文档库 最新最全的文档下载
当前位置:文档库 › 采暖通风设计规范

采暖通风设计规范

采暖通风设计规范
采暖通风设计规范

通风与空调节能工程验收规范(参考Word)

通风与空调节能工程验收规范 1 一般规定 1.1本章适用于通风与空调系统节能工程的施工与验收。 1.2通风与空调系统节能工程的施工与验收,除应执行本规范的规定外,尚应符合被批准的设计图纸和《通风与空调工程施工质量验收规范》GB 50243等国家现行相关技术标准的要求和规定。 1.3通风与空调系统节能工程所使用的设备、管道、阀门、仪表、绝热材料等产品的规格、型号及技术参数必须符合施工图设计要求,产品质量及性能检测报告应符合国家相关的标准。 1.4 通风与空调系统节能工程的绝热材料和设备进场时,应按下列要求进行核查或复验: 1对风机盘管机组、组合式空调机组、柜式空调机组、新风机组、单元式空调机组、热回收装置等设备的风量、风压及热工技术性能进行核查; 2 对风机的风量、风压、效率等技术性能进行核查; 3 对绝热材料的导热系数、材料密度、吸水率进行复验; 4 对合同中约定的复验项目进行复验。 1.5通风与空调系统,应随施工进度对与节能有关的隐蔽部位或内容进行验收,并应有详细的文字和图片资料。 1.6通风与空调系统节能工程验收的检验批划分应按本规范3.3.4条的规定执行。当需要重新划分检验批时,可按照系统、楼层、建筑分区划分为若干个检验批。 2主控项目 2.1通风与空调节能工程中的送、排风系统、空调风系统、空调水系统的安装应符合下列规定: 1 各系统的制式及其安装,应符合施工图设计要求; 2 各种设备、自控阀门与仪表应安装齐全,不得随意增加、减少和更换; 3 水系统各分支管路水力平衡装置的安装位置、方向应正确,并便于调试操作; 4 空调系统安装完毕后应能进行分室(区)温度调控。对有分栋、分户、分室(区)冷、热计量要求的建筑物,空调系统安装完毕后应能实现相应的计量要求。 检验方法:按设计施工图进行核对。 检验数量:全数检查。 2.2风管的制作与安装应符合下列规定: 1 风管材料的品种、规格、厚度与性能等,应符合施工图设计和现行国家产 品标准的要求; 2 风管的严密性及风管系统的严密性检验和漏风量,应符合设计要求和现行 国家标准《通风与空调工程施工质量验收规范》GB50243的有关规定; 3 风管与部件、风管与土建风道及风管间的连接应严密、牢固; 4 需要绝热的风管与金属支架的接触处、复合风管及需要绝热的非金属风管 的连接和加固等处,应有防冷桥的措施。 检验方法:按设计施工图核对、尺量、观察检查,查阅产品进场验收记录、检查风管及风管系统严密性检验记录。

人防通风施工组织设计方案

人防通风系统安装施工方案 一、工程概况 本人防工程为六级人民防空地下室,设于地下二层,平时为车库,战时为二等人员掩蔽所,人防建筑面积1211.2 m2,人防掩蔽人数1050人,洁净通风量5250mE/h,滤毒通风量2100 MJh。 人防通风风管除电动脚踏两用风机后防火阀前一段巨型风管采用 1.2mm厚镀锌钢板制作外,其它均采用3mm厚钢板圆形风管。在人防范围内的车库排风系统为无机不燃玻璃钢风管,这里不做说明。 二、编制依据 《人民防空工程施工及验收规范》GB 50134-2004 《压缩机、风机、泵安装工程施工验收规范》GB 50275-98 《防空地下室通风设备安装》07FK02 三、施工工艺: 穿墙风管预埋-系统风管现场测绘f支架制安-风管预 制-风管安装-附件安装-系统试验 1.穿墙风管等预埋: 1.1绘制预埋件位置图: 根据设计图纸预先绘制穿墙风管预埋图,标明每处穿墙风管的 标高、坐标位置及风管的规格和类型及管道支架预埋板的位置。 1.2穿墙风管制作: 根据已绘制的风管预埋图,统计各种规格和类型的套管加工数量。 预埋风管的加工制作应根据设计选定的穿墙风管类型,按标准图集规定进

行制作;预埋管钢板厚度3 =3mm,直径与相连接的风管直径相同,预埋管的长度,若单面接风管L=墙厚+100mm;两面都接风管L=墙厚+200mm,预埋管的密闭肋(即翼环)外径为风管直径+100mm; 钢板厚度3=5mm。密闭肋应位于墙体中心。 穿墙风管的焊接,均采用双面满焊,焊缝饱满无夹渣、气孔等缺陷。 1.3穿墙风管预埋: 穿墙风管预埋应在土建钢筋模板施工作业时配合土建做好预埋管的定位,当风管直径较大影响土建配筋,应事先与土建及有关部门协商好土建钢筋加密措施,并积极配合土建做好加密钢筋的焊接工作。 穿墙风管的定位必须准确,固定牢固,且应保证埋管的水平度和与墙面的垂直度。密闭翼环应与结构钢筋焊牢,土建在浇砼时应有人监护,防止埋件走动。 1.4风管支架的固定采用预钢板与支架焊接固定形式,因此,应按照预埋件位置图,在土建钢筋、模板施工作业时及时配合土建做好预埋件的定位,在土建浇砼时应有人监护以防预埋件移位。 1.5测压管预埋: 测压管埋设在滤毒室屋顶砼内的镀锌钢管,应根据设计图纸进出口位置,进行整体预制,预埋定位时进出口弯管朝下,浇捣砼时应有人监护,以免移位。 2.系统风管现场测绘: 人防工程通风系统施工,应按设计图纸结合现场预埋管口位置,绘制风管系统单线图,以确定风管预制的尺寸。 3.风管支架制作安装: 风管支架的制作应根据设计选定的标准图,结合现场测绘的支架预埋板位

风口设计规范

风口设计规范 1 主题内容和适用范围 本标准规定了通风空调风口(简称风口)的分类、基本规格、技术要求、试验方法、检验规则和标志、包装、运输、贮存等。 本标准适用于通风空调系统中的各类出风口和进风口。其它类似用途的产品也可参照本标准。 2 引用标准 GB 8070空气分布器性能试验方法 GB 321 优先数和优先数系列 GB 5237铝合金建筑型材 GB 11257碳素结构钢和低合金结构钢冷轧落薄钢板及钢带 GB 8170 数值修约规则 3 分类与基本规格 分类 按用途分类: A.出风口 B.进风口 按型式分类: A.百叶风口:外形有方形、矩形、圆形;叶片有单层、双层等。 B.散流器:有圆形、方形、矩形、圆盘形等。 C.喷口:有圆形、矩形、球形等。 D.条缝型风口:有单条缝和多条缝等。 E.旋流风口。 F.孔板风口(包括网板风口)。 G.专用风口:如椅子风口、灯具风口、孔风口、格栅风口等。 基本规格

风口基本规格用颈部尺寸(指与风管的接口尺寸)表示,按GB 321的要求排列,详见表1和表2。 圆形风口基本规格(MM)表1 方、矩形风口基本规格(mm)表2 散流器基本规格可按相等间距数50mm、60mm、70mm排列。 型号表示法 型号表示法 分类代号表表3

规格代号用风口基本规格数值的1/10表示。 型号示例: FJS-3225--表示矩形散流器,规格为320*250(mm) FQP-16--表示球形喷口,规格为160(mm) FYS-25--表示圆形散流器,规格为250(mm) 第二节技术要求 基本要求 风口产品应符合本标准的要求,并按规定程序批准的图样和技术文件制造。 尺寸偏差的允许值如下: a:矩形(包括方形)风口的尺寸允差风表4。 尺寸允差(mm)表4 b:矩形(包括方形)风口两条对角线之间的允差风表5 c:圆形风口的尺寸允差见表6 尺寸允差(mm)表6 风口装饰平面应平整光滑,其平面度应符合表7的规定值。 平面度表7

隧道施工通风设计精编

隧道施工通风设计精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

课程名称:隧道工程 设计题目:隧道施工通风设计院系: 专业: 年级: 姓名: 指导教师:

课程设计任务书 专业姓名学号开题日期:年月日完成日期:年月日 题目隧道施工通风设计 一、设计的目的 掌握隧道通风设计过程。 二、设计的内容及要求 根据提供的隧道工程,确定需风量;确定风压;选择风机;进行风机及风管布置。 三、指导教师评语 四、成绩

指导教师 (签章) 年月日 一.设计资料

二.设计要求 针对以上工程,进行2#隧道进口不同长度施工通风设计,要求采用风道压入式通风方式,进行风量计算、风压计算,以此为依据,进行风机选择(根据网上调研等方式)以及风机及风管的布置(风管可自选,不一定按所给资料)。隧道深度:2260m 三.设计内容 1.风量计算 隧道施工通风计算按照下列几个方面计算取其中最大值,在考虑漏风因素进行调整,并加备用系数后,作为选择风机的依据。 (1)按洞内同时工作的最多人数计算: Q kmq 式中:Q:所需风量3 m (/min)

k :风量备用系数,常取 m :洞内同时工作的最多人数,本设计为30人。 q :洞内每人每分钟需要新鲜空气量,取33/min m 人 计算得:31.130399/min Q kmq m ==??= (2)按同时爆破的最多炸药量计算: 本设计选用压入式通风,则计算公式为: Q =式中:S :坑道断面面积(2m ),90。 A :同时爆破的炸药量,。 t :爆破后的通风时间30min 。 L :爆破后的炮烟扩散长度,100米。 计算得:37.8880.8(/min)30Q m == (4)按洞内允许最下风速计算: 60Q v s =?? 式中:v :洞内允许最小风速,/m s 。 S :坑道断面面积,902m 。

人防通风施工方案

桥苑艺舍工程 人防通风装施工方案 编制: 审核: 批准: 河北省邯郸市鹏泰安装有限公司机电项目部 2014 年6 月23 日 目录 一、编制依据 1、编制依据 二、人防概况 1、人防概况 2、人防设备 三、施工部署 1、现场人员 2、劳动力计划 3、主要机具 4、仪器表 5、施工进度保证措施 6、技术及工艺保障 四、施工准备 五、施工方法 1、风管制作 2、通风风管安装 3、质量标准与验收 4、阀部件安装 5、设备安装 6、系统调试 7、质量控制与保证的具体措施 六、安全生产、文明施工 1、安全与消防、保卫管理

2、临时用电管理 3、施工机械管理 4、安全防护管理 5、预防与应急措施 6 文明施工管理 7、管理目标 8、管理措施 七、成品保护及雨季施工措施 1、成品保护管理 2、成品保护工作的主要内容 3、成品保护的主要措施 4、雨季施工措施 一、编制依据 1、编制依据: 本施工方案系依据由圣帝国际建筑设计有限公司设计的暖通及人防施工图、已签发的图纸会审记录及签订的工程承包合同编制而成。采用的施工及验收标准、规范。 本专业施工及验收主要遵循如下规范及方案: 序号标准、规范、方案编号 1.《人民防空地下室设计规范》GB50038-2005 2.《人民防空地下室设计规范》图示07SFK10通风专业 3.《防空地下室通风设计》2007合订本FK01、02 4.《人民防空工程设计防火规范》GB50098-2009 5.《汽车库、修车库、停车场设计防火规范》GB50067-97 6.《建筑工程施工质量验收统一标准》GB50300-2001 7.《通风与空调工程施工质量验收规范》GB50243-2002 8.《压缩机、风机、泵安装工程施工及验收规范》GB50275-2010 9.《通风与空调工程施工规范》GB50738-2011 10.《通风管道技术规程》JGJ141-2004 11.《风机安装》05K102 12.《桥苑艺舍工程人防设计》 二、人防概况: 1、本施工方案就是为桥苑艺舍工程人防通风工程施工需要编制的。地下四层为人防区域建筑面积共5490平方米,人防外出入口及通道面积(B4-1层)共350平方米。人防区域分为两

采暖通风与空调设计规范汇总

说明:本目录收集载有暖通空调制冷专业内容(章、节)和相关内容的国家标准GB、国家标准建筑系列GB50×××、GBJ、建设部标准CJJ、CJ、JJ、ZBP、ZBJ等的目录,有些标准规范虽用于公共建筑和专门工程建筑,但并无暖通空调内容章节故不收录。 一、基础类 1.1GB3100-93国际单位制及应用 1.2GB3101-93有关量、单位和符号的一般原则 1.3GBJ1-86房屋建筑制图统一标准 1.4GBJ144-88采暖通风与空气调节制图标准 1.5GBJ155-92采暖通风与空气调节术语标准 1.6CJJ55-93供热术语标准 1.7CJJ65-95环境卫生术语标准 1.8GB140-59输送液体与气体管道的规定代号 1.9GB4270-84热工图形符号与文字说明 1.10GB4457-84至GB4640-84机械制图 1.11GB11943-89锅炉制图 1.12GB50178-93建筑气候区划标准 1.13JGJ35-87建筑气象参数标准 1.14JGJ37-87民用建筑设计通则 1.15GBJ300-88建筑安装工程质量检验评定统一标准 1.16GB/T16732-97建筑采暖通风、空调、净化设备计量单位及符号 1.17GB/T16803-97采暖、通风、空调、净化术语 二、暖通空调一般设计规范 2.1GBJ19-87采暖通风与空气调节设计规范 2.2GB50028-93城镇燃气设计规范 2.3GB50176-93民用建筑热共设计规范 2.4GB50189-93旅游宾馆建筑热工与空气调节节能设计标准 2.5GB50264-97设备及管道绝热工程设计规范 2.6JGJ26-95民用建筑节能设计标准(采暖居住建筑部分) 2.7CJJ34-90城市热力网设计规范 2.8GB4272-92设备及管道保温技术通则 2.9GB8175-87设备及管道保温设计导则 2.10GB11790-89设备及管道保冷技术通则 三、住宅及公共建筑类 3.1GB50038-94人民防空地下室设计规范 3.2GBJ96-86住宅建筑设计规范

通风空调风口设计规范

通风空调风口设计规范 第一节一般说明 1 主题内容和适用范围 本标准规定了通风空调风口(简称风口)的分类、基本规格、技术要求、试验方法、检验规则和标志、包装、运输、贮存等。 本标准适用于通风空调系统中的各类出风口和进风口。其它类似用途的产品也可参照本标准。 2 引用标准 GB 8070空气分布器性能试验方法 GB 321 优先数和优先数系列 GB 5237铝合金建筑型材 GB 11257碳素结构钢和低合金结构钢冷轧落薄钢板及钢带 GB 8170 数值修约规则 3 分类与基本规格 3.1 分类 3.1.1 按用途分类: A.出风口 B.进风口 3.1.2 按型式分类: A.百叶风口:外形有方形、矩形、圆形;叶片有单层、双层等。 B.散流器:有圆形、方形、矩形、圆盘形等。 C.喷口:有圆形、矩形、球形等。 D.条缝型风口:有单条缝和多条缝等。 E.旋流风口。 F.孔板风口(包括网板风口)。 G.专用风口:如椅子风口、灯具风口、孔风口、格栅风口等。 3.2 基本规格 3.2.1 风口基本规格用颈部尺寸(指与风管的接口尺寸)表示,按GB 321的要求排列,详见表1和表2。 圆形风口基本规格(MM)表1

方、矩形风口基本规格(mm)表2 3.2.2散流器基本规格可按相等间距数50mm、60mm、70mm排列。 3.3型号表示法 3.3.1型号表示法 分类代号表表3 规格代号用风口基本规格数值的1/10表示。 3.3.2型号示例: FJS-3225--表示矩形散流器,规格为320*250(mm) FQP-16--表示球形喷口,规格为160(mm)

FYS-25--表示圆形散流器,规格为250(mm) 第二节技术要求 4.1基本要求 4.1.1风口产品应符合本标准的要求,并按规定程序批准的图样和技术文件制造。 4.1.2尺寸偏差的允许值如下: a:矩形(包括方形)风口的尺寸允差风表4。 尺寸允差(mm)表4 b:矩形(包括方形)风口两条对角线之间的允差风表5 c:圆形风口的尺寸允差见表6 尺寸允差(mm)表6 4.1.3风口装饰平面应平整光滑,其平面度应符合表7的规定值。 平面度表7 4.1.4风口装饰面上接口拼缝的缝隙,铝型材应不超过0.15mm,其它材料应不超过0.2mm。 4.1.5 风口的叶片应符合下列要求: a:叶片间距的尺寸偏差不大于±1mm; b:叶片弯曲度3/1000mm; c:叶片平行度4/1000mm;

隧道通风课程设计

通风计算 1基本资料 1.公路等级:一级公路 2.车道数、交通条件:2车道、单向 =80km/h 3.设计行车速度:u r 4.隧道长度:1340m;隧道纵坡:1.5% 5.平均海拔高度:1240m;隧道气压:101.325-10×1.24=88.925 6.通风断面面积:62.982 m,周长为30.9m 7.洞内平均温度:12℃,285K 2通风方式 根据设计任务书中的交通量预测,近期(2013 年)年平均日交通量为7465辆/每日,远期(2030年)10963辆/每日,隧道为单洞单向交通,设计小时交通量按年平均日交通量的10%计算,故近期设计高峰小时交通量为747辆/h,远期为1096辆/h。 根据设计任务书所给的车辆组成和汽柴比,将其换算成实际交通量,小客车:20%,大客车:27.2%,小货车:7.8%,中货车:20.6%,大货车:20.1%,拖挂车:4.3%,汽柴比:小客车、小货车全为汽油车;中货 0.39:0.61;大客 0.37:0.63;大货、拖挂全为柴油车,结果如表6.1所示 表6.1车辆组成及汽柴比 可按下列方法初步判定是否设置机械通风。 由于本隧道为单向交通隧道,则可用公式(6.1) L*N≤2×105式(1) 式中:L——隧道长度(m);

N ——设计交通量(辆/h )。 其中L 、N 为设计资料给定,取值远期为N=1096辆/h ,L=1340m 由上式,得 1340×1096=1.46×106 >2×105 以上只是隧道是否需要机械通风的经验公式,只能作为初步判定,是否设置风机还应考虑公路等级、隧道断面、长度、纵坡、交通条件及自然条件进行综合分析,由初步设计可知知本设计需要机械通风。 3 需风量计算 CO 设计浓度可按《公路隧道通风照明设计规范》查表按中插值法的再加上50ppm 。设计隧道长度为1340m ,查表知ppm =ppm δ()292。交通阻滞时取 =300ppm δ。烟雾设计应按规范查表,设计车速为80km/h ,k (m 2)=0.0070m -1 。同时,根据规范规定,在确定需风量时,应对计算行车速度以下各工况车速按20km/h 为一档分别进行计算,并考虑交通阻滞时的状态(平均车速为10 km/h ),鹊起较大者为设计需风量。 CO : n m m m-1f =?∑ (N )219×1.0+110×7+85×2.5+88×5+188+138+220+48=2235.5 烟雾:n m m m-1 f =?∑ (N )188×1.5+138×1.0+220×1.5+48×1.5=822 3.1 CO 排放量计算 CO 排放量应按式(6.2)计算 61 1()3.610n CO co a d h iv m m m Q q f f f f L N f ==????????∑ 式(2) 式中:CO Q ——隧道全长CO 排放量(m 3/s ); co q ——CO 基准排放量(m 3/辆·km ),可取为0.01 m 3/辆·km ; a f ——考虑CO 车况系数查表取1.0; d f ——车密度系数,查表取0.75; h f ——考虑CO 的海拔高度系数,海拔高度取1240m 查表取1.52; m f ——考虑CO 的车型系数,查表; iv f ——考虑CO 的纵坡—车速系数,查表取1.0; n ——车型类别数; m N ——相应车型的设计交通量(辆/h )查表。 稀释CO 的需风量应按式(6.3)计算

浅析人防工程通风设计

浅析人防工程通风设计 发表时间:2018-02-08T14:56:27.773Z 来源:《防护工程》2017年第29期作者:李锦中 [导读] 人防工程通风设计与普通民用建筑的暖通设计有很多不同,要对人防工程通风有所了解,本文对人防工程通风设计进行研究。75714部队湖南衡阳 421900 摘要:人防工程通风设计与普通民用建筑的暖通设计有很多不同,要对人防工程通风有所了解,本文对人防工程通风设计进行研究。 关键词:人防工程;通风;设计 前言:人防工程首先是战时确保人身安全,充分体现它的战备效益,其次是平时要用于商业、娱乐、旅馆、仓储、停车等公益事业,最大限度地发挥它的社会效益。也就是说人防工程在设置完善的战时通风系统的同时,还必须设置适应平时使用功能的通风系统。 一、理解人防工程通风的原理 人防工程本身的特点,决定了人防工程内部空气环境与地面工程相比具有热稳定性、封闭性、潮湿等特点。人防工程通风是保障人防工程内部达到要求的空气环境、保证工程内掩蔽人员生存和工作的热湿环境和空气品质、保障工程内设备正常运行的热湿环境的重要手段。人防工程通风,根据通风时机,分为平时通风和战时防护通风。平时通风是工程在和平时期使用和维护管理时的通风,防护通风是人防工程在战争时期使用时的通风。人防工程防护通风有三种通风方式,即清洁式通风、滤毒式通风和隔绝式通风。清洁式通风是指在战争期间,当人防工程所在地未受到核生化武器袭击时所采用的通风方式。滤毒式通风是指当人防工程外的空气遭受敌人核、化学或生物武器袭击而被沾染时,进入工程内部的空气经过除尘滤毒处理。并将用过的废气靠超压排风系统排出工程的通风方式,包括进风系统和超压排风系统。隔绝式通风是指在人防工程隔绝防护的前提下实现的内循环通风方式。滤毒式通风是人防工程防护通风的核心,也是进行防护通风设计的重点。 二、人防工程通风设计 1、油网过滤器的选择 油网过滤器一般安装在清洁式通风与滤毒通风合用的管路上,作为预滤除尘器。选用时,应根据工程的最大风量选择多块滤尘器组合使用,每块滤尘器的平均风量不应超过1600m3/h。LWP型油网过滤器有两种安装方式:管式安装(也称匣式安装)和墙式加固安装。管式安装目前有1个、2个和4个组装方式,但这种安装方式不便于清洗和浸油。墙式加固安装适用于各种风量过滤器安装,当LWP型油网过滤器个数超过4个时,必须采用墙式安装。在设计时应注意,在除尘器前后设有测压管并连接在微压计上,当阻力达到终阻力时,应取下滤尘器进行清洗,然后浸油再用。立式安装油网除尘器时,应注意以下问题:1)立式安装油网除尘器,专用小室必须用钢筋混凝土构筑,不能用砖墙临战时构筑。2)油网滤尘器必须迎着冲击波作用方向设置,在每个框格的底部用10m×3m的扁钢焊成九宫格状,网片才能承受0.05MPa的冲击波余压作用,若背向冲击波作用方向安装,加强措施不起作用,其防护能力则失去了。3)检查密阀门应设置在油网除尘器前方。4)油网除尘器不宜直接安装在悬板活门扩散室的墙壁上,正确做法是,扩散室应满足最小尺寸要求,然后再设置油网除尘器,特别是抗力高、风量大的工程。5)油网除尘器安装前应将滤网翻转,使粗网迎风,细网背风。 2、通风密闭阀门 密闭阀门是防护通风系统保证通风管道密闭和转换通风方式不可缺少的控制设备。根据阀门的驱动形式,可分为手动密闭阀门和手、电动两用阀门。根据阀门的结构,可分为杠杆式和双连杆式,一般工程中多采用杠杆式密闭阀门,设计安装时应注意以下几点:1)阀门可水平或垂直安装,应保证操作维修更换的方便,可采用支架或吊架形式安装。2)安装时,应保证阀门受压方向的箭头与所受冲击波方向一致。3)阀门不允许做调节风量使用。4)预埋管件直径应与所连接的管道、密闭阀门的管内径一致。5)选用时采用假定流速法(风速宜取6m/s~8m/s)计算阀门的内径。6)要注意的是,所有与外界相通的进、排风管道上设置密闭阀门不应少于两道。 3、增压管的设置问题 增压管接自进风机出口段,接至清洁式进风管两密闭阀门之前的管道上,需采用DN25的镀锌钢管。增压管的一端接在送风机出口风管上,因一般风管材料为镀锌薄钢板,管壁较薄,镀锌钢管与其连接需用螺母垫片等锁紧,才能保证接口处严密不漏风;另一端直接焊接在3mm厚的清洁进风钢板风管上,同时在此增压管便于操作位置上设一个球阀,此阀要有一定的气密性,在清洁通风时关闭,在滤毒通风时打开。增压管接在风机出口送风管上的目的是要将一部分正压空气引入清洁进风管段中,起到增压的作用,如果接口位置不当,不但引不出正压空气,反而在接口处形成负压,起泄压抽气作用,这必将造成严重的漏毒。 4、人防预留孔洞的问题由于人防工程有较高的防护要求,通常不允许事后再凿洞、不允许有遗漏的孔洞,因此通风专业设计时应有专门的预留孔洞图,应注意留洞位置与大小的抗力验算,临空墙的留洞尤其重要,不能降低人防的防护能力。由于在主体结构施工时,很多施工单位安装人员没有到位,而土建施工人员只看土建专业图纸,会造成遗漏孔洞。在人防项目设计中,通风专业应将预留孔洞图提给土建专业,土建专业应有所有专业的预留孔洞图,才会避免出现遗漏孔洞的问题。 5、风机合用问题 人防设施在通风上不同于普通建筑,分为了三种方式,清洁式、滤毒式以及隔绝式。而人防通风的进风系统又能够分成两种,一种是虑毒式以及清洁式共用一个通风机通风的系统;另一种则是分别在两种形式的通风口设置通风机的系统;这两种形式都能够在设计中予以实现,但实际中需要根据具体的应用分析。若是在初期设计中没有做人防设计考虑时,由于进风机房空间有限,无法设置两台风机则考虑使用共用风机系统,若是空间允许,则一般使用两台风机系统。对二等人员掩蔽所进行分析,在战时滤毒式通风的人员风量标准是2到3(M3/P?H)而清洁式通风的人员风量标准则是5到7(M3/P?H)。因此若是进风系统选择合用风机则应当将风量设定为清洁式通风风量。由于战时阶段滤毒通风的系统风量过大,因此在设置过滤器时应当尽量偏大用以满足滤毒要求,配合过大的滤毒风量。若防护单元面积接近最大值,即接近800平米时,必须增加过滤器数量,用以满足过滤要求,这一点必须予以重视。6、防护通风设计要同步完成通风的临战转换设计人防工程建设应与城市建设相结合,与经济建设协调发展,遵循平战结合的方针。这要求人防工程除了要满足战时使用功能,同时还应满足平时使用功能。为了满足平时使用功能,规范允许人防工程平时可预留一定的临战转换量。战时通过可靠的临战加固、封堵等

(完整版)采暖通风与空气调节设计规范

采暖通风与空气调节设计规范 ◆标准号:GB 50019-2003 ◆发布日期:2003 年 ◆实施日期:2004 年4 月1 日 ◆发布单位:建设部 ◆出版单位:中国计划出版社 第二章室内外计算参数 第一节室内空气计算参数 第 2.1.1 条设计集中采暖时,冬季室内计算温度,应根据建筑物的作途,按下列规定采用: 一、民用建筑的主要房间,宜采用16 -20 ℃; 二、生产厂房的工作地点: 轻作业不应低于15 ℃;中作业不应低于12 ℃;重作业不应低于10 ℃。 注:( 1 )作业各类的划分,应按国家现行的《工业企业设计卫生标准》执行。 ( 2 )当每名工人占用较大面积(50 -100m2 )时,轻工业可低至10 ℃;中作业可低至7 ℃,重作业可低至 5 ℃。 三、辅助建筑及辅助用室,不应低于下列数值: 浴室25 ℃;更衣室23 ℃;托儿所、幼儿园、医务室20 ℃;办公用室16 -18 ℃;食堂14 ℃;盥洗室、厕所12 ℃。 注:当工艺或使用条件有特殊要求时,各类建筑物的室内温度,可参照有关专业标准、规范的规定执行。 第 2.1.2 条设置集中采暖的建筑物,冬季室内生活地带或作业地带地平均风速,应符合下列规定: 一、民用建筑及工业企业辅助建筑物,不宜大于0.3m /s ; 二、生产厂房的工作地点,当室内散热量小于23W/m3[20kcal/ (m3 · h )] 时,不宜大于0.3m /s ;当室内散热量天于或等于23W/m3 时,不宜大于0.5m /s 。

注:设置空气调节的条件,应符合本规范第 5.1.1 条的规定。 第 2.1.4 条当工艺无特殊要求时,生产厂房夏季工作地点的温度,应根据夏季通风室外计算温度及其与工作地点温度的允许温差,按[表 2.1.4 ]确定。 夏季工作地点(℃)[表 2.1.4 ] 注:如受条件限制,在采取通风降温措施后仍不能达到本表要求时,允许温差可加大 1 -2 ℃。 第 2.1.5 条设置局部送风的生产厂房,其室内工作地点的允许风速,应按本规范第 4.3.5 条至第 4.3.7 条的有关规定执行。 第 2.1.6 条夏季空气调节室内计算参数,应符合下列规定: 一、舒适性空气调节室内计算参数: 温度应采用24 -28 ℃;相对湿度应采用40%-65% ;风速不应大于0.3m /s 。 二、工艺性空气调节室内温度基数及其允许波动范围,应根据工艺需要并考虑必要的卫生条件确定;工作区的风速,宜采用0.2 -0.5m /s, 当室内温度高于30 ℃时,可大于0.5m /s 。 注:设置空气调节的条件,应符合本规范第 5.1.1 条的规定。 第二节室外空气计算参数 第 2.2.1 条采暖室外计算温度,应采历年平均不保证 5 天的日平均温度。 注:本条及本节其他文中所谓“不保证”。系针对室外空气温度状况而言,“历年平均不保证”,系针对累年不保证总天数或小时数的历年平均值而言。 第 2.2.2 条冬季通风室外计算温度,应采用累年最冷月平均温度。 第 2.2.3 条夏季通风室外计算温度,应采用历年最热月14 时的月平均温度的平均值。 第 2.2.4 条夏季通风室外计算相对湿度,应采用历年最热月14 时的月平均相对湿度的平均值。 第 2.2.5 条冬季空气调节室外计算温度,应采用历年平均不保证 1 天的日平均温度。

人防地下室战时通风设计及其注意事项

人防地下室战时通风设计及其注意事项 发表时间:2019-05-09T14:33:35.143Z 来源:《防护工程》2019年第2期作者:高爽 [导读] 防空地下室设计必须贯彻“长期准备、重点建设、平战结合”的方针。 中国有色金属工业西安勘察设计研究院有限公司陕西省西安市 710054 摘要:人民防空工程也叫人防工事,是指为保障战时人员与物资掩蔽、人民防空指挥、医疗救护而单独修建的地下防护建筑,以及结合地面建筑修建的战时可用于防空的地下室。防空地下室设计必须贯彻“长期准备、重点建设、平战结合”的方针。 关键词:人防地下室;战时通风;进风系统;排风系统 1、人防工程通风设计的基本思路 1.1 战时通风系统 战时通风系统包括清洁通风、滤毒通风、隔绝通风三种通风方式:①清洁通风②滤毒通风③隔绝通风。在敌人实施核、生、化武器袭击时,清洁通风应立即转入滤毒通风,如果人防工事外空气污染浓度过高或过滤吸收器对毒剂失效时,应进行隔绝通风。 1.2 战时新风量 防空地下室战时新风量的确定,应按清洁式通风和滤毒式通风分别计算新风量,风量符合《人民防空地下室设计规范》表5.2.2的规定。 1.3 防空地下室的进风系统 根据不同的通风方式应由消波装置、密闭阀门、过滤吸收器、通风机等防护通风设备组成。以清洁通风和滤毒通风合用进风机为例,设计时应注意:①清洁通风管路上,必须设置增压管,严防滤毒通风时出现透毒现象。②所选用的进风机性能,必须同时满足清洁通风量和风压、滤毒通风量和风压的需要。③战时三种防护通风方式应能通过阀门进行转换。④经消波装置后的冲击波余压不大于0.03MPa。⑥选用过滤吸收器时,必须使通过该器材的滤毒通风量不大于该器材的额定风量,以确保滤毒通风时不出现透毒现象。 1.4 防空地下室的排风系统 根据不同的通风方式应由消波装置、密闭阀门、自动排气阀门或防爆超压自动排气活门等防护通风设备组成。战时滤毒式通风超压排气系统设计应注意的几个问题:①自动排气活门选择应能满足最小防毒通道换气次数要求,《人防规》5.2.6条规定:“战时主要出入口最小防毒通道换气次数二级人员掩蔽部应保证每小时30~40次”。自动排气阀超压排气量不宜过小,以防防空地下室超压超过限值,《人防规》规定:“滤毒通风时,防空地下室内应保持30~50Pa超压”。对于通风设计来讲,保持地下室超压的基本原则是进风量大于排风量。根据经验,要保持地下室内30~50Pa的超压,排风量应为进风量的80%~90%。 2、设备选择 (1)送风机是整个防护通风系统的动力部件,考虑到战时外界电源有被切断的可能,必须配置电动脚踏两用风机或电动手摇两用风机,以便在缺电的情况下采用人力驱动风机维持通风。《人防规》规定:“战时电源无保证的人防地下室应采用电动、人力两用风机”。该风机既要能满足战时清洁式通风的要求,又要能满足战时滤毒式通风的要求。《人防规》规定,该风机“按战时清洁式通风的计算新风量选用”(强制性条文)。 (2)?滤尘器(粗过滤器)的选择 《人防规》5.3.3规定:“平时和战时合用一个通风系统时,应按平时和战时工况分别计算系统的通风量”。“……粗过滤器……选择,按最大的计算新风量确定”。平时和战时相比,最大计算新风量应出现在平时,故滤尘器应按平时通风量选择。 (3)?手动密闭阀的选用 密闭阀是人防地下室防护通风系统中的重要设备之一,它一般设置在染毒区的进风和排风管路上,用于平时和战时通风方式的转换。手动密闭阀的设置一要考虑功能的需要,二要考虑经济合理性。应按《人防规》5.2.8条提供的图示(a)(b)(c)设置手动密闭阀。

采暖通风与空气调节设计规范gb500192003强制性条文

《采暖通风与空气调节设计规范》GB 50019—2003 强制性条文 第三章 室内外计算参数 3.1.9 建筑物室内人员所需最小新风量,应符合以下规定: 1、民用建筑人员所需最小新风量按国家现行有关卫生标准确定; 2、工业建筑应保证每人不小于30m 3/h 的新风量。 第四章 采暖 4.1.8 围护结构的最小传热阻,应按下式确定: ,min () n w o y n a t t R t a (4.1.8-1) 或,min () n w o n y a t t R R t (4.1.8-2) 式中:R 0,min ——围护结构的最小传热阻(m 2·℃/W ); t n ——冬季室内计算温度(℃),按本规范第3.1.1 条和第4.2.4 条采用; t w ——冬季围护结构室外计算温度(℃),按本规范第4.1.9 条采用; α ——围护结构温差修正系数,按本规范表4.1.8-1 采用; ?t w ——冬季室内计算温度与围护结构内表面温度的允许温差(℃),按 本规范表4.1.8-2 采用; a n ——围护结构内表面换热系数[ W/(m 2·℃) ],按本规范表4.1.8-3 采 用; R n ——围护结构内表面换热阻(m 2·℃/W ),按本规范表4.1.8-3 采用。 注: 1 本条不适用于窗、阳台门和天窗。 2 砖石墙体的传热阻,可比式(4.1.8-1,4.1.8-2)的计算结果小5%。 3 外门(阳台门除外)的最小传热阻,不应小于按采暖室外计算温度所确定的外墙最小传热阻的60%。 4 当相邻房间的温差大于10℃时,内围护结构的最小传热阻,亦应通过计算确定。 5 当居住建筑、医院及幼儿园等建筑物采用轻型结构时,其外墙最小传热阻,尚应符合国家现行《民

隧道通风照明设计

第五章 隧道通风照明设计 5.1 隧道通风设计 在隧道运营期间,隧道内保持良好的空气是行车安全的必要条件。为了有效降低隧道内有害气体与烟雾的浓度,保证司乘人员及洞内工作人员的身体健康,提高行车的安全性和舒适性,公路隧道应做好通风设计保证隧道良好通风。 黄土梁隧道通风设计主要考虑以下因素: (1)隧道长度及线形,麻涯子隧道右线总长为1227m ,风阻力大,自然风量小。 (2)交通量:麻涯子隧道为高速公路隧道,车流量大,为2400 辆/h,且主要为中型货车和大型客车。 (3)隧道内交通事故、火灾等非常情况。 (4)隧道工程造价的维修保养费用等。 根据《公路隧道通风照明规范》,本隧道通风应满足下列要求: (1) 单向交通的隧道设计风速不宜大于10m/s ,特殊情况下可取12 m/s ,双向交通的隧道设计风速不应大于8 m /s,人车混合通行的隧道设计风速不应大于7 m/s 。 (2)风机产生的噪声及隧道中废气的集中排放均应符合环保的有关规定。 (3)确定的通风方式在交通条件等发生改变时,应具有较高的稳定性,并能适应火灾工况下的通风要求。 (4)隧道运营通风的主流方向不应频繁变化。 (5)CO 允许浓度 正常状态:290ppm δ=;阻滞状态:300ppm δ=。 5.1.1 通风方式的确定 右线隧道长度:1227m; 交通量:2400辆/h ,单向交通隧道; 6612272400 2.944810210LN =?=?>? 故采用机械通风,纵向射流式通风方式。

5.1.2 需风量计算 麻涯子隧道通风设计基本参数: 道路等级:高速公路,分离式单向双车道(计算单洞) 行车速度:80km/h 空气密度:31.2/kg m ρ= 隧道起止桩号、长度、纵坡和平均海拔高度: 右线桩号:K121+388~K122+615,长1227m;纵坡:全线为2.5%的上坡;隧道的平均海拔高度H=294m。 隧道断面面积:276.873Ar m = 隧道当量直径: 4476.873 =9.6231.95 Dr m ??= =车道空间断面面积同一面积的周边长 设计交通量:2400辆/h 交通量组成: 隧道内平均温度:20m t C =? (1)CO 排放量 ① C O基准排放量: 30.01/km co q m =辆 ② 考虑CO 的车况系数为: 1.0a f = ③ 根据规范,分别考虑工况车速100km/h,80km /h ,60km/h ,40km

隧道通风方案设计,通风计算

蒙河铁路屏边隧道斜井 通风方案 1、工程概况 屏边隧道全长10381m,进口里程DⅡK60+875,出口里程DIK71+256,为单线隧道,设计为单面下坡,坡度分别为-20.2‰(坡长9025m)、-10‰(坡长650m)及-1‰(坡长706m),最大埋深660m。 屏边斜井位于隧道线路右侧,斜井与正洞隧道中心线交汇点里程为D ⅡK66+300,斜井与线路中线蒙自方向夹角80°,井口里程为XDK1+218,水平长度1218m,综合坡度为85‰。本斜井采用无轨单车道运输,断面净空尺寸5.6m(宽)×6.0m(高)。斜井施工任务为斜井1218m(XDK0+000~XDK1+218),平导1735.29m(PDK66+294.71~PDK68+030),辅助正洞4165m (DⅡK63+835~DⅡK68+000),其中出口方向为1700m(DⅡK66+300~DⅡK68+000),进口方向2465m(DⅡK63+835~DⅡK66+300)。 2、通风控制条件 隧道在整个施工过程中,作业环境应符合下列卫生及安全标准: 隧道内氧气含量:按体积计不得小于20%。 粉尘允许浓度:每立方米空气中含有10%以上游离二氧化硅的粉尘为2mg;含有10%以下游离二氧化硅的水泥粉尘为6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘为10mg。 有害气体浓度:一氧化碳不大于30mg/m3,当施工人员进入开挖面检查时,浓度为100mg/m3,但必须在30min内降至30mg/m3;二氧化碳按体积计不超过0.5%;氮氧化物(换算为NO2)5mg/m3以下。洞内温度:隧道内气温不超过28℃,洞内噪声不大于90dB。

采暖通风与空调设计规范.

采暖通风与空调设计规范(一) 4.。3 散热器采暖 4.3.1 选择散热器时,应符合下列规定: 1 散热器的工作压力,应满足系统的工作压力,并符合国家现行有关产品标准的规定; 2 民用建筑宜采用外形美观、易于清扫的散热器; 3 放散粉尘或防尘要求较高的工业建筑,应采用易于清扫的散热器; 4 具有腐蚀性气体的工业建筑或相对湿度较大的房间,应采用耐腐蚀的散热器; 5 采用钢制散热器时,应采用闭式系统,并满足产品对水质的要求,在非采暖季节采暖系统应充水保养;蒸汽采暖系统不应采用钢制柱型、板型和扁管等散热器; 6 采用铝制散热器时,应选用内防腐型铝制散热器,并满足产品对水质的要求; 7 安装热量表和恒温阀的热水采暖系统不宜采用水流通道内含有粘砂的铸铁等散热器。 4.3.2 布置散热器时,应符合下列规定: 1 散热器宜安装在外墙窗台下,当安装或布置管道有困难时,也可靠内墙安装; 2 两道外门间的门斗内,不应设置散热器; 3 楼梯间的散热器,宜分配在底层或按一定比例分配在下部各层。 4.3.3 散热器宜明装。暗装时装饰罩应有合理的气流通道、足够的通道面积,并方便维修。 4.3.4 幼儿园的散热器必须暗装或加防护罩。 4.3.5 铸铁散热器的组装片数,不宜超过下列数值: 粗柱型(包括柱翼型)20片 细柱型25片

长翼型7片 4.3.6 确定散热器数量时,应根据其连接方式、安装形式、组装片数、热水流量以及表面涂料等对散热量的影响,对散热器数量进行修正。 4.3.7 民用建筑和室内温度要求较严格的工业建筑中的非保温管道,明设时,应计算管道的散热量对散热器数量的折减;暗设时,应计算管道中水的冷却对散热器数量的增加。 4.3.8 条件许可时,建筑物的采暖系统南北向房间宜分环设置。 4.3.9 建筑物的热水采暖系统高度超过50m时,宜竖向分区设置。 4.3.10 垂直单、双管采暖系统,同一房间的两组散热器可串联连接;贮藏室、盥洗室、厕所和厨房等辅助用室及走廊的散热器,亦可同邻室串联连接。 注:热水采暖系统两组散热器串联时,可采用同侧连接,但上、下串联管道直径应与散热器接口直径相同。 4.3.11 有冻结危险的楼梯间或其他有冻结危险的场所,应由单独的立、支管供暖。散热器前不得设置调节阀。 4.3.12 安装在装饰罩内的恒温阀必须采用外置传感器,传感器应设在能正确反映房间温度的位置 采暖与通风设计规范(二) 4.4 热水辐射采暖 4.4.1 设计加热管埋设在建筑构件内的低温热水辐射采暖系统时,应会同有关专业采取防止建筑物构件龟裂和破损的措施。 4.4.2 低温热水辐射采暖,辐射体表面平均温度,应符合表4.4.2的要求。 表 4.4.2 辐射体表面平均温度(℃)

隧道标准通风设计与计算

5 通风设计及计算 在隧道运营期间,隧道内保持良好的空气和行车安全的必要条件。为了有效降低隧道内有害气体与烟雾的浓度,保证司乘人员及洞内工作人员的身体健康,提高行车的安全性和舒适性,公路隧道应做好通风设计保证隧道良好通风。 5.1通风方式的确定 隧道长度:长度为840m,设计交通量N = 1127.4辆/小时,双向交 通隧道。 单向交通隧道,当符合式(5.2.1)的条件时,应采用纵向机械通风。 6210L N ?≥? (5.1) 该隧道:远期, 61127.4248400.10 2.2710L N ?=???=?>6210? 故应采用纵向机械通风。 5.2需风量的计算 虎山公路隧道通风设计基本参数: 道路等级 山岭重丘三级公路 车道数、交通条件 双向、两车道、 设计行车速度 v = 40 km/h =11.11m/s 隧道纵坡 i 1 =2% L 1 = 240 m i2 = -2% L 2=600 m 平均海拔高度 H = (179.65+184.11)/2 = 181.88 m 隧道断面周长 L r = 30.84 隧道断面 A r = 67.26 m 2 当量直径 D r = 9.25 m 自然风引起的洞内风速 V n= 2.5 m /s 空气密度:31.20/kg m ρ= 隧道起止桩号、纵坡和设计标高: 隧道进口里程桩号为K0+160,设计高程181.36米。出口里程桩号 为K1,设计高程180.58米。隧道总长度L 为840m 。

设计交通量:1127.4辆/h 交通组成:小客 大客 小货 中货 大货 拖挂 19.3% 30.1% 7.8% 17.3% 22.6% 2.9% 汽 柴 比: 小货、小客全为汽油车 中货为0.68:0.32 大客为0.71:0.29 大货、拖挂全为柴油车 隧道内平均温度:取20o C 5.2.1 CO 排放量 据《JTJ 026.1—1999公路隧道通风照明设计规范》中关于隧道内的CO 排放量及需风量的计算公式,行车速度分别按40km/h 、20km/h 、10km/h 的工况计算。 取CO 基准排放量为:30.01/co q m km =?辆 考虑CO 的车况系数为: 1.0a f = 据《J TJ026.1—1999公路隧道通风照明设计规范》中,分别考虑工况车速40km/h 、20km/h 、10km /h,不同工况下的速度修正系数fiv 和车密度修正系数fd 如表5.1所示: 表5.1 不同工况下的速度修正系数和车密度修正系数取值 考虑CO 的海拔高度修正系数: 平均海拔高度:181.36180.58 180.972 m += 取 1.45h f = 考虑CO 的车型系数如表5.2: 表5.2考虑CO 的车型系数 交通量分解: 汽油车:小型客车218,小型货车88,中型货车133,大型客车241 柴油车:中型客车62, 大型客车98,大型货车255,拖挂33 计算各工况下全隧道CO 排放量: 按公式(5.3.1)计算,

相关文档
相关文档 最新文档