储存,以备表征和标记应用。 第三组 所有操作均在室温下进行。在100mL圆底烧瓶中加入50mL超纯水,用1000μL的移液枪

七氟丙烷、超细干粉、气溶胶三种自动灭火系统对比分析

七氟丙烷、超细干粉、气溶胶三种自动灭火系统对比分析 今天金鹏飞消防和大家一起看看七氟丙烷、超细干粉、气溶胶三种自动灭火系统对比分析;七氟丙烷、超细干粉、气溶胶,是目前自动灭火系统中最常用的原料,其适用范围以及产品特点有不同,下面金鹏飞消防就分别为大家分享一下它们的区别。 七氟丙烷灭火系统用途和特点 七氟丙烷(FM200)自动灭火系统是一种现代化消防设备。中华人民共和国公安部于2001年8月1日发布了公消【2001】217号《关于进一步加强哈龙替代品及其替代技术管理的通知》。通知中第一推荐七氟丙烷(HFC-227ea)气体自动灭火系统为卤代烃类哈龙替代灭火系统。 通知明确规定:七氟丙烷气体自动灭火系统属于全淹没系统,可以扑救A(表面火)、B、C类和电器火灾,可用于保护经常有人的场所和高精密电子仪器、设备、及贵重物品。 七氟丙烷(FM200)灭火剂无色、无味、不导电、无二次污染。对臭氧层的耗损潜能值(ODP)为零,符合环保要求,其毒副作用比卤代烷灭火剂更小,是卤代烷灭火剂较理想的替代物。 七氟丙烷(FM200)灭火剂具有灭火效能高,对设备无污损,电绝缘性好,(因灭火剂从喷嘴喷出压力在0.7~2MPa)喷射距离远,灭火迅速等优点。七氟丙烷(FM200)灭火剂释放后不含有粒子和油状物,不破坏环境,且当灭火后,及时通风迅速排除灭火剂,即可很快恢复正常情况。七氟丙烷(FM200)经试验和美国EPA认定安全性比1301卤代烷更为安全可靠,人体暴露于9%的浓度(七氟丙烷一般最低设计浓度为7%)中无任何危险,而七氟丙烷最大优点是非导电性能,因而是电气设备的理想灭火剂。当七氟丙烷灭火剂达到一定浓度时,还有抑制爆炸的作用。

七氟丙烷超细干粉气溶胶各种灭火系统对比分析

七氟丙烷、超细干粉、气溶胶各种灭火系统对比分析??发布日期:2016-05-07??来源:??浏览次数:384 七氟丙烷、超细干粉、气溶胶……各种灭火系统您了解多少今天小编为您精心整理了三者之间的用途和特点。 七氟丙烷气体自动灭火系统用途和特点 七氟丙烷(FM200)是一种现代化。中华人民共和国公安部于2001年8月1日发布了公消【2001】217号《关于进一步加强哈龙替代品及其替代技术管理的通知》。通知中第一推荐七氟丙烷(HFC-227ea)气体自动灭火系统为卤代烃类哈龙替代灭火系统。通知明确规定:七氟丙烷气体自动灭火系统属于全淹没系统,可以扑救A(表面火)、B、C类和电器火灾,可用于保护经常有人的场所和高精密电子仪器、设备、及贵重物品。七氟丙烷(F M200)无色、无味、不导电、无二次污染。对臭氧层的耗损潜能值(ODP)为零,符合环保要求,其毒副作用比卤代烷灭火剂更小,是卤代烷灭火剂较理想的替代物。七氟丙烷(F M200)灭火剂具有灭火效能高,对设备无污损,电绝缘性好,(因灭火剂从喷嘴喷出压力在0.7~2MPa)喷射距离远,灭火迅速等优点。七氟丙烷(FM200)灭火剂释放后不含有粒子和油状物,不破坏环境,且当灭火后,及时通风迅速排除灭火剂,即可很快恢复正常情况。七氟丙烷(FM200)经试验和美国EPA认定安全性比1301卤代烷更为安全可靠,人体暴露于9%的浓度(七氟丙烷一般最低设计浓度为7%)中无任何危险,而七氟丙烷最大优点是非导电性能。因而是电气设备的理想灭火剂。当七氟丙烷灭火剂达到一定浓度时,还有抑制爆炸的作用。 超细干粉灭火装置用途和特点 超细干粉灭火剂主要分BC干粉和ABC干粉灭火剂两种,分别呈弱碱或弱酸性,是一种很小颗粒的灰尘。当发生火灾时,超细干粉粉体与高温燃烧物体表面接触时,阻断燃烧链式反应,即化学抑制作用。在保护对象表面的高温作用下被熔化并形成一个玻璃状覆盖层将固体表面与周围空气隔开,使燃烧窒息。超细干粉灭火剂粉尘细小,微粒具有一定重量,在空气中漂浮时间有限,一旦沉降下来不会再运动。当有遮挡物时,很难超越过去,将影响灭火效能,灭火中和灭火后会产生二氧化碳、水蒸气等副产品。在灭火中和灭火后对所有设备和环境均有污染,很难将5~20μm小颗粒的灰尘清除干净,特别是安装在海滩、湿度较大环境中的风力发电机组,设备短时间内不能恢复正常工作,虽然成本低,若误启动或灭火后维护、清理成本较高,若清除不干净,设备会经常出现故障,甚至会报废。 气溶胶自动灭火装置用途和特点

气溶胶和七氟丙烷气体灭火系统区别

气溶胶和七氟丙烷气体灭火系统区别灭火器消防系统经过如此长时间不断的发展,现如今主要形成了两大体系,分别是——七氟丙烷灭火系统与气溶胶灭火系统。虽然两者同为灭火系统,但是两者在适用场所,具体功效等方面仍然存在巨大的差异。为了让大家更好的区分两者,同时更好的根据不同的场所及需求选用最合适的气体灭火器,下面我们就从两者的灭火原理、特点来了解下这两种气体灭火系统。 一.基本区别: 气体灭火系统的区别主要体现在所使用的灭火剂上。 七氟丙烷灭火系统: 使用的灭火剂七氟丙烷(HFC-227ea、FM-200)是一种无色、无味、不导电、无二次污染的气体。具有清洁、低毒、电绝缘性好,灭火效率高的特点,特别是它对臭氧层无破坏,在大气中的残留时间比较短,在环保性能明显优于以往使用的卤代烷,是目前为止研究开发的比较完善的一种洁净气体灭火剂,被公认是替代卤代烷1301、1211最理想的灭火剂之一。 气溶胶气体灭火系统: 使用的灭火剂气溶胶是一种最新型灭火剂。通俗来说气溶胶就是细小的固体微粒分散在气体中形成的稳定物态体系,专业的来说气溶胶特指以气体为分散介质,以固态的微粒为分散质的胶体体系,如自然界中的云、烟、雾等,其具有气体的流动性,可绕过障碍物扩散。而且气溶胶灭火装置中的灭火剂是以固态的形式保存的,使用时再通过氧化还原反应喷放出来形成气溶胶,因此在节约空间缩小体积上它具有绝对的优势。

二、灭火原理 七氟丙烷灭火原理: 主要是通过灭火剂的化学催化和净化作用大量捕捉、消耗火焰中的自由基,抑制燃烧的链式反应,从而达到灭火的目的。因此,此系统以化学灭火方式为主,有灭火效率高、速度快、灭火剂用量等优点。 气溶胶气体灭火原理: 总的来说有三个方面; 1、利用金属盐微粒在高温下发生热熔、气化等物理现象吸收大量的热,使得火焰温度被降低,进而辐射到可燃物燃烧面,使得燃烧速度受到抑制。 2、化学抑制灭火机理: a、气体化学抑制:在热的作用下,灭火气溶胶中分解的气化金属离子或是去电子的阳离子可以与燃烧中的活性基团发生气和反应,反复大量消耗活性基团,减少燃烧自由基; b、固相化学抑制:灭火气溶胶中的微粒粒径小,具有很大的表面积和表面能,可吸附燃烧中的活性基团,并发生化学作用,大量消耗活性基团,减少燃烧自由基。 3、降低氧浓度:灭火气溶胶中的N2、CO2可降低燃烧中氧浓度,但其速度是缓慢的,灭火效率远远小于吸热降温、化学抑制。 三、特点: 七氟丙烷灭火装置:七氟丙烷是一种不导电,不破坏大气臭氧层,常温、常压条件下能全部挥发的灭火剂,灭火效率高、灭火速度快,而且灭

纳米金的制备

氯金酸(HAuC1 4 )是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC1 4 先配制成%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na 3C 6 H 5 O 7 ·2H 2 O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16橙色518 橙红522 41红色525 紫色535 *还原100mL %HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备0.8 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC14先配制成0.01%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16 2.00 橙色518 24.5 1.50 橙红522 41 1.00 红色525 71.5 0.70 紫色535 *还原100mL 0.01%HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如0.02%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

纳米金溶胶制备及其尺寸分布的测量

论文题目:纳米金溶胶制备及其尺寸分布的测量 学生姓名:xx 指导教师:xx 摘要 纳米金具有很强的等离子吸收峰,其光学及电磁特性相对于其他金属纳米粒子更为突出,在DNA检测分析、生物探针、基团芯片、生物传感、药物载体等方面等多方面均有广泛的应用。实验室根据不同尺寸和形状的纳米金具有不同的光吸收能力这一特性,提出制备特定尺寸的纳米金用于血液注射以改善血液在近红外部分的吸光度的方案,从而为改进激光治疗葡萄酒色斑(Port Wine Stains,PWS)提供指导。 本文通过还原法制备出不同粒径的球状纳米金,主要考察了还原剂用量、保护剂用量、搅拌速度和搅拌强度对纳米金制备的影响。利用光谱仪和扫描电子显微镜对制得的纳米金的吸光特性和尺寸形貌进行表征。结果表明:采用柠檬酸钠还原法制备出15nm-24nm的球状纳米金颗粒,其中柠檬酸钠加入量为5mL时制备出的纳米金分散性较好,粒径分布较均匀;加入适量的聚乙烯吡咯烷酮(PVP)能有效地阻止纳米金团聚;在一定范围内的搅拌强度和搅拌时间对制备纳米金影响不大,但考虑到化学反应的需要和水蒸发过多对实验结果造成的不良影响,实验时搅拌强度以不产生漩涡、搅拌时间控制在15分钟左右为宜;采用柠檬酸钠-鞣酸还原法制备出3nm、9nm、16nm 左右的球状纳米金颗粒,随着鞣酸加入量的增加,制得的纳米金颗粒的尺寸减小;采用硼氢化钠还原法制备出的粒径约为24nm、28nm、33nm左右的球状纳米金颗粒,但其粒径分布不均匀,且形状相对不规则。 关键词:纳米金;还原法;柠檬酸钠;鞣酸;硼氢化钠 I

Title: Preparation of gold nanoparticles and measuring the size distribution. Applicant: xx Supervisor: xx ABSTRACT Golden nanoparticles have strong plasma absorption peak andbetter optical and electromagnetic properties than other metallic nanoparticles. Nowadaysthey are widely used in field of detection of DNA, drug delivery and manuscript of biological probes, group chip and biosensors. The golden nanoparticles with different sizes and shapes will have distinct light spectral absorption.Based on this characteristic, our lab proposed a method to prove the clinic effect of laser treatment of Port Wine Stains (PWS), a kind of congenital vascular malformation in dermis, byadding the golden nanoparticles to the blood to improve its light absorption. In this paper, the spherical golden nanoparticles with various sizes (diameter) will be prepared by three chemical reduction methods experimentally andthe effects of the reducing agent, protective agent, stirring speed and stirring intensity on the nanoparticle preparation will be fully investigated.The spectral absorption and the morphology of golden nanoparticles are characterized by spectrometer and scanning electron microscopy, respectively. The experiment results show that: spherical golden nanoparticles with diameter of 15nm-24nm are produced by using sodium citrate reduction method.Good dispersion and uniform particle size distribution is observed when the amount of sodium citrate is 5ml. Aggregation of golden nanoparticles can be effectively prevented by adding PVP.The effects of stirring intensity and stirring time on the preparation of gold nanoparticles are small.Generally speaking, the stirring should not produce vortex in the sample and best stirring time is about 15 minutes, considering the chemical reaction and adverse effects of excessive water evaporation on the experimental results.Spherical golden nanoparticles with diameterof 3nm, 9nm and 16nm are produced by using sodium citrate-tannin acid reduction method.The sizes of gold nanoparticles willbe smaller if we increase of the amount of tannic acid.Spherical gold nanoparticles with diameter of 24nm, 28nm and 33nm will be prepared I I

气溶胶灭火系统的特点及应用

气溶胶灭火系统的特点及应用 发布时间: 2007-8-3 浏览次数: 628 次 近年来,“气溶胶”灭火剂在国内被迅速推广,几乎所有的生产厂家都将之喻为“卤代烷”灭火剂的最佳替代物,并且在国家规范中要求使用清洁灭火剂的场所大力推崇。由于没有相关的国家规范,设计、安装一般都是依照厂标及地方标准进行。其适应场所及应用范围在国内一直都有较多争议,本文就此作一些讨论。 一、概述 60年代的前苏联曾使用烟雾型灭火剂扑救地下火灾。80年代末,俄罗斯、美国等开始大量研究此类灭火剂,并应用于一些无人机械舱等部位。90年代初,我国研制出了EBM气溶胶灭火剂,并在全国推广。由于第一代气溶胶产品在喷放时有高温和喷焰缺陷,导致了一些重大事故。经过改进后的新一代气溶胶产品,基本解决了以上缺陷,且工程造价低、安装简便,得以广泛应用。 二、系统组成 气溶胶灭火剂,是由氧化剂、还原剂及粘合物结合成的固体状态含能化学物质,属于烟火型灭火剂。气溶胶灭火系统由气溶胶灭火剂以及相应的贮存和启动装置组成,灭火剂在贮存装置内燃烧反应后直接喷放到防护区,属于无管网灭火系统。气溶胶胶粒具有高分散度、高浓度特点,大部分微粒直径小于1um,可较长时间悬浮在空气中,较易粘附在物体表面。其主要成份有金属盐类、金属氧化物以及水蒸汽、CO2、N2等,碱金属盐(钾盐等)和金属氧化物(K2O等)起主要灭火作用,灭火效率较高。 三、灭火机理 气溶胶的灭火机理主要是化学抑制,也有降温冷却的作用。 1、化学抑制 当燃料(烃类—RH)燃烧时,产生活性游离基H+、O--和OH-,并发生链式反应:

RH + O2 → H+ + 2O-- + R+(可燃物分解,吸热反应) O-- + H+ → OH- 2OH- → H2O + O--(放热反应) 最后一步为强烈的放热反应,放热量远大于第一步可燃物分解的吸热量,同时再次分解出游离O--,使得燃烧得以持续。 在高温燃烧区,气溶胶微粒分解出活性游离基K+,它迅速与H+和OH-发生以下反应: K+ + OH- → KOH KOH + H+ → K+ + H2O 密集的气溶胶微粒提供了较大的表面反应区域,K+不断再生,夺走燃烧链所需的载体OH-和H+,燃烧无法延续。因此,气溶胶的灭火机理是以中断燃烧链为主,与卤代烷的灭火机理基本相同。卤代烷高温下分解出的Br-与上面的K+扮演同样的角色,以1301为例: CF3Br → CF3 + Br-(高温下分解) Br- + RH → R+ + HBr HBr + OH- → H2O + Br- Br-不断再生,迅速夺走燃烧链载体OH-和H+,使得燃烧迅速终止。 2、吸热降温 气溶胶的吸热降温作用也不可忽视,以KHCO3为例: 2KHCO3 → K2CO3+CO2+H2O(吸热分解反应) K2CO3(固相)→ K2CO3(液相)→ K2CO3(气相)(吸热相反应)卤代烷的灭火机理中也有冷却作用,它主要源于灭火剂由液相转化为气相时的物理吸热反应和高温分解反应。 四、灭火效能 全淹没的气溶胶灭火系统可以有效地扑灭A、B类火灾和E类电气火灾,对烃类(RH)物质的灭火效果尤其明显,如石油、柴油、天燃气和木材等。以100M3

纳米金

纳米金具有明显的表面效应、体积效应、量子效应、小尺寸效应及生物亲和性,其光学特性、电子特性、传感特性及生物化学特性成为研究热点,在超分子、生物化学等技术领域具有广泛的应用前景【lJ。将其用于生物传感器制作,所得传感器选择性强、稳定性好且操作方法简便。纳米金颗粒比表面积非常大,表面自由能高,酶可在纳米颗粒表面得到强有力的固 定,不易渗漏,金溶胶具有很好的生物相容性,并且是电的良导体,可在酶与电极之间传递电子,显著提高酶电极的响应灵敏度,为开发研制第三代无媒介生物传感器提供可能。金溶胶的制备主要有液相还原法、相转移法【6~8】等。Frens[9】在1972年发展的氯金酸的柠檬酸三钠水相还原法,是制各金溶胶的经典方法,该方法成本低、设备简易、反应时间短、操作简便,更利于产业化生产。一般用该方法制备的纳米金颗粒粒径大于12nm[101, (1)Fukumik Chayahara A,Kadono Ket a1.JAppIPhys[J],1994,75(6):3075 (2)DavidocicD,TinkhamM.ApplPhysLett[J],1998,73:3959 (3)PasquatoL,PancanF’ScriminPeta1.ChemCommun[J],2000,22:2253 (4)AlivisatosA P’Johnsson K P'Peng Xet a1.Nature[J],1996,382:609 (5)ZhangZhikun(张志锟)'Cui Zuolin(崔作林).Nano Technology andNano Materials(纳米技术与 纳米材料)[M].Beijing:National Defense IndustryPress,2000 (6)YonezawaT’Yasui K,KimizukaN.Langmuir[J],2001,17(2):2’7l (7)Chow M K ,Zukoski CF.J Colloid InterfaceSci[fl,1994,165(1):97 (8) BrustM,WalkerM,BethellDeta1.JChemicalSociety,Chem Commun[J],1994,7:801 (9)Frens Gnat Phys Sci[fl,1973,241:20 (10)Chen F'Xu G Q,Hor T 纳米材料”的命名出现在20世纪80年代,它是指三维空间中至少有一维处于卜lOOnm 或由它们作为单元构成的材料(13),纳米金一般为分散在水溶液中的溶胶,故又称胶体金,由于纳米粒子的表面层占很大比重,而表面原子是长程无序,而短程有序的非晶层,可以认为粒子的表面层更接近气态,而在粒子的中心存在结晶完好的周期排佰的原子。纳米粒子中心原子的结构与块体材料不同这种差异是由于纳米粒子的体积小、表面曲率大、内部产生很高的压力引起的。纳米粒子的这种特殊结构导致了它具有不同于块体材料的特殊性质(14)。具体到纳米金,它具有光吸收特性(15-16),纳米金在510至550nm可见光谱范围之问有一吸收峰,最大吸收波长随着金颗粒直径的增大而增加。呈色性,即不同粒径的纳米金表现出不同的颜色。小粒径的纳米金(2"--5nm)呈现黄色,中等粒径的纳米会(10"~20nm) 呈现酒红色,较大粒径的纳米金(30"--80nm)呈现紫红色。除此以外,它具有纳米粒子的特性,量子尺寸效应、表面效应、体积效应、宏观量子隧道效应(17)。 [13]李群,纳米材料的制备与麻川技术[M],北京:化学.1:业出版社,2008 [14]朱红.纳米材料化学及其应圳[M].北京:清华人学出版社·北京交通人学出版社.2009.【15】高忠贤,李小强.纳米生物医约[M】,化学I:业出版社,北京,2007. 【16】张同I德.纳米生物分析化学与分子生物学,化学l:业出版社[M】,北京,2005.[17]黄德欢.纳米技术与戍川[M].上海:中国纺织人学出版社,2001. 纳米金颗粒以其良好的稳定性、小尺寸效应、表面效应、光学效应以及独特的生物亲和性,在许多领域显示出了潜在的应用价值,引起了广大科技工作者的浓厚兴趣(18-19)。 通过简单方法制备出单分散性好、粒径可控的纳米金颗粒一直是研究者追求的目标。迄今为止,已有很多种成熟的制备纳米金的工艺方法(20),如气相蒸发法、溶剂还原法、相转移法、溶胶凝胶法、真空蒸镀法、水热法、微波合成法等。最近,发现在纳米金颗粒的液相合成中,,使用不同类型的模板剂(21,22)、表面活性剂(23,24)或巯基烷烃化合物保护剂(25,26),对其形貌和大小的调控有突出的作用;不过有机试剂的使用,尤

气溶胶与柜式七氟丙烷灭火装置比较

歌瑞2000气溶胶和七氟丙烷气体灭火系统比较1989年我国加入《保护臭氧层维也纳公约》,1991年6月正式加入《关于消耗臭氧层物质的蒙特利尔议定书(修订本)》国际条约。1994年公安部发出了《关于在非必要场所停止再配置卤代烷灭火器的通知》[1]。1996年公安部颁布了《卤代烷替代品推广应用的规定》。世界各国的科技人员在积极研究卤代烷的替代品。气溶胶气体灭火系统与七氟丙烷气体灭火系统均是公安部重点推荐的气体灭火产品,灭火效率高,无污染,对人体无害。 歌瑞2000(GRL2000)气溶胶灭火系统是一种新型灭火剂。它具有无毒、无腐蚀、无污染、不损耗大气臭氧层和快速高效、全方位全自动灭火、设计安装维护简便易行、造价低等特点,是适合我国国情的一种较理想的卤代烷灭火剂替代品,是公安消防部门推荐的一种较为理想的高效灭火产品。 七氟丙烷灭火剂与气溶胶灭火剂也是一种新型灭火剂,具有无毒、无腐蚀、无污染、不损耗大气臭氧层和快速高效、全方位全自动灭火,是适合我国国情的一种较理想的卤代烷灭火剂替代品,是公安消防部门推荐的一种较为理想的高效灭火产品。 一、适用范围: 气溶胶(GRL2000)与七氟丙烷(GRQW)灭火剂本身都不含破坏臭氧层的物质;它们的产物主要都是N2和O2。因此适用于扑灭相对封闭空间发生的A类、B类、电气、电缆的初起火灾。 1、灭A类火灾,可用于扑灭固体物质火灾。适用于生产、使用

或贮存可燃固体场所如木制品库、纸张库、皮毛仓库、档案室、博物馆、图书资料室、文物资料室、音像资料室等场所。 2、灭B类火灾。适用于生产、使用或贮存煤油、柴油(-35号柴油除外),重油、润滑油、变压器油、动物油、植物油、白油等各种可燃液体场所。 3、灭电气、电缆火灾。a 电子计算机房、通讯机房、广播电视制作机房和发射、转播转发射机房等;b、高压(110KV及以下)、低压(10KV及以下),变(配)电间、柴油发电机房、电缆夹层、电缆隧道、电缆井、电缆沟等;c、发电厂内电气控制楼、微波楼、通信楼、电子设备间、继电器室、变压器室、稳压器室、设备室等。 二、市场使用情况 一)、气溶胶气体灭火系统 在市场上,因GR2000气体灭火装置也因其以下优点而及系统组成简单,不需要考虑组合分配,可靠性高,在较大防护区内使用能够满足要求而受到用户的好评: 1、全方位灭火,灭火效率高,尤其对烃类物质的灭火效果尤其明显(灭火效率是卤代烷的4倍~6倍)。就这一点来讲,气溶胶应是变配电室、发电厂和变电所的电器设备室及电缆部分的最佳灭火药剂,因这些地方的火灾中主要燃烧物质正是电缆胶皮裂解后所产生的大量烃类物质。 2、防护现场摆设,无需专用钢瓶间,可为用户节省宝贵的使用

相关文档