文档库 最新最全的文档下载
当前位置:文档库 › 微网中分布式电源的协调控制策略研究

微网中分布式电源的协调控制策略研究

微网中分布式电源的协调控制策略研究
微网中分布式电源的协调控制策略研究

微网中分布式电源的协调控制策略研究

发表时间:2018-07-03T10:22:12.923Z 来源:《电力设备》2018年第7期作者:何志豪

[导读] 摘要:能源是人类生存和发展的重要物质基础,也是人类义须面对的永恒课题。

(国网河南省电力公司南阳供电公司河南南阳 473009)

摘要:能源是人类生存和发展的重要物质基础,也是人类义须面对的永恒课题。随着经济发展和科技的进步,电能作为最便利、最清洁的能源形式之一,已经成为国家的支柱能源和经济命脉。微网是一种由分布式电源、负荷、电力电子设备、监控保护装置组成的小型发配电系统,能够同时为用户提供电能和热能,并且对外部电网表现为可控的单元,可满足电力用户对电能质量和供电可靠性的要求,进一步加强对其的研究非常有必要。基于此本文分析了微网中分布式电源的协调控制策略。

关键词:微网;分布式电源;协调;控制策略

1、微网的优势

为充分挖掘分布式发电为电网和用户带来的效益,同时解决大量分布式电源的并网问题,很多学者提出了微网的概念。目前国际上对微网没有统一的定义标准,但是基本类似于以下定义:微网是一种由分布式电源、负荷、电力电子设备、监控保护装置组成的小型发配电系统,能够同时为用户提供电能和热能,并且对外部电网表现为可控的单元,可满足电力用户对电能质量和供电可靠性的要求。微网的典型结构如图1,微网能够和电网互为支撑,其具有以下优势:

图1交流微网典型结构

1)可靠性:微网既可以在电网正常时,与电网连接并网运行;又可以在电网发生故障时,脱离电网孤岛运行为本地负荷供电,提高本地负荷供电的可靠性,尤其是电网遭到灾害破坏时。

2)经济性:微网中的发电单元和负荷距离比较近,因而只有发电和配电环节,不需要进行远距离的输送电能,避免了电能输送过程中的损耗,并省去了建设输电设备的成本,具有更好的经济性。

3)交互性:微网对外部电网表现为一个可控单元,可参与电网的削峰填谷,从而减少系统备用机组的容量。此外,微网在紧急情况下可作为电网的后备电源,帮助大电厂进行黑启动。

虽然微网为分布式电源的规模化利用提供了新的思路,但是,微网也存在以下问题:1)微网中含有大量以变流器为接口的分布式电源(风机、光伏以及储能等),但是变流器缺少类似同步发电机转子的机械部分,从而导致微网缺少惯性。当微网中出现负荷突变等扰动时,微网的频率和电压会快速的变化,要求分布式电源进行快速的响应,对分布式电源的协调控制提出了挑战;2)新能源发电机组出力具有波动性和随机性,要使微网对外表现为一个可控单元,需要利用其他分布式电源来抑制新能源发电机组出力的波动性。因此,如何协调控制微网中性能各异的分布式电源,充分发挥微网的潜在优势,具有重要的研究价值。

2、微网中分布式电源的协调控制研究意义

微网是解决分布式发电利用和并网问题的有效方法之一,既能够与电网连接并网运行又能够脱离电网孤岛运行,提高了负荷供电的灵活性和可靠性。但是组成微网的分布式电源种类多样,性能各不相同。例如新能源发电存在随机性和波动性的问题,而储能能够快速调节充放电功率来平抑新能源发电机组输出功率的波动性。但是,储能的制作和加工成本都还比较高,出于经济性考虑,微网中配置的储能的容量占整个微网的装机容量比例受到限制。在储能的容量有限的情况下,SOC是其运行中必须考虑的问题,SOC过高或者过低,会影响储能的正常工作。此外,当微网中存在多个储能时,还需要对储能的SOC进行均衡,避免出现某些储能深度充电,另外一些深度放电的情况,对微网的稳定运行和储能的使用寿命产生不利影响。因此,如何根据各种类型的分布式电源的特点,协调控制微网中的分布式电源,以发挥各类分布式电源的优势,更好的实现微网控制目标,是需要深入研究的问题。

3、微网中分布式电源的协调控制策略

3.1、微网孤岛运行的的运行模式及模式切换策略设计

微网孤岛运行时,采用孤岛运行部分的三种运行模式和模式切换策略,使储能SOC维持在合理区间,具有较大的充放电裕度,提高微网孤岛运行的稳定性。

①当微网运行于孤岛正常运行模式)时,负荷优先由新能源发电机组按最大可输出功率等比例进行分摊。当新能源发电机组最大出力之和小于微网负荷,导致微网频率偏离50Hz时,储能对缺额功率进行补偿,维持频率准允许范围内。

②当储能放电至,SOC<_SOClow2,:时,微网运行模式进行切换,对储能进行充电,以避免储能深度放电,同时使其保持较大的放电裕度。新能源发电机组和储能分别以MPPT模式和AGC模式运行,其中,储能负责平抑新能源发电机组出力和微网负荷的波动,维持微网的频率在允许的范围内。

③当储能充电至.SOC≥SOChigh2时,微网运行模式从模式进行切换,对储能进行放电,以避免储能深度充电,同时使其保持较大的充电裕度。新能源发电机组和储能均运行于AGC模式负责调节系统的频率。

3.2、微网中分布式电源的分布式协调控制策略

当微网中同时存在储能和非储能形式的分布式电源时,非储能形式的分布式电源采用提出的分布式电源的分散/分层控制策略,储能采

分布式电源并网管理措施分析

分布式电源并网管理措施分析 摘要:应用分布式电源作为节能减排的一项重要内容。为新能源和低碳技术等领域发展提供了契机,分布式电源并网的需求日益增多。本文结合分布式电源并网工作中的一些问题,提出并网管理的具体措施。 关键词:分布式电源;并网;管理措施;分析 分布式电源应用前景广阔,国家陆续出台扶持分布式电源发展的政策,如何将这些扶持政策深入贯彻,更加高效推进分布式电源接入工作,提出符合实际的并网管理措施,将成为供电企业应该重点考虑的课题。 一、分布式电源界定范围 分布式电源是指在用户所在场地或附近建设安装、运行方式以用户侧自发自用为主、多余电量上网,且在配电网系统平衡调节为特征的发电设施或有电力输出的能量综合梯 级利用多联供设施、包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电(舍煤矿瓦斯发电)等。 适用范围。目前有两种类型的分布式电源符合国家政策支持、程序简化的范畴。①l0kV及以下电压等级接入,且单个并网点总装机容量不超过6MW的分布式电源;②以35kV 电压等级接入,年自发自用电量大于50%的分布式电源,或

以l0kV电压等级接入且单个并网点总装机容量超过6MW,年自发自用电量大于50%的分布式电源。 范围适当扩展。由原来的只能以l0kV及以下电压等级接入,且单个并网点不超过6MW的范围,扩展至35kV及以下电压等级接入、以35kV接入,或以l0kV接入且总装机容量超过6MW的分布式电源,其中年自发自用电量大于50%的,才能享受并网更优惠的政策。 自发自用电量大于50%的界定方法。供电企业受理第二类分布式电源时,需要校对自发自用电量比例。具体方法:对于既有用户,根据分布式电源技术特性,估算的年自发自用电量应大于上一年该用户年发电量的50%;对于新报装用户,根据分布式电源技术特性和用户负荷特性,估算的年自发自用电量应大于上一年该用户年发电量的50%。 接入点为公共连接点、发电量全部上网的发电项目,小水电,除上述二类以外的分布式电源项目等其他类型的电源,接入时仍执行常规电源并网有关管理规定。 二、并网管理流程和内容 1.申请和受理。供电企业为分布式电源项目业主提供接入申请受理服务,协助项目业主填写接入申请表,接收相关支撑性材料。 2.接入方案的制定和确认。供电企业受理分布式电源接入申请后,依据分布式电源适用类别按期制定接入方案,并

微电网并离网控制策略研究及实现

微电网并离网控制策略研究及实现 任洛卿,唐成虹,王劲松,黄琦 南瑞集团公司(国网电力科学研究院), 江苏省南京市211106 The Research and Implementation of Micro-grid's Grid-connected & Off-Grid Control Strategy Ren Luoqing, Tang Chenghong, Wang Jinsong, Huang Qi NARI Group(SGEPRI), Nanjing, Jiangsu 210003 ABSTRACT: This paper analyzes the network structure and operation modes of micro-grid and proposes a method of grid-connected & off-grid control strategy, which is based on fast fault detection and pattern recognition. Improved half-wave Fourier algorithm is used to carry out fast protection computation of the characteristic value so as to implement fast fault detection. The characteristic value is described by logical expressions and its real-time value is used to identify the current running mode and as the criterion to implement smooth switching control between the grid-connected mode and off-grid mode. So far, this method has been successfully applied in Luxi island micro-grid demonstration project. KEY WORD: micro-grid; fast fault detection; pattern recognition; coordinated control strategy 摘要: 本文对微电网组成结构及运行模式进行分析研究,提出了故障快速检测和运行模式识别的微电网并离网控制策略方案。故障快速检测以改进的半波傅里叶计算为基础,通过对微电网特征量的快速保护运算,实现故障的快速检测。微电网并离网平滑切换控制实现方法,将微电网特征量以逻辑表达式的形式进行描述,通过读取微电网特征变量实时值,识别出微电网当前运行模式,实现微电网并离网平滑切换。目前该方法已经成功应用于鹿西岛微电网示范工程。 关键词: 微电网;故障快速检测;模式识别;协调控制策略 1 引言 微电网由分布式发电、负荷、储能等部分组成,一般与中低压配电网相连,是一种可以运行在并网模式或离网模式的小型配电网系统。随着分布式发电技术的发展,分布式电源数量快速增长。智能微源、节能降耗、提高供电质量的目的[1],因此微电网是处理大规模分布式发电接入电网的必然选择,微电网技术的发展对未来坚强电网的发展起着至关重要的作用[2-3]。 微电网有并网和离网两种状态。当电网发生故障时,微电网可离网运行,进入独立的孤岛状态。然而在微电网的发展中,微电网的运行控制尤其是并离网切换控制具有一定的难度。当电网发生故障时,分布式发电和储能设备的电力输出与实际负荷的电力需求很可能不平衡,造成大量电能缺额或电能过剩。此时需要迅速进行判断并进行相应的调节控制,使微电网能够平滑切换至离网状态运行。 现有的微电网并离网切换控制装置一般是针对特定并网方式设计,而离网控制操作过程需要人工参与[4-6],无法自动适应微电网运行方式,很难做到并离网平滑切换控制。因此,研究微电网并离网平滑切换控制策略实现方法[7-12]是保证微电网安全高效运行的迫切需求。 本文对智能微电网的并离网控制策略进行了研究,提出了包括基于快速保护运算的故障检测技术和基于模式自识别的协调控制方法。这些新技术组成的微电网并离网控制策略,使微电网可以在并网和离网模式间实现平滑切换,同时保证重要负荷的持续供电。 2 快速故障检测技术 快速的故障判断是微电网的并离网切换控制的重要基础,而更快速的故障判断需要在更短时间内完成保护量的运算。 传统的全波傅里叶变换是电力系统中经常使用的保护计算方法。 传统计算方法公式如下: N -1 电网作为智能电网的重要部分,能灵活有效地运用分布式发电和储能设备,达到最大化接纳分布式电 2 a n =x n N =0 sin(nπ 2π ) N 4∑ N

分布式电源项目全流程运行指南

分布式电源项目全流程运作指南 【编制单位】北京计鹏信息咨询有限公司 【编制日期】2013年4月 【摘要】 近年来,发展光伏、风电、天然气等分布式电源,应对气候变化、保障能源安全,已经成为世界各国能源战略的重要内容,受到广泛关注。积极发展分布式电源,对优化能源结构、推动节能减排、有效降低电力行业PM2.5污染、促进经济长期平稳较快发展具有重要意义。 《第三次工业革命》书中也指出,分布式电源在未来的能源结构中将占据重要位置,这种新的能源应用模式将对新经济的发展带来巨大的促进作用,中国近两年来也出台了一系列的政策鼓励支持以分布式风电和分布式光伏为代表的分布式电源发电建设项目的发展。 本报告共分为八个章节:第一章介绍分布式电源的定义类型及特点;第二章着重分析分布式电源的发展规划和项目运作前景,分析了分布式电源在中国发展的总体情况;第三章介绍目前中国分布式电源相关政策,包括国家层面和地方政府层面的相关政策;第四章介绍分布式电源建设项目前期运作流程及所需的支持性文件;第五章介绍分布式电源项目各地建设情况及特点;第六章介绍分布式电源项目并网操作流程;第七章介绍分布式电源建设项目的运营维护;第八章介绍分布式电源建设项目的运营模式及盈利性分析。本报告旨在为分布式电源发电建设项目投资者及从事分布式电源全产业链上相关工作的人员提供参考、借鉴。 【提纲】 1 分布式电源定义类型及特点 1.1 定义 1.1.1 国外

1.1.2 国内 1.2 分类 1.3 特点 1.4 优点 1.4.1 降低系统损耗 1.4.2 解决偏远地区供电问题 1.4.3 提高重要用户供电可靠性 1.4.4 促进节能减排 2 分布式电源项目前景分析 2.1 发展现状 2.2 影响因素 2.2.1 资源分布 2.2.2 政策激励 2.2.3 产业基础 2.3 发展规划 3 分布式电源相关政策 3.1 国家层面的相关政策 3.1.1 管理政策 3.1.2 电价政策 3.2 地方层面的相关政策 3.2.1 内蒙古 3.2.2 江苏 3.2.3 上海 4 分布式电源项目前期工作流程4.1 分散式风电项目前期工作流程4.1.1 分散风电的基本要求及条件4.1.2 分散式风电项目前期工作4.1.3 分散式风电项目审批流程4.2 分布式光伏项目前期工作流程

基于混合储能的可调度型分布式电源控制策略分析

基于混合储能的可调度型分布式电源控制策略分析 发表时间:2016-09-28T10:54:27.820Z 来源:《基层建设》2015年31期作者:杨跃华黄丽杨红[导读] 摘要:随着分布式能源的日益增长,分布式能源对电网的影响日益增加。为了减少分布式能源的不利影响,能源储存系统被广泛使用。本文针对混合储能系统和可再生能源发电机组,设计出了由蓄电池和超级电容器和发电机组的存储系统组成的分布式电源控制策略。 国网绵阳供电公司四川绵阳 621000 摘要:随着分布式能源的日益增长,分布式能源对电网的影响日益增加。为了减少分布式能源的不利影响,能源储存系统被广泛使用。本文针对混合储能系统和可再生能源发电机组,设计出了由蓄电池和超级电容器和发电机组的存储系统组成的分布式电源控制策略。当荷电状态的储能元件不受限制,可再生能源发电系统采用最大功率点跟踪控制的方法,采用低通滤波方法得到的参考功率电池和超级电容器的电压控制的方法,来保证直流母线电压的稳定。 关键词:蓄电池;超级电容器;混合储能系统;可再生能源发电 本文设计了一种用于蓄电池和超级电容器的混合储能系统。系统的状态和存储的能量存储元件是根据分布式发电机组和可再生能源发电机组电源的方案制定的,采用的是电池寿命分布功率控制策略。根据储能元素的状态切换控制的线路电压运行范围,以防止系统传统控制模式切换和蓄电池的暂态冲击。本文还介绍了超级电容器端电压的影响和控制方法。最后,通过EMTDC / PSCAD仿真计算实例,证明了该控制策略的合理性和有效性。 1电源结构设计 基于混合储能的分布式电源拓扑结构。可再生能源发电系统(以下光伏发电系统作为一个例子),蓄电池和超级电容器储能通过换流器将直流/直流转换器并联在直流母线上,这就构成了电源控制直流电源系统,直流电源系统直流/直流交流变流器与电网(或微电网)连接。在直流通过时,光伏发电系统、蓄电池系统及超级电容器协调控制,使得之间的直流母线电压最大化。利用可再生能源发电,优化电池充电和放电过程,达到延长电池使用寿命的目标。根据分布式电源在电网中所承担的不同任务,直流/ 交流变频器的控制可以通过PQ、VF控制,根据系统运行或调度要求参与系统的电压和频率调节。 2本地协调控制器的能量管理策略 2.1 储能装置SOC容量未越限情况下系统的优化控制 根据直流/交流转换器的控制模式,整个分布式供电系统的输出功率是由调度功率指令或电网负荷组成的情况确定的。为了实现充分利用可再生能源的目标,该储能装置当系统不受限制时,光伏系统 MPPT控制混合储能系统承担剩余的因为系统功率不足而产生的问题,例如功率波动和光伏负载。根据混合储能系统蓄电池和超级电容器的特性,从功率的角度来说,按以下原则:超级电容器被假定为采取系统中的波动幅度大的功率尖峰。其长周期寿命、高输出功率的优势,能快速响应电池系统的潜在动力不足等问题,减少小回路充放电,避免过充、放电时产生的问题,延长使用寿命。为了区分混合储能系统输出功率的高低频率组成的不同,提出 1个建议,使用低通滤波器提取的混合输出功率的低频分量,如电池的功率指令。但低通滤波器具有信号衰减和相位延迟的特性,可能会导致超级电容继续充电或放电操作的发生,同时,超级电容器的能量密度很小,这是由滤波算法引起的。超级电容器的功率偏差很容易引起系统的系统性越限,所以本文基于传统的低通滤波算法进行了修改。 2.2储能装置SOC容量越限情况下系统的协调控制 当超级电容器或蓄电池SOC越限时,采用此方法。由于前一个所述控制模式并不能稳定直流母线电压,不能保证系统的正常运行。因此,储能装置的系统芯片系统的控制方式需要改变系统模式。由于电池储能系统难以准确测量,本文该系统的控制方式是:基于直流母线电压的变化情况,控制恒压储能装置。系统状态如果达到上限,仍然继续使用它的稳定系统直流母线电压,只有当直流母线电压上升或下降,超出了正常工作范围,系统监测直流母线电压超出正常控制模式时,就要改变它的的正常运行范围。 2.3 超级电容器端电压预控制 该方法可用于保持直流母线电压的一部分,从而使得整个系统稳定运行。但由于电容器的功率密度很小,其容量很容易达到极限,为了避免系统控制模式之间的频繁切换电池的问题和频繁的工作在恒压控制模式,对电池寿命的不利影响,当直流电源系统正在运行时,采用超级电容端电压控制方法。 3仿真分析 图1光伏系统输出功率 为了验证本文控制算法的有效性,EMTDC仿真软件已建立起来可调度型分布式电源模型,如图2。其中,直流/交流转换器是用于间接控制,其调度功率为40千瓦。可控光伏系统电流源模型,这是采用某检测基地实际光伏系统从9点到15点的光伏发电系统的实际输出测量数据。在仿真模型中,仿真时间是采取理想电压源和电阻串联模型,试验考虑其容量,以满足一天的能源储存在光伏系统释放,其容量设计为750A.h,额定电压为400伏,额定功率为30千瓦。电容器和电容器模型电阻额定功率为40千瓦,能满足最大功率输出的原理,其电容值0.1,根据光伏系统的输出特性,滤波器的时间常数为1,滤波补偿系数调整系数为K = 0.5。

国家电网公司发布《关于做好分布式电源并网服务工作的意见》(修订版)

《关于做好分布式电源并网服务工作的意见》 发布时间:2013-02-28 一、总则 1. 分布式电源对优化能源结构、推动节能减排、实现经济可持续发展具有重要意义。国家电网公司(以下简称公司)认真贯彻落实国家能源发展战略,积极支持分布式电源加快发展,依据《中华人民共和国电力法》、《中华人民共和国可再生能源法》等法律法规以及有关规程规定,按照优化并网流程、简化并网手续、提高服务效率原则,制订本意见。 二、适用范围 2. 本意见所称分布式电源,是指位于用户附近,所发电能就地利用,以10千伏及以下电压等级接入电网,且单个并网点总装机容量不超过6兆瓦的发电项目。包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电等类型。 3. 以10千伏以上电压等级接入,或以10千伏电压等级接入但需升压送出的发电项目,执行国家电网公司常规电源相关管理规定。小水电项目按国家有关规定执行。 三、一般原则 4. 公司积极为分布式电源项目接入电网提供便利条件,为接入系统工程建设开辟绿色通道。接入公共电网的分布式电源项目,其接入系统工程(含通信专网)以及接入引起的公共电网改造部分由公司投资建设。接入用户侧的分布式电源项目,其接入系统工程由项目业主投资建设,接入引起的公共电网改造部分由公司投资建设(西部地区接入系统工程仍执行国家现行规定)。 5. 分布式电源项目工程设计和施工建设应符合国家相关规定,并网点的电能质量应满足国家和行业相关标准。 6. 建于用户内部场所的分布式电源项目,发电量可以全部上网、全部自用或自发自用余电上网,由用户自行选择,用户不足电量由电网提供。上、下网电量分开结算,电价执行国家相关政策。公司免费提供关口计量装置和发电量计量用电能表。 7. 分布式光伏发电、风电项目不收取系统备用容量费,其他分布式电源项目执行国家有关政策。 8. 公司为享受国家电价补助的分布式电源项目提供补助计量和结算服务,公司收到财政部门拨付补助资金后,及时支付项目业主。 四、并网服务程序

《分布式电源接入电网技术规定》

《分布式电源接入电网 技术规定》 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

分布式电源接入电网技术规定 (报批稿) 国家电网公司Q/GDW480—2010 1 范围 本规定适用于国家电网公司经营区域内以同步电机、感应电机、变流器等形式接入35kV及以下电压等级电网的分布式电源。 风力发电和太阳能光伏发电并网接入35kV及以下电网还应参照《国家电网公司风电场接入电网技术规定》和《国家电网公司光伏电站接入电网技术规定》执行。 本规定规定了新建和扩建分布式电源接入电网运行应遵循的一般原则和技术要求,改建分布式电源、分布式自备电源可参照本规定执行。 2规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规定,但鼓励根据本规定达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规定。 GB/T 12325—2008 电能质量供电电压偏差 GB/T 12326—2008 电能质量电压波动和闪变

GB/T 14549—1993 电能质量公用电网谐波 GB/T 15543—2008 电能质量三相电压不平衡 GB/T 15945—2008 电能质量电力系统频率偏差 GB 2894 安全标志及其使用导则 GB/T 14285—2006 继电保护和安全自动装置技术规程DL/T 584—2007 3kV~110kV电网继电保护装置运行整定规程 DL/T 1040 电网运行准则 DL/T 448 电能计量装置技术管理规定 IEC61000-4-30 电磁兼容第4-30部分试验和测量技术-电能质量测量方法 DL/T 远动设备及系统第5-101部分传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分传输规约采用标准传输协议集的IEC60870-5-101网络访问 Q/GDW 370-2009 城市配电网技术导则 Q/GDW 3382-2009 配电自动化技术导则 IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems 3术语和定义 本规定采用了下列名词和术语。 分布式电源 distributed resources

微网监控系统及其控制策略探究

微网监控系统及其控制策略探究 摘要:在当今世界范围内第三代电网发展和建设拉开序幕时,节能环保,可再 生能源利用和智能化为特征的微电网逐渐成为趋势,随着技术的发展,绿色环保 政策和电力市场机制改革等因素的共同作用使得分布式发电成为未来发展重要的 能源选择。现阶段我国的 能源方式仍以集中供电系统为主,分布式能源的发展并不能取代传统的能源供电方式, 将是集中供能系统的有益补充。 关键词:微网;监控系统;策略研究 引言 随着我国经济社会的不断发展,对于能源的需求也是越来越高,人们逐渐对环境的要求 也在不断变化,现代的一些清洁能源逐渐代替传统能源。在该大环境之下,微型电力系统逐 渐被大众所接受,它主要由微源、负荷和各个系统链接所构成,这样能够达到运行极为灵活 轻巧,并且可以独立并网地运行的微型电力系统。在我国逐渐提出了“互联网+”之后,新能源 微网代表了未来的发展趋势,能够推进新时代的节能减排和促进环保。 1微网具备的特点 第一是分布式能源的集成和运用,第二运行方式极为方便,第三电网可以自我调节,电 能的质量好,第四高可靠性,可以脱离大电网独立运行。根据上面的特点,我们不难看出在 微网的建设过程之中,是基于了电子技术的发展,静态开关和电能的质量控制。在运行的过 程中包括了微电网故障检测和保护技术、运行控制技术、通信技术和能量管理技术等。 2监控系统设计 监控系统是整个微网系统当中的核心部分,起着协调作用,有利于实现微网协调、稳定 控制、高效科学、能源最大化,是充分完备的设备。在微网运行过程当中,监控系统通过数 据的监测,事实掌握微网的运行现状,通过数据的分析,实现微网的控制目标和协调机制, 总的来说监控系统是微网运行不可缺少的一部分。 2.1监控系统的特点 不同于电站和水站,微网系统有着自身的特点和优势:第一,能够控制对象的分布位置,能源的负荷主要是以区域为单位,可以分布在各个区域;第二,运行模式多样化,它们的并 网运行模式根据不同的控制目标和主体有着不同的运行方式;第三,不同控制策略对系统响 应速度存在不一样的差异,比如电能质量调节、无缝对接等,都要求在发电时,必须使得监 控系统达到分钟级别或者小时级别。第四,个性化的设计需求是特别高的,要根据不同微网 的特点和分布的情况,来定制化设计系统,使得微网的运行方式更加的完备和可靠。 2.2监控系统功能架构 根据以往的微网的特点,在设计微网监控系统时,要采用模块化的设计方式,以此来适 用微网的各个功能系统。首先从纵向来看,系统功能主要分为了三个层面,主要有平台基础 功能、业务应用功能和综合功能体系。其中平台应用功能主要指的是为微网系统提供基础性 的服务支撑,主要包括了报表、数据、模型等方面的内容,业务应用主要涉及了微网内部的 各个元素的基本配置情况设置,有微网的综合监控、综合管理监控信息等。综合功能指的是 微网的效能分析、发电预测、负荷预测和协调控制。

分布式电源并网调度实施细则(讨论稿)

分布式电源并网调度实施细则 (讨论稿) 第一章总则 第一条为支持和适应分布式电源接入电网,规范分布式电源并网调度管理工作,确保电网安全、稳定、可靠运行,依据国家电网公司《关于做好分布式电源并网服务工作的意见》、《关于促进分布式电源并网管理工作的意见》、《分布式电源接入配电网相关技术规范》(国家电网办〔2013〕333号)等相关技术标准和规定,制定本细则。 第二条本细则所称分布式电源是指位于用户附近,所发电能就近利用,以10千伏及以下电压等级接入电网,且单个并网点总装机容量不超过6兆瓦的发电项目;包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电等类型。 对于以10千伏以上电压等级接入、或以10千伏电压等级接入但需升压送出的发电项目,执行公司常规电源相关规定。小水电项目按国家有关规定执行。 第三条本细则适用于公司经营区域内的所有分布式电源并网发电项目。 第二章一般原则 第四条在保障电网安全稳定运行的前提下,调控中心应根据所接入分布式电源的技术特性,及时制、修订相关规程规定。

第五条按照接入电网电压等级,调控中心对分布式电源项目进行并网调度管理。 1.第一类项目:220/380伏接入项目,按相应的电力用户并网管理要求处理。此类项目需定期向调控中心上传发电量信息。 2.第二类项目:10千伏接入项目,按相应的电力用户并网管理要求处理,纳入调度实时监视范围,必要时实施调度控制。此类项目应实时采集并网设备状态、并网点电压、电流、有功功率、无功功率、发电量和开关状态,分布式电源输出电压、电流、有功功率、无功功率、发电量和开关状态,并上传至调控中心。配置遥控装置的项目,应能接收、执行调度端远方解并列、启停机指令。 第六条分布式电源项目的继电保护和安全自动装置应符合相关继电保护技术规程、运行规程和反事故措施的规定,装置定值应与电网继电保护和安全自动装置配合整定。防止发生继电保护和安全自动装置误动、拒动,确保人身、电网和设备安全。 第七条分布式电源项目应具备防孤岛保护功能,能够监测孤岛情况发生并在发生后立即与公用电网断开电气联系。并网不上网的项目应装设防逆流保护装置。 第八条分布式电源项目并网运行信息采集及传输应满足《电力二次系统安全防护规定》等相关制度标准要求。 第三章并网调度管理 第九条调控中心应配合发展、营销部门审查项目10千伏、

微网控制策略研究综述

微网控制策略研究综述 江苏科技大学 李雅倩 【摘要】由于分布式电源各具特色,储能、负荷装置也不尽相同,为使分布式电源在并网以及脱离主网时实现无缝切换,通常需要采用不同的控制策略。本文主要阐述了国内外微网控制策略的研究现状,分析了各种微网控制方法的优点及局限性,探讨了微网控制的研究方向,给出了微网控制策略的一些建议。 【关键词】微网;分布式电源;控制 1.引言 传统的庞大电力系统在适应负荷变化的灵活性与供电安全性方面存在很多弊端,加之常规能源的逐渐衰竭以及环境污染的日益加重等因素使得全球的目光转向以新能源为主能源的分布式发电(Distributed Generation,简称DG)技术。 2.微网的概念 微网是指由多个分布式电源(Distributed Resource,简称DR)、储能系统、重要负荷和保护装置汇集而成的配电系统[1]。分布式电源包括光伏电池、风力发电机、燃料电池、燃气轮机、生物质能发电机等。储能系统分为机械储能、电磁储能和电化学储能。各种储能技术因不同的电能转换方式和存储形态,在储能容量、功率规模、功率和能量密度、循环寿命、单位容量和单位功率造价、响应时间以及综合效率等方面有着明显区别。 微网是一个能够实现自我控制、保护和管理的自治系统,既可以与大电网并网运行,也可以孤立运行。在联网模式下,负荷既可以从电网或微网获得或输送电能(根据接入电网的准则)。当电网的电能质量不满足用户要求或电网发生故障时,微网与主电网断开,运行于孤岛模式。在孤岛模式,微网必须满足自身供需能量平衡。微网技术克服了DR单独接入主网时对配电网造成的不利影响,其在可靠性、经济性和灵活性方面具有显著优势。 3.微网控制 3.1 单个分布式电源控制方法 常见的分布式电源接口逆变器控制方法分为恒功率(PQ)控制、下垂控制和恒压恒频(V/f)控制[14-16]。 (1)恒功率控制 如图1.1所示,分布式电源接口逆变器采用PQ控制,其控制目的是使分布式电源输出的有功和无功功率等于其参考功率。该控制方法需要系统中有维持电压和频率的分布式 图1.2?Droop控制的原理 (2)下垂控制 下垂控制原理如图1.2所示,它利用分布式电源输出有功功率和频率,无功功率和电压幅值均成线性关系而进行控制。对等控制 策略中的分布式电源接口逆变器的控制。 (3)恒压恒频控制 原理如图1.3所示,不管分布式电源输出 功率如何变化,其输出电压的幅值和频率一 直维持不变。此方法一般用在主从控制策略 3.2 多个分布式电源控制方法 (1)主从控制策略 主从控制模式是指在微网处于孤岛运行 模式时,其中一个DG或储能装置采取V/f控 制,用于向微网中的其它DG提供电压和频率 参考,而其它DG则可采用PQ控制。 当微网在联网模式运行时,电网可以稳 定系统的频率,微网不需要进行频率调节; 而孤岛模式运行时,主从控制系统中的主控 制单元需要维持系统的频率和电压。在联网 运行时微网中所有分布式电源采用PQ控制, 即微网不参与系统频率调节,只输出指定的 有功和无功功率;在孤岛运行时主单元采用 V/f控制维持系统的电压和频率恒定[13-14]。 常见的主控制单元选择包括下述几种: 1)储能装置作为主控制单元。这类典 型示范工程包括荷兰Continuon微网[3],希腊 NTUA微网[4]等。 2)分布式电源为主控制单元。这类典型 示范工程包括葡萄牙EDP微网[5]等。 3)分布式电源加储能装置为主控制单元。 这类典型示范工程包括德国MVV微网[6]等。 (2)对等控制模式 对等控制模式中的微网中所有的DG在控 制上都具有同等的地位,每个DG都根据接入 系统点电压和频率的就地信息进行控制。同 时这种控制方法能让微网具有“即插即用” 的功能。采用对等控制策略,要求分布式电 源采用本地变量进行控制,不同分布式电源 [7-9] 图1.5?P-f和Q-V下垂控制 两种基于下垂特性的典型控制方法在对 等控制策略的分布式电源控制中被广泛应 用[10-12]。采用Droop控制可以实现负载功率变 化在DG间的自动分配,但负载变化前后系统 的稳态电压和频率也会有所变化。一种是f-P 和V-Q下垂控制方法,它利用测量系统的频率 和分布式电源输出电压幅值产生有功和无功 功率。另一种方法是利用测量分布式电源输 出的有功和无功功率产生电压频率和幅值, 称作P-f和Q-V下垂控制法,如图1.4和1.5所 示。 TimGreen在他的微网控制系统中提出了 一种分布式电源接口逆变器的三环反馈控制 方法[17],内环控制器提高了电能质量、增 加滤波器谐振阻尼的同时限制故障电流。尤 其指出了采用滤波电感电流作为控制变量能 限制逆变器输出的最大电流,为保护逆变器 提供了依据。但是采用这种控制方法,分布 式电源接入主网时电流变化会影响其端口输 出电压的变化,因此电压受负荷扰动影响较 大。 (3)分层控制模式 文献[2]就提出配网调度中心、微网、 分布式电源三者的分层协调控制策略的基础 上,应用多代理理论,建立了一个由全系统 控制协调代理(CAG)、微网控制代理(MGAG)、 分布式电源代理(DRAG)以及母线代理(BAG) 组成的多代理系统,在保证配电网辐射状运 行、满足配电网电压与电流及馈线容量等约 束条件的情况下进行供电恢复。 3.3 其他控制方法 文献[18]用粒子群优化(PSO)方法解决继 电器协调的问题,制定一个混合整数非线性 规划(MINLP)方法。并提出了利用方向性过流 继电器保护分散型分布式电源组成的微网。 文献[19]提出了一种阻抗为电阻线的低 电压分布式电源控制策略。在电压骤降情况 下提出了逆变器接口的虚拟电感器输出控制 方法,以及当地负载效应功率控制算法。 文献[20]分析采用闭环控制的逆变器输 出阻抗受线路参数和控制器参数影响的基础 上,进行内环电压电流控制器的设计,电压 控制器采用PI控制器稳定负荷电压,采用比 例环节的电流控制器提高系统响应速度,并 且设计控制器参数使输出阻抗为感性阻抗。 在此基础上利用下垂特性设计外环功率控制 器,实现微网内多逆变单元间的无线通信控 制。 文献[21]分析了微网中:(1)可能发生的 开关事件;(2)导致分布式电源形成孤岛模式 的故障事件。DR包括一个传统的旋转同步机 和电力电子转换器接口。后者的单元接口转 换器配有独立有功和无功功率控制,以减少 孤岛瞬变,保持微网相角稳定和电压质量。 文献[22]提出了分布式电源的主动式孤 岛检测方法。该方法是基于横轴(d轴)或纵轴 (q轴)电压、电流转换器注入干扰信号然后进 行检索。 文献[23]提出了采用根轨迹和频域法分 析传统控制技术来设计控制器的方法。 4.微网控制策略的研究方向 微网技术作为电力系统的的前沿领域, 必将发挥其更大的作用。微网控制是其中最 关键的技术,它必将融合传统控制理论、智 能控制(包括模糊控制、神经网络、小波分 析、专家系统等)技术,建立微网系统最优控 制的模型。 微网系统具有单个DR的(下转第191页)

微网基本运行与控制策略

微网基本运行与控制策略 摘要为保证微电源与微网之间,以及微网与主电网之间功率传输的稳定、可控,需要多个微电源之间的协调控制,因此微网的整体运行控制策略至关重要。本文 系统地介绍了微网中常用的基本运行与控制策略特点,以便针对微网存在的不同 问题应用不同的控制策略。 关键词微网控制策略分层控制协调控制 0.引言 由于大多数分布式电源和储能装置输出电能的频率都不是工频,它们需要通 过电力电子装置接入微网[1]。因此逆变单元是微网中必不可少的环节,分布式电 源的逆变器控制是整个微网的底层控制。从微网运行的灵活性以及微网对传统电 网的影响方面出发,有专家提出了“即插即用”式控制方案[2],该方案的含义包括 微网对大电网的“即插即用”以及微网内多个分布式电源对微网的“即插即用”。基 于以上控制思想,微网整体控制策略可分为主从控制、对等控制以及分层控制[3],而针对微电源接口的控制方法,主要包括恒功率控制(PQ Control)、下垂控制(Droop Control)以及恒压恒频控制(V/f Control)[4]。 本文将介绍微网运行与控制存在的主要问题在此基础上阐述不同微电源的接 口控制方法,最后针对三种常用的微网控制策略以及每种策略中微电源不同的控 制方法,进行了综述和比较。 1.微网运行与控制的主要问题 典型微网是由一组放射型馈线组成,通过公共耦合点(Point of Common Coupling, PCC)与主电网相连。在PCC处设有一个主接口(Connection Interface, CI),通常由微网并网专用控制开关——固态断路器(Solid State Breaker, SSB)或背 靠背式的AC/DC/AC电力电子换流器构成。分布式电源、储能单元通过电力电子 接口(Power Electronics Interfaces,PEI)与交流母线相连,负荷主要包括阻抗性 负荷、电动机负荷及热负荷。 微网既可以通过配电网与大型电力网并联运行,形成一个大型电网与小型电 网的联合运行系统,也可以独立地运行在孤岛状态,为当地负荷提供电力需求。 联网运行时,PCC连接处应满足主电网的接口要求,微网在不参与主电网操作的 同时应减少当地电能短缺且不造成电能质量恶化。这时候,微网电压和频率由大 电网提供支撑。而在孤岛情况下,微网必须能自己维持电压和频率。在微网中, 大量电力电子装置的存在使得微网缺乏惯性,而诸如光伏发电、风力发电等可再 生能源发电系统存在输出功率的波动,这些都增加了微网频率与电压调节的难度。另一方面,在联网运行与孤岛模式相互切换的暂态,如何维持微网稳定也是值得 研究的问题。一般说来,当微网联网运行从主电网吸收功率或者为主电网提供功 率时,如果突然切换到孤岛状态,微网发出功率与负荷需求功率的不平衡将导致 微网的不稳定;而当微网从孤岛状态切换到联网模式时,与电网的同步是主要问题。为保证微电源与微网之间,以及微网与主电网之间功率传输的稳定、可控, 需要多个微电源之间的协调控制,微网的整体运行控制策略也至关重要。 2.微网的控制策略 微网的控制策略主要在于控制微电源输出功率,对电力电子接口控制主要指 对DC/AC逆变环节的控制。在通常情况下,逆变器接口的直接控制目标有两种:(1)控制输出电压幅值与频率;(2)在有电压支撑的情况下控制输出电流的幅 值与频率。着眼与不同的控制目标,微电源的逆变器接口常用的控制策略可以分

含多种分布式电源的微电网控制策略研究

含多种分布式电源的微电网控制策略研究 发表时间:2017-10-23T16:42:24.367Z 来源:《电力设备》2017年第17期作者:王海龙丁红文 [导读] 摘要:本文对于微电网的并网和孤岛运行还有其运行过程的切换,提供包含多种类型的分布式电源微电网控制方法。采用PSCAD/EMTDC软件对含多种分布式电源的微电网进行仿真分析。仿真结果表明,提出的控制策略能够维持微电网的稳定运行,并能实现微电网并网与孤岛运行方式的平稳过渡。 (国网新疆电力公司电力科学研究院客户服务中心) 摘要:本文对于微电网的并网和孤岛运行还有其运行过程的切换,提供包含多种类型的分布式电源微电网控制方法。采用PSCAD/EMTDC软件对含多种分布式电源的微电网进行仿真分析。仿真结果表明,提出的控制策略能够维持微电网的稳定运行,并能实现微电网并网与孤岛运行方式的平稳过渡。 关键词:分布式电源;微电网控制;策略研究 本文选择微型燃气轮机、燃料电池和光伏发电PV(PhotoVoltaic)作为微电网中的分布式电源,并根据分布式电源的发电特性分别选择了合适的电力电子接口设备,利用PSCAD/EMTDC软件搭建微电网仿真实验平台。在此基础上,对微电网并网及孤岛运行方式的转换进行深入的研究,提出了一种有效的微电网并网与孤岛运行控制策略。仿真实验结果表明:所选电力电子接口设备和采用的控制方法能够很好地配合微型燃气轮机、燃料电池和光伏电池的发电特性;提出的控制策略能够维持微电网的稳定运行,且能实现微电网运行方式的平稳过渡。 一、微电网的结构和组成 微电网的主要结构如下图所示: 在整体控制策略上,采用实验室微电网的分层控制结构。微电网中心控制器MGCC(MicroGridCentralController)和负荷控制器LC (LoadController)、微电源控制器MC(MicrosourceController)间需建立可靠的通信连接。MGCC安装在中压-低压变电站,用来对微电网进行统一的协调控制,并负责微电网与大电网之间的通信与协调;LC和MC从属于MGCC,分别对负荷和微电源进行控制。 二、微电网的综合控制策略 (一)微电网并网运行 当并网运行时,微电网内部的各个分布式电源只需控制功率输出以保证微电网内部的功率平衡,而电压和频率由大电网来支持和调节,此时的逆变器可以采用PQ控制方法,按照设定值提供固定的有功功率和无功功率。在整体控制策略上,微电网并网运行时,MGCC根据大电网的需要、本地负荷情况和分布式电源的发电能力来决定各分布式电源的PQ控制有功功率和无功功率运行点及各负荷的运行状态。然后MGCC将设定的运行点和负荷运行状态传递给相应的MC和LC,MC控制分布式电源逆变器按照设定值输出所需的有功功率和无功功率,LC按照要求调整负荷。 (二)微电网孤岛运行 当微电网孤岛运行时,与大电网的连接断开。此时,需由1个或几个分布式电源来维持微电网的电压和频率,这些分布式电源逆变器可以采用下垂控制方法,其余分布式电源逆变器仍然采用PQ控制方法。下垂控制方法就是使逆变器的输出模拟高压电力系统中同步发电机的频率和端电压与所输出的有功功率和无功功率之间的下垂特性。在低压配电系统中线路的电阻值大于电抗值,但可以通过整体设计使逆变器的输出阻抗呈感性,保证下垂特性成立。 下垂特性可以用式(1)(2)描述: 其中,ki是第i个分布式电源的有功功率下垂控制系数,Δfi和ΔPi分别是第i个分布式电源频率偏移和输出的有功功率偏移,Δf是微电网的频率偏移。

国网发布新版光伏电站并网流程细则

为了保证广大业主的光伏电站并网顺利,国网又出台了工作细则,确保了光伏电站并网时间和流程的顺畅!国网这么支持,想安装光伏电站的亲,还犹豫什么!抓紧时间办理起来! 原文如下: 总则 1、为深入贯彻落实公司“四个服务”要求,促进分布式电源加快发展,完善分布式电源并网管理,提高并网服务水平,制定本意见。 2、本意见在《国家电网公司关于做好分布式电源并网服务工作的意见》基础上,明确分布式电源并网全过程管理的职责分工、流程衔接和工作要求。 3、国家电网公司所属各相关单位应按照本意见开展相关工作。 适用范围 4、本意见所指分布式电源,是指在用户所在场地或附近建设安装、运行方式以用户侧自发自用为主、多余电量上网,且在配电网系统平衡调节为特征的发电设施或有电力输出的能量综合梯级利用多联供设施。包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电(含煤矿瓦斯发电)等。 5、本意见适用于以下两种类型分布式电源(不含小水电): 第一类:10千伏及以下电压等级接入,且单个并网点总装机容量不超过6兆瓦的分布式电源。 第二类:35千伏电压等级接入,年自发自用电量大于50%的分布式电源;或10千伏电压等级接入且单个并网点总装机容量超过6兆瓦,年自发自用电量大于50%的分布式电源。 6、接入点为公共连接点(附件1)、发电量全部上网的发电项目,小水电,除第一、二类以外的分布式电源项目,本着简便高效原则做好并网服务,执行公司常规电源相关管理规定。

接入申请受理 7、地市或县级公司营销部(客户服务中心)负责受理分布式电源(附件2)接入申请,协助项目业主填写接入申请表(附件3),接收相关支持性文件和资料。

分布式电源的配电网规划与优化运行

分布式电源的配电网规划与优化运行 分布式电源指的是,没有与集中的电力系统进行连接的低等级电源,这种电源在产生电力能源的过程中,主要利用风能和太阳能。在进行分布式电源使用的过程中,会对配电网的建设,产生一定的影响。因此相关的人员必须采用双层规划的方法,对含有分布式电源的配电网进行优化配置,才能保证配电网在运行过程中,更加的安全稳定。在进行电源使用的过程中,会受到环境因素的影响,因为这种电源的特性比较复杂。在进行电源和网架规划协调的过程中,可以提高電力系统的运行稳定性。本文就分布式电源的配电网规划与优化运行进行相关的分析和探讨。 标签:分布式电源;配电网规划;优化运行;分析探讨 在接入分布式电源之后,配电网的控制方式和结构,都会发生相应的变化。随着当前新能源的开发和利用,在进行分布式类型电源应用的过程中,建设的配电网规模变得越来越大。这种电源的应用,会对网络的运行,产生更大的影响。因此在进行电源使用的过程中,必须对电源的应用形式,进行准确的把握,才能对配电网进行优化配置,确保配电网的运行,更加的高效经济。电力企业在进行这种电源应用的过程中,也要采用综合管理方式,对电源的安装进行严格的控制,确保电源的安装,更加的科学合理[1]。 1分布式电源 分布式电源指功率为数千瓦到50MW小型模块式的独立电源,这些电源一般是电力部门、电力用户以及第三方,为了满足高峰期城市居民、商业区居民用电需求,在用户现场或者靠近用户现场安装比较小的发电机组,满足用户用电需求,同时支持现有配电网的运行要求。这种较小的发电机组有燃料电池、小型光伏发电、小型燃气轮机、燃气轮机和燃料电池混合装置。与传统的电源相比,分布式电源可以根据用户实际需求进行建设,降低电网建设的成本。分布式电源各个机组相互独立,可以根据电力用户的实际情况进行调节,一旦发生电力故障,只针对故障发电机组,不会影响到其他发电机组,因此电网运行安全性、可靠性高。其次,分布式电源可以弥补集中式发电的缺陷,为电力用户提供不间断供电。分布式电源的损耗比较低,它不需要建设配电站,避免配电网线路较长,增加线损率。 2分布式电源对配电网规划的影响 2.1配电网规划更加复杂 分布式电源对配电网规划的负荷预测、目标等方面造成一定的影响。对电力负荷预测负荷的影响:分布式电源可以满足部分偏远地区或者商业区用户需求,减少用户从配电网主网中的获电量,从而抵消电网负荷的增长。配电网的电力负荷预测是根据配电网的增长量,如果分布式电源抵消了配电网负荷的增长,

分布式电源并网服务指南

分布式电源并网服务指南 发布日期:2014-03-20 公司秉承“欢迎、支持、服务”的宗旨,向分布式电源业主提供高效、便捷的优质服务。公司受理的分布式电源是指在用户所在场地或附近建设安装,运行方式以用户侧自发自用为主、多余电量上网,且在配电网系统平衡调节为特征的发电设施或有电力输出的能量综合梯级利用多联供设施。包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电(含煤矿瓦斯发电)等。 公司受理的分布式电源分为两种类型:第一类,10千伏及以下电压等级接入,且单个并网点总装机容量不超过6兆瓦的分布式电源。第二类,35千伏电压等级接入,年自发自用电量大于50%的分布式电源;或10千伏电压等级接入且单个并网点总装机容量超过6兆瓦,年自发自用电量大于50%的分布式电源。 这里向您介绍分布式电源并网服务的基本流程。 基本流程为:准备分布式电源并网申请材料->提交分布式电源并网申请->现场勘查定方案->答复电网接入意见函(或确认单)->开展项目核准(或备案)和工程设计->提交接入系统工程设计资料->主体工程和接入系统工程施工->提交并网验收及并网调试申请->发用电合同及调度协议签订->并网验收、调试。 公司所有营业厅、供电所均可受理您提出的分布式电源并网申请,为您提供优质的并网服务。 《关于做好分布式电源并网服务工作的意见》内容 发布时间:2013-02-28 一、总则 1. 分布式电源对优化能源结构、推动节能减排、实现经济可持续发展具有重要意义。国家电网公司(以下简称公司)认真贯彻落实国家能源发展战略,积极支持分布式电源加快发展,依据《中华人民共和国电力法》、《中华人民共和国可再生能源法》等法律法规以及有关规程规定,按照优化并网流程、简化并网手续、提高服务效率原则,制订本意见。 二、适用范围 2. 本意见所称分布式电源,是指位于用户附近,所发电能就地利用,以10千伏及以下电压等级接入电网,且单个并网点总装机容量不超过6兆瓦的发电项目。包括太阳能、天然气、生物质能、风能、地热能、海洋能、资源综合利用发电等类型。 3. 以10千伏以上电压等级接入,或以10千伏电压等级接入但需升压送出的发电项目,执行国家电网公司常规电源相关管理规定。小水电项目按国家有关规定执行。 三、一般原则 4. 公司积极为分布式电源项目接入电网提供便利条件,为接入系统工程建设开辟绿色通道。接入公共电网的分布式电源项目,其接入系统工程(含通信专网)以及接入引起的公共电网改造部分由公司投资建设。接入用户侧的分布式电源项目,其接入系统工程由项目业主投资建设,接入引起的公共电网改造部分由公司投资建设(西部地区接入系统工程仍执行国家现行规定)。 5. 分布式电源项目工程设计和施工建设应符合国家相关规定,并网点的电能质量应满足国家和行业相关标准。 6. 建于用户内部场所的分布式电源项目,发电量可以全部上网、全部自用或自发自用余电上网,由用户自行选择,用户不足电量由电网提供。上、下网电量分开结算,电价执行国家相关政策。公司免费提供关口计量装置和发电量计量用电能表。

相关文档