文档库 最新最全的文档下载
当前位置:文档库 › 数据库系统网络丢包故障处理与分析

数据库系统网络丢包故障处理与分析

数据库系统网络丢包故障处理与分析
数据库系统网络丢包故障处理与分析

数据库系统网络丢包故障处理与分析

摘要:网络丢包是我们在使用ping对目标站进行询问时,数据包由于各种原因在信道中丢失的现象。本文笔者从网络丢包的原因及实例分析入手,简要介绍了故障分析及排除过程。

关键词:网络丢包;数据包;丢包率

中图分类号:tp393.1

网络丢包率是数据传输过程中数据包丢失部分与所传数据包总数的比值。数据在网络中是被分成一个个数据包传输的,每个数据包中有表示数据信息和提供数据路由的桢。而数据包在一般介质中传播是总有一小部分由于两个终端的距离过大会丢失,而大部分数据包会到达目的终端。正常传输时网络丢包率应该控制在一定范围内。我们在cmd中键入ping[网址],显示最后一行(x%loss)就是对目标地址ping包的丢包率。网络丢包是我们在使用ping对目标站进行询问时,数据包由于各种原因在信道中丢失的现象。ping使用了icmp回送请求与回送回答报文。icmp回送请求报文是主机或路由器向一个特定的目的主机发出的询问,收到此报文的机器必须给源主机发送icmp回送回答报文。这种询问报文用来测试目的站是否可到达以及了解其状态。需要指出的是,ping是直接使用网络层icmp的一个例子它没有通过运输层的udp或tcp。

1 网络丢包的原因及实例分析

网络丢包的原因主要有物理线路故障、设备故障、病毒攻击、路由信息错误等,下面我们结合民航二期数据库系统的具体情况进行

LTE网络优化经典案例-重要

1 LTE优化案例分析 1.1 覆盖优化案例 1.1.1 弱覆盖 问题描述:测试车辆延长安街由东向西行驶,终端发起业务占用京西大厦1小区(PCI =132)进行业务,测试车辆继续向东行驶,行驶至柳林路口RSRP值降至-90dBm以下,出现弱覆盖区域。 问题分析:观察该路段RSRP值分布发现,柳林路口路段RSRP值分布较差,均值在-90dBm以下,主要由京西大厦1小区(PCI =132)覆盖。观察京西大厦距离该路段约200米,理论上可以对柳林路口进行有效覆盖。 通过实地观察京西大厦站点天馈系统发现,京西大厦1小区天线方位角为120度,主要覆盖长安街柳林路口向南路段。建议调整其天线朝向以对柳林路口路段加强覆盖。 调整建议:京西大厦1小区天线方位角由原120度调整为20度,机械下倾角由原6度调整为5度。 调整结果:调整完成后,柳林路口RSRP值有所改善。具体情况如下图所示。

问题描述:测试车辆延月坛南街由东向西行驶,发起业务后首先占用西城月新大厦3小区(PCI= 122),车辆继续向西行驶,终端切换到西城三里河一区2小区(PCI =115),切换后速率由原30M降低到5M。 问题分析:观察该路段无线环境,速率降低到5M时,占用西城三里河一区2小区(PCI =115)RSRP为-64dBm覆盖良好,SINR值为2.7导致速率下降。观察邻区列表中次服务小区为西城月新大厦3小区(PCI =122)RSRP为-78dBm,同样对该路段有良好覆盖。介于速率下降地点为西城三里河一区站下,西城月新大厦3小区在其站下应具有相对较好的覆盖效果,形成越区覆盖导致SINR环境恶劣,速率下降。 调整建议:为避免西城月新大厦3小区越区覆盖,建议将西城月新大厦3小区方位角由原270度调整至250度,下倾角由原6度调整为10度。 调整后 调整结果:西城三里河一区站下仅有该站内小区信号,并且SINR提升到15以上,无线环境有明显提升。

网络环路引起的故障汇总

网络环路引起的故障汇总 在日常维护中,由于各种原因有时会形成网络环路。以下汇总了自接手IP 维护工作以来碰到过的各种环路问题,由于水平有限,错误的地方请指正。 1、在调试设备时测试光路形成的环路。 目前DSLAM设备都下挂在L2 S8505。在调试新DSLAM设备时,我们一般都会先完成数据配置再到现场开局。有时我们会在远端机房的ODF进行收发环路,通过查看交换机端口是否UP的方法来判断光路是否正常。事实上这样会造成VLAN 31环路,引起L2 S8505和下带设备的网管通信中断。 如果要采用此方法测试,应提前删除该端口的VLAN 31透传,等设备调试起来后再加入。 2、在配置或取消链路聚合时形成的环路。 为实现二层网络双路由保护或流量分担,链路聚合的应用越来越多。链路聚合组要求端口的数据配置必须一样,也就是透传的VLAN也一样。如果端口取消了链路聚合就会形成环路,该环路肯定会影响到业务。如果端口也透传了VLAN 31,同理也会影响到L2 S8505和下带设备的网管。 2007年张埔IPSU和新局L2 S8505对开链路聚合时,由于有问题取消聚合,聚合取消后不仅引起了PPPOE、IPTV业务阻断,也引起了L2 S8505网管中断。另外如华为的EPON OLT设备和L2 S8505对开聚合组时,调试人员最初将端口设置为强制模式。为实现单芯中断时的业务保护,需要将强制改为自协商模式,而OLT设备必须将聚合组删除才能更改,这时就会产生环路。 因此取消链路聚合时应及时将聚合的某个端口SHUTDOWN或将配置数据删除。 3、2007年9月2日新局L2S8505下带设备网管通信频繁瞬告。 新局L2 S8505下带设备网管通信频繁瞬告,更换网管端口无效。怀疑S8505被攻击,抓包分析发现ARP包偏多,但也不会影响到网管。在T160G和L2 S8505下带的小L2设备上发现有接收到大量的IGMP报文信息,S3228上的LOG中有非常多的“Receive too many packets of 'igmp' from port gei_3/1”,抓包发现有非常多的IGMP报文(V2 LEAVE GROUP,源MAC地址为0015-EB6A-F186,目标MAC地址0100-5E00-002,源IP为0.0.0.0,目标IP为224.0.0.2,组播地址

计算机及网络系统故障预防与处理操作规程

XXXX药业有限公司计算机系统管理制度 1目的:规范计算机及网络故障预防与处理操作,保证公司网络安全使 用和正常运行。 2 范围:本程序适用于公司内部网络及互联网站的故障预防及处理。 3 责任: 3.1 行政管理中心主任负责公司计算及网络故障预防与处理的指导与检查工作。 3.2 网络工程师负责公司计算及网络的日常检查、维护与故障处理。 4 内容: 4.1日常检查 4.1.1检查内容包括网络服务器、交换机、路由器、线路、光纤模块、ADSL MODEM、UPS、分体式空调等所有机房设备及托管服务器。 4.1.2处理内容包括断电、死机、硬件损坏、软件错误、故障预警、感染病毒、黑客攻击、外部网络断路或堵塞。 4.1.3正常工作时间,人员对机房设备及托管服务器进行检查,发现故障,应立即检修,严重故障须及时告知信息中心主任,检修后应填写检修记录。 4.2日常维护 4.2.1人员每天查看瑞星、赛门铁克、微软中国网站,及时获取病毒、漏洞相关信息,并及时下载最新病毒代码,对病毒防护软件升级;下载微软补丁,修补系统漏洞。 4.2.2人员发现重大病毒及漏洞,应在30分钟内以电子邮件的方式通知公司

计算机及网络系统故障预防与处理操作规程第2 页共2 页 所有员工,并在一个工作日内告知处理方法。 4.2.3每周五下班后,对UPS不间断电源作交、直流供电切换试验,保证UPS保持能在停电时迅速切换到由电池直流供电。 4.3值班安排 4.3.1信息中心正常工作时间每天应保证一人在公司总部留守,监察网络及托管服务器运行状况。 4.3.2信息中心节假日应保证至少有一人留守,手机24小时开机,接到网络故障申诉应于60分钟内赶到机房或与托管商联系维修。 4.4 应急处理 4.4.1因机房网络服务器、交换机、路由器、线路、光纤转换器、ADSL MODEM、UPS、分体式空调等所有机房设备原因而引发的网络故障,如断电、死机、软件错误、感染病毒、黑客攻击等可维护内容,处理及恢复时间不超过30分钟。如因外部网络断路或堵塞、大规模的病毒或黑客行为等不可控原因引发的故障,应在30分钟内与相关单位、部门取得联系并尽早获取解决方案,或约请专业公司给予解决。 4.4.2对发现病毒感染严重的计算机应果断采取断网隔离措施,以防止病毒扩散。 4.4.3如病毒已经大面积感染,应及时切断与互联网的连接,全部清除病毒后再予接通互联网。 4.4.4操作系统出现安全漏洞应立即到微软网站下载相关安全补丁并予以安装。 4.4.5发现病毒应及时清查来源,并以最快捷的方式通知来源用户,如为内部用户应及时前往进行处理;如为外部用户,应通知该用户,并告知处理方法。 4.4.6已安装一键还原精灵软件的计算机,应告知使用人重新启动电脑如何操作以清除病毒。

S12508由于配置URPF导致设备丢包案例分析

S12508由于配置URPF导致设备丢包案例分析 关键词: ?URPF ?丢包 ?0推荐,1495浏览 ?1收藏,我的收藏 问题现象 如下拓扑图:S12508-1和S12508-2做VRRP,现场发现从S12508-FW这台设备跨S12508-02去ping S12508-01有大量丢包,丢包很规律,每五个包只会通一个。S12508-FW直连ping S12508-2不会丢包,S12508-2与S12508-1直连互ping也不丢包。并且业务一直也不受影响,就如下两个地址互ping有丢包: 从S12508-FW的本地地址(211.138.35.34)到S12508-1(221.181.39.254) [12508-FW]ping -c 12 -a 211.138.35.34 221.181.39.254 Ping 221.181.39.254 (221.181.39.254): 56 data bytes, press CTRL_C to break Request time out Request time out Request time out Request time out Request time out 56 bytes from 221.181.39.254: icmp_seq=0 ttl=255 time=8.305 ms Request time out Request time out Request time out Request time out Request time out 56 bytes from 221.181.39.2549.1.1.2: icmp_seq=4 ttl=255 time=1.651 ms

LTE网络优化案例重要

1LTE优化案例分析 1.1覆盖优化案例 1.1.1弱覆盖 问题描述:测试车辆延长安街由东向西行驶,终端发起业务占用京西大厦1小区(PCI =132)进行业务,测试车辆继续向东行驶,行驶至柳林路口RSRP值降至-90dBm以下,出现弱覆盖区域。 问题分析:观察该路段RSRP值分布发现,柳林路口路段RSRP值分布较差,均值在-90dBm 以下,主要由京西大厦1小区(PCI =132)覆盖。观察京西大厦距离该路段约200米,理论上可以对柳林路口进行有效覆盖。 通过实地观察京西大厦站点天馈系统发现,京西大厦1小区天线方位角为120度,主要覆盖长安街柳林路口向南路段。建议调整其天线朝向以对柳林路口路段加强覆盖。 调整建议:京西大厦1小区天线方位角由原120度调整为20度,机械下倾角由原6度调整为5度。 调整结果:调整完成后,柳林路口RSRP值有所改善。具体情况如下图所示。 1.1.2越区覆盖 问题描述:测试车辆延月坛南街由东向西行驶,发起业务后首先占用西城月新大厦3小区(PCI= 122),车辆继续向西行驶,终端切换到西城三里河一区2小区(PCI =115),切换后速率由原30M降低到5M。

问题分析:观察该路段无线环境,速率降低到5M时,占用西城三里河一区2小区(PCI =115)RSRP为-64dBm覆盖良好,SINR值为2.7导致速率下降。观察邻区列表中次服务小区为西城月新大厦3小区(PCI =122)RSRP为-78dBm,同样对该路段有良好覆盖。 介于速率下降地点为西城三里河一区站下,西城月新大厦3小区在其站下应具有相对较好的覆盖效果,形成越区覆盖导致SINR环境恶劣,速率下降。 调整建议:为避免西城月新大厦3小区越区覆盖,建议将西城月新大厦3小区方位角由原270度调整至250度,下倾角由原6度调整为10度。 调整后 调整结果:西城三里河一区站下仅有该站内小区信号,并且SINR提升到15以上,无线环境有明显提升。 1.1.3重叠覆盖 问题描述:测试车辆延长安街由西向东行驶,终端占用中华人民共和国科技部2小区(PC=211)进行业务,随后切换至海淀京西大厦1(PC=133)小区,业务正常保持。车辆继续向东行驶,终端又回切至中华人民共和国科技部2小区(PC=211)发生掉话。 问题分析:观察该路段切换过程,终端由中华人民共和国科技部2小区(PC=211)正常切换至海淀京西大厦2小区后又出现回切情况导致掉话。两小区RSRP值相近,相差3dBm以内,造成该路段为无主覆盖路段,发生频繁切换最终导致掉话。 调整建议:针对该路段无主覆盖问题,建议调整京西大厦2小区功率由原15降低为5,使其不会对长安街路段实行有效覆盖。

计算机系统故障分析与处理 (2)

计算机网络故障诊断和排除方法 摘要:随着计算机控制系统广泛、深入地渗透到人们的生活中,因其可靠性题 而潜在的巨大危害日益凸显。因此,设计具有高可靠性能的计算机控制系统成为必然。目前,针对复杂环境中计算机控制系统的可靠性研究设计已经获得了某些研究成果,且其具有广泛的应用前景。本文就提高计算机控制系统可靠性理论进行了分析,阐述了一些通用的可靠性设计方法。 一、计算机网络故障的主要分类 1.计算机网络软件故障简要分析 计算机网络软件故障由于涉及到众多的软件和程序问题,所以比硬件故障要复杂,并且判断起来难度较大。其中计算机网络软件故障主要有以下几种类型:①网络卡的驱动程序问题;②网络协议的约定问题;③网络IP地址的预留与分配的问题; ④路由器的内部编码程序配置问题;⑤网络下载速度过慢问题;⑥网络连接不正常,出现断网的问题。对于这些故障,由于都是由软件和程序引起的,所以我们可以称之为逻辑故障。 2.计算机网络硬件故障简要分析 对于计算机网络硬件故障而言,主要存在以下几种类型:①网络设备连接错误或者非正常连接;②未安装上网卡,或者上网卡安装错误;③网络线路存在断路现象,网络线路与网络控制模块在搭线和接线过程存在错接现象;④网络连接设备例如交换机或者路由器的电源和接线端口出现损坏,或者是设备内部的主板出现瞬间大电流损坏现象;⑤CPU的温度在使用过程中过高,并且计算机网络设备在潮湿或者静电较强的范围内工作,造成CPU或网络设备受到温湿度影响以及电磁干扰继而发生故障。由此可见,计算机网络硬件故障主要是硬件部分的损伤,因而我们可以称之为物理故障。 二、计算机网络故障诊断步骤 计算机网络故障诊断是从分析故障现象和原因出发的,用诊断工具初步诊断获得故障信息,确定发生故障的根源,并结合网络原理、网络配置和网络运行的知

网络丢包分析案例、解决方案

网络丢包分析 数据在网络层以数据包的形式进行传输,由于各种原因,数据包在传输过程中总会存在些许损失,我们称之为丢包。 1.1. 造成丢包的原因有哪些 ?网络设备的故障 包括硬件方面的和软件方面的故障。硬件故障主要是物理层面的故障如:网卡故障,端口故障等。软件故障主要是在配置方面的问题,如错误的静态路由,主机默认网关配置错误等等。 ?网络拥塞 通常由于网络带宽过小或网络中存在异常流量时发生,比如ARP攻击,P2P等。 ?MTU配置不当 在关键设备上MTU设置不当,也会造成网络丢包(以太网:1500字节,IEEE 802.3/802.2 1492字节)。 1.2. 如何确定网络丢包的存在 通常我们利用PING x.x.x.x -t这个命令来进行测试网络中是否存在丢包 在上图中可以看到,在本机上向192.168.122.2这个不存在的地址进行长时间PING的时候,发送出去的ICMP包都丢失了,丢失率达到100%。即从本机到192.168.122.2这个实际不可达地址的路径上存在丢包。 1.3. 定位网络丢包的分析步骤 在网络丢包发生的情况下,用户会明显感受到网络速度变慢,这时候网管首先需要做的就是进行PING X.X.X.X –t来进行大致是哪个网段的诊断。在发现确实有丢失率存在的情况下,我们可以利用科来软件进行进一步分析。 在分析之前,我们有必要学习一下前置知识。 TCP协议的特点之一就是保障数据传输的可靠性,即确保数据能够正确完整传输。那么TCP究竟是如何来保障的?可以看到,TCP在传输时,有着传输确认—重传机制,即发送数据一方在传输数据时为每一个分段编制序列号(Sequence Number),接收方会向发送方发送接收到分段数据的确认(Acknowledgment),通过这种方式确认数据是否准确传送,在无法确认某分段数据被准确传送或确认某分段数据没有被准确传送时重新进行传输。

LTE网络优化经典案例

1 LTE 优化案例分析 1.1 覆盖优化案例 1.1.1 弱覆盖 问题描述:测试车辆延长安街由东向西行驶,终端发起业务占用京西大厦1 小区( PCI =132 )进行业务,测试车辆继续向东行驶,行驶至柳林路口RSRP值降至-90dBm 以下, 出现弱覆盖区域。 问题分析:观察该路段RSRP 值分布发现,柳林路口路段RSRP 值分布较差,均值在-90dBm 以下,主要由京西大厦1 小区( PCI =132)覆盖。观察京西大厦距离该路段约200 米,理论上可以对柳林路口进行有效覆盖。 通过实地观察京西大厦站点天馈系统发现,京西大厦1 小区天线方位角为120 度,主要覆盖长安街柳林路口向南路段。建议调整其天线朝向以对柳林路口路段加强覆盖。 调整建议:京西大厦1 小区天线方位角由原120 度调整为20 度,机械下倾角由原6 度调整为5 度。 调整结果:调整完成后,柳林路口RSRP 值有所改善。具体情况如下图所示。 1.1.2 越区覆盖 问题描述:测试车辆延月坛南街由东向西行驶,发起业务后首先占用西城月新大厦3 小区( PCI= 122 ),车辆继续向西行驶,终端切换到西城三里河一区2小区( PCI =115 ),切换后速率由原30M 降低到5M。 问题分析:观察该路段无线环境,速率降低到5M 时,占用西城三里河一区2 小区(PCI =115) RSRP 为-64dBm 覆盖良好,SINR 值为2.7 导致速率下降。观察邻区列表中次服务小区为西城月新大厦3 小区(PCI =122 )RSRP为-78dBm ,同样对该路段有良好覆盖。介于速率下降地点为西城三里河一区站下,西城月新大厦3 小区在其站下应具有相对较好的覆盖效果,形成越区覆盖导致SINR 环境恶劣,速率下降。 调整建议:为避免西城月新大厦3小区越区覆盖,建议将西城月新大厦3 小区方位角由原270 度调整至250 度,下倾角由原6 度调整为10 度。 调整后 调整结果:西城三里河一区站下仅有该站内小区信号,并且SINR 提升到15以上,无线环境有明显提升。 1.1.3 重叠覆盖 问题描述:测试车辆延长安街由西向东行驶,终端占用中华人民共和国科技部2 小区 ( PC=211)进行业务,随后切换至海淀京西大厦1(PC=133)小区,业务正常保持。车辆继续向东行驶,终端又回切至中华人民共和国科技部2小区( PC=211)发生掉话。 问题分析:观察该路段切换过程,终端由中华人民共和国科技部2 小区( PC=211)正常切换至海淀京西大厦2 小区后又出现回切情况导致掉话。两小区RSRP 值相近,相差3dBm 以内,造成该路段为无主覆盖路段,发生频繁切换最终导致掉话。 调整建议:针对该路段无主覆盖问题,建议调整京西大厦2小区功率由原15 降低为5,使其不会对长安街路段实行有效覆盖。 调整结果:调整后,SINR 值有明显改善,保持在20 左右,多次测试该路段不会出现频繁切换情况,避免掉话等异常事件发生。 1.2 切换优化案例

网络环路及问题的解决

局域网内网络环路的分析及对策我校的校园网络在2003进行了布线,办公室的布线成了一个难题,由于工作的变动,各办公室的教师每学期都会发生变化,多则六七人,少则一两人,每间办公室究竟要布多少网线?如按最多人设计,则造成了极大的浪费,布少了又满足不了需求,于是便采取了每间办公室只布一条网线,外加8口交换机的解决方案,这样既降低了成本,又满足了需求。但隐患也由此产生,全校分布了近50台从5口到24口不同类型、不同品牌的交换机,加之教师工作时均使用笔记本电脑,晚上要带回家使用,有时又要带到 班级授课,这样网线就会被拔来插去,一不小心就容易产生环路。有一天,突然不能上网,上级文件不能接收,老师文件不能上传,各部门要求上网的电话不断。由于刚接触网络,网络知识匮乏,经验不足,花了两天多时间,采取断网的方式进行排查,终于找到了断网的原因来自环路。环路的次数多了,经验也丰富了,一般根据交换机的闪烁方式就可以判断出环路的大体位置,但这还是一种经验上做法,在接触了科来软件后,在论坛上看到关于查找环路的文章:

图二发生环路时端点视图 图三环路实验网络拓扑图 图四环路端点视图 从图四中,我们发现,数据流量最大的是192.168.54.85,这是一台教师用机,而与环路交换机相连的192.168.54.200流量却很少,这说明发生环路时,大量的数据包被转发,使网络流量大增,但流量大的机器并不一定是与发生环路相连的机器。

图五数据包视图 我又对数据包进行解码如图五所示,发现有大量IP标志重复的广播包存在。我们知道在IP包头包含了IP Identification信息(缩写IPID),一般每台主机在主动发送一个数据包时,会对IPID这个值进行递增。例如第一个包IPID 为10000,第二个发送包就可能是10001,第三是10002,依次类推,不同的主动发送的报文的IPID应当是不同的。但是在解码中IPID是在大量简单重复。这些大量的广播报文,通常不应当是某台主机主动引起,而是被交换机反复转发造成。再进一步分析这些IPID相同的广播包的来源,发现均是来自192.168.54.85。而其它机器IPID则正常(图六),甚至与环路交换机相连的192.168.54.200通讯也正常(图七)。

计算机系统故障分析报告与处理

课程设计报告书 设计名称:论计算机系统故障分析与处理 课程名称:计算机系统故障诊断与维护 学生姓名: 专业: 班别: 学号: 指导老师: 日期:2016 年 6 月 1 日

论计算机系统故障分析与处理 摘要:计算机发展迅速,越来越多的问题也随之而来,本文以计算机的浅层知识为框架,分析了计算机的常见故障,并介绍简单处理方法。对于计算机操作方面也做了相关的简单介绍,还有操作系统,安装软件等方面。本文对于各方面知识全部只是简单介绍,只是有一个快速了解的过程,如果要精通,还得自己下点真功夫。只有掌握硬件和软件的基本知识和技术,才能搞好计算机的维护和维修工作。 关键词:硬件、软件 一、计算机硬件组成 电脑分为台式机和笔记本,台式机由显示器,主机箱,键盘,鼠标,音箱等几部分组成。而主机箱又是由电源、主板、光驱、硬盘、软驱等组成。而主板又是由内存显卡、声卡、网卡、CPU组成。笔记本和台式机组成一样,只是笔记本是为了携带方便,把各个硬件排列的更为紧密,但整体上,相同配置的台式和笔记本,台式机的性能要优于笔记本。 下面对各硬件做简单介绍 1.显示器:电脑的主要输出设备,用电脑操作产生的文字图像等都是由显示器显示出来。 2.键盘:键盘是最常用也是最主要的输入设备,通过键盘,可以将英文字母、数字、标点符号等输入到计算机中,从而向计算机发出命令、输入数据等。 3.鼠标: 是计算机输入设备的简称,分有线和无线两种。也是计算机显示系统纵横坐标定位的指示器,因形似老鼠而得名“鼠标”(港台作滑鼠)。“鼠标”的标准称呼应该是“鼠标器”,英文名“Mous e”。鼠标的使用是为了使计算机的操作更加简便,来代替键盘那繁

Volte丢包率优化案例

Volte丢包率优化方案 一、概述 随着市场推广,移动VOLTE用户逐步增多,Volte丢包率对用户语音质量影响较大,为提升用户感知,现针对VOLTE上下行丢包进行优化,提升用户满意度。 二、Volte丢包率优化思路 1、影响Volte丢包率的因素 用户对语音质量的感知直接受语音编码、丢包、时延以及抖动影响。 语音编码:高速率编码消耗带宽大,低速率编码影响语音质量 丢包:数据包丢失,会显著地影响语音质量 时延:时延会带来语音变形和会话中断 抖动:效果类似丢包,某些字词听不清楚 2、Volte语音通话协议栈和接口映射 从协议上看,一个Volte语音通话的参与网元主要有:UE、eNB、SGW、IMS,既有RAN侧网元,又有传统EPC侧网元,还有IMS侧网元。其中在无线测我们需要重点关注的网元是UE和eNB以及UE 和eNB之间的Uu接口。即主要涉及的协议是PHY、MAC、RLC、PDCP。需要注意的是,IMS侧的控制面协议,在EPC是以用户面数据形式进行传输的,在IMS侧才会被拆分成控制面和用户面。 Volte语音通话涉及的协议图:

当前网络结构图: 三、Volte丢包率优化目标 梳理Volte语音通话中各设备的问题表现及对应的影响因素,即可明确无线优化手段:参数优化,覆盖优化,干扰优化,移动性能优化,邻区优化,容量优化,功能优化。

RLC 层参数优化 输承 载 传 序 大时延、抖动,丢包、乱 参数配置,容量或能力限制,传输 质量问题 1、Volte 丢包率参数优化 PDCP 层参数优化 PDCP 是对分组数据汇聚协议的一个简称。它是 UMTS 中的一个无线传输协议栈,它负责将 IP 头压 缩和解压、传输用户数据并维护为无损的无线网络服务子系统(SRNS )设置的无线承载的序列号。 涉及参数:pdb 、pdboffset 、aqmmode 、 UlPdcpSduTimerDiscardEnabled 涉及的功能:TcpOptimization 参数优化原理:通过修改相关参数,延长或缩短 PDCP 层的丢包定时器,从而控制丢包 具体步骤如 下 参数优化建议: RLC UM 接收实体设置了一个 RLC PDC 重新排列的定时器,当检测到有收到 PDU 时启动定时器,

BD交换机快速解决局域网网络环路问题

配置交换机快速解决局域网网络环路问题 在规模较大的局域网网络中,时常会遇到网络通道被严重堵塞的现象,造成这种故障现象的原因有很多,例如网络遭遇病毒攻击、网络设备发生硬件损坏、网络端口出现传输瓶颈等。不过,从网络堵塞现象发生的统计概率来看,网络中发生过改动或变化的位置最容易发生故障现象,因为频繁改动网络时很容易引发网络环路,而由网络环路引起的网络堵塞现象常常具有较强的隐蔽性,不利于故障现象的高效排除。那么我们能否找到一种合适的办法,来高效解决由网络环路引起的网络通道堵塞现象呢?其实,巧妙配置交换机的环回监测功能,我们可以快速地判断局域网中是否存在网络环路,那样一来由网络环路引起的故障现象就能被快速解决了! 判断网络环路的思路 由于现在新买回来的交换机几乎都支持端口环回监测功能,巧妙地利用该功能,我们就能让交换机自动判断出指定通信端口中是否发生了网络环路现象。一旦我们在指定的以太网通信端口上启用环回监测功能后,交换机设备就能自动定时对所有通信端口进行扫描监测,以便判断通信端口是否存在网络环路现象。要是监测到某个交换端口被网络环回时,该交换端口就会自动处于环回监测状态,依照交换端口参数设置以及端口类型的不同,交换机就会自动将指定交换端口关闭掉或者自动上报对应端口的日志信息,日后我们只要查看日志信息或根据端口的启用状态,就能快速判断出局域网中是否存在网络环路现象了。现在,本文就以H3C S3050型号的交换机为操作蓝本,向各位详细介绍一下利用环回监测功能判断网络环路现象的具体配置步骤。 启用端口环回监测 为了能让交换机自动判断出本地局域网中是否存在网络环路现象,我们需要启用交换机的端口环回监测功能,同时还要启用端口环回监测受控功能,不过在默认状态下,这些功能都处于关闭状态,我们需要手工配置交换机,才能将交换机指定端口环回监测功能以及端口环回监测受控功能启用起来。 在启用交换机的端口环回监测功能时,我们可以先以系统管理员权限远程登录进入交换机后台管理界面,在该界面的命令行提示符下输入字符串命令“sys”,单击回车键后,将交换机切换到系统视图状态;接着在系统视图状态下,执行字符串命令“loopback-detection enable”,这样一来交换机的全局端口环回监测功能就被成功启用了。 下面,我们还需要将交换机指定以太网交换端口的环回监测功能启用起来;例如,要是我们想将以太网16端口的环回监测功能启用起来时,可以先在交换机的系统视图状态下,输入字符串命令“interface GigabitEthernet 1/0/16”,单击回车键后,交互机配置状态就会进入以太网16端口的视图状态,同时交换机的命令行提示符也会自动变成“H3C-

TD-LTE网络优化经典案例汇编

1概述 (1) 2D频段优化案例 (1) 2.1重叠覆盖优化 (1) 2.2PCI优化 (4) 2.3邻区列表优化 (7) 2.4切换优化 (9) 2.4.1切换参数优化 (9) 2.4.2同步参数与切换 (12) 2.5功控参数优化 (16) 2.6天面问题整改 (18) 2.6.1天线抱杆 (18) 2.6.2楼层阻挡 (20) 2.7干扰问题排查 (23) 3F频段优化案例 (25) i

ii

1概述 TD-LTE无线网络要实现系统的高性能指标, 需要有合理的网络规划设计、稳定的产品性能、良好的施工工艺以及高质量的网络优化,几者缺一不可。本报告收录了XX市TD-LTE试验网建网以来遇到的一些典型优化案例,旨在为后续优化工作提供帮助和参考。 2D频段优化案例 2.1重叠覆盖优化 【问题描述】 在华兴街靠近中和路区域测试时,UE驻留在华安证券_3(频点:38050,PCI:88),RSRP: -71dBm左右,SINR:25dB左右,但DL Throughput=31Mbps。 1

【问题分析】 分析路测数据,发现在华兴街靠近中和路的区域,华安证券_2、华安证券_3小区RSRP电平值较接近,如上图所示,对该路段形成了重叠覆盖。而该区域规划的主覆盖小区为华安证券_3,现场勘察发现,华安证券_2信号经周边楼宇反射至该区域,2、3小区形成重叠覆盖,造成吞吐速率降低。 【解决措施】 调整华安证券_2方位角由120°调至155°,机械下倾角由12°调至6°。 【处理效果】 调整小区方位角后,重叠覆盖问题得到较好解决,下载速率明显提升。 小区名称方位角PCI RSRP SINR 下载速率(Mbps) 华安证券3 调整前88 -71.1 25.9 31.5 2

案例-关于VoLTE丢包率高优化处理最佳实践总结

VOLTE关于丢包率高优化处理总结 一、问题描述 上下行语音丢包率是是表征VoLTE业务的一个重要指标,与时延,抖动是影响VOLTE 语音质量的三大因素之一。监控,优化,提升上下行语音丢包率可以辅助VOLTE用户语音感知质量的提升。 PDCP层丢包对语音感知影响 VOLTE业务与GU业务不同,LTE走PS域,通过不同QCI承载来进行QoS保障,影响其VOLTE语音质量的关键指标为丢包,时延,抖动,其中丢包对MOS值基本是线性分布,一般丢包率在1%以内,MOS分都比较好;一旦丢包率大于1%后,MOS分明显下降,语音质量将会受到影响。 提取指标发现LF_H_YY余舜宇集团voLTE语音下行丢包率高达5.27%,voLTE语音上行丢包率6.24%,严重影响网络指标。

二、问题分析 丢包率定义和影响因素指标定义: VOLTE语音包关联指标分析

举例如下:若出现PUSCH MCS0阶占比和PDSCH MCS0阶占比同时恶化,弱覆盖导致的可能性较大。 ?根据关键指标关联,分析用户数问题 根据如下话统信息,判断终端所处小区的负载情况,判断是否小区语音负载大,导致不能及时调度用户,带来PDCP层丢包;

?空口丢包原理 上行空口丢包统计原理: 主要影响因素:上行调度不及时,如图中的1,会导致UE PDCP层的丢弃定时器超时,但现网值是集团规范值,不存在该问题。空口传输质量差,如图中2,MAC层多次传输错误导致丢包。

?上行空口丢包统计原理: 主要影响因素:下行丢包基本上是用户处于小区弱覆盖区域。?常见PDCP层丢包原因总结 ?常见PDCP层丢包处理总体思路

交换机二层环路问题处理指南

目录 1 介绍........................................................................................................... 错误!未定义书签。 2 网络业务故障,如何确认存在环路....................................................... 错误!未定义书签。 第一步:是否可以通过端口流量发现数据风暴....................... 错误!未定义书签。 第二步:是否可以通过MAC-Flapping检测漂移 ........................ 错误!未定义书签。 框式交换机....................................................................... 错误!未定义书签。 盒式交换机....................................................................... 错误!未定义书签。 第三步,是否可以通过环路检测发现环路............................... 错误!未定义书签。 Loop Detection(框式)........................................................ 错误!未定义书签。 Loopback Detection(盒式) ................................................ 错误!未定义书签。 3 环路问题发生后,如何快速破环........................................................... 错误!未定义书签。 第一步:是否理解网络业务并明确拓扑................................... 错误!未定义书签。 第二步:是否需要用影响最小的方法破环............................... 错误!未定义书签。 方法一:端口退出成环VLAN破环 .................................. 错误!未定义书签。 方法二:shutdown成环端口破环................................... 错误!未定义书签。 方法三:通过拔出成环光纤破环................................... 错误!未定义书签。 第三步:操作后确认业务是否恢复........................................... 错误!未定义书签。 4 环路问题发生后,如何定位问题根因................................................... 错误!未定义书签。 第一步:是否由于近期施工操作引入环路............................... 错误!未定义书签。 第二步:是否由于近期修改配置引入的环路........................... 错误!未定义书签。 第三步:是否典型的常见环路问题........................................... 错误!未定义书签。 交换机自环出现环路....................................................... 错误!未定义书签。 交换机下游设备自环出现环路....................................... 错误!未定义书签。 环形组网链路震荡导致环收敛震荡............................... 错误!未定义书签。 环形组网寄存器下发失败无法破环............................... 错误!未定义书签。 链路单通引入RRPP网络单向环 ...................................... 错误!未定义书签。 协议堵塞的端口L2PT(bpdu-tunnel)协议报文成环 ... 错误!未定义书签。

经典案例_VoLTE上行丢包率优化思路研究

VOLTE上行丢包率优化思路研究

目录 1问题分析 (1) 1.1V oLTE网管丢包率指标定义 (1) 1.2上行丢包原理 (2) 1.3丢包优化流程与思路 (3) 2分场景优化 (5) 2.1弱覆盖场景 (5) 2.1.1VOLTE上行覆盖增强 (5) 2.1.2天馈调整及功率优化 (7) 2.2大话务场景 (7) 2.2.1PDCCH CCE初始比例优化 (7) 2.2.2ROHC功能开启 (9) 2.3上行干扰场景 (11) 2.3.1基于干扰的动态功控 (11) 2.4频繁切换场景 (13) 2.5其他功能及参数优化 (15) 2.5.1PDCP层参数优化 (15) 2.5.2RLC重排序定时器 (16) 2.5.3包聚合关闭 (16) 3总结 (19)

【摘要】随着VOLTE业务的快速普及,VOLTE用户数和业务量都进入了快速上涨期,用户对语音质量要求越来越高,单通、吞字、双不通等严重影响用户感知,制约着4G业务的发展。其中“空口丢包”和“基站丢包”指标可有效表征VOLTE 语音感知,减少“空口丢包”和“基站丢包”是VOLTE语音质量优化提升的重要方向。本文将对V olte上行QCI1丢包率优化展开全面论述。 【关键词】VOLTE全面商用、QCI1上行丢包率、语音质量 1问题分析 1.1VoLTE网管丢包率指标定义

1.2上行丢包原理 VOLTE高清语音编码速率为23.85kbps,终端每20ms生成一个VOLTE语音包(使用RTP实时流媒体协议传输),再加上UDP包头、IP包头、最终打包成IP 包进行传输。在无线空口,按照协议IP包进一步被转换成PDCP包,PDCP包就是空口传输的有效数据,PDCP包在终端和基站间传输异常会导致应用层RTP包的丢失,从而引起语音感知差。 eNodeB的PDCP层接收语音包时如果检测到语音包的SN号不连续,则认为出现丢包。 上行丢包主要原因: 1)大TA/PHR受限、SR漏检、DCI漏检、RLC分段过多、上行调度不及时(上 图① )会导致UE PDCP层丢弃定时器超时丢包; 2)空口传输质量(上图② )差,MAC层多次传输错误后,失败导致丢包;

端口环路引发的网络故障及处理

端口环路引发的网络故障及处理 众所周知,系统日志记录着系统中硬件、软件和系统问题的信息,同时还可以监视系统运行中发生各种的事件。可以通过它来检查错误发生的原因,或者寻找受到攻击时攻击者留下的痕迹。对于个人用户而言可能很少去关注,但对于服务器管理人员来说系统日志却是他们日常管理的重要手段。因为他们可以通过日志来检查错误发生的原因,或者寻找受到攻击时攻击者留下的痕迹,从而保障服务器的安全与稳定运行。操作系统有日志,网络设备同样具备,而这对于我们网络管理人员查找、分析网络故障原因也是相当重要的。养成良好的查看设备日志的习惯,平时在处理网络故障时也许会少走一些弯路。 近日,笔者单位的局域网出现故障,监控显示网络接入设备频繁断开,而单位用户反应网速非常慢,每隔几分钟就掉线。笔者第一反应就是局域网内可能有病毒爆发,占用了网络带宽。于是马上打开流量监控软件,查看各个端口的实时流量,没见任何异常。同时,由于笔者局域网内使用的是一台华为3026交换机,下面接入用户众多,早已不堪重负。以前因为CPU占用过高也导致类似问题出现,后来升级了系统版本才得以解决。所以笔者开始怀疑是不是又是CPU占用的问题。马上登陆设备查看其CPU占用率,1分钟平均值为30%,很正常啊。这让笔者有些疑惑了,到底是什么问题呢。正当自己一筹莫展之时,忽然想起最近ARP病毒非常流行,而症状和目前自己局域网的情况基本上一致,也是上网断断续续的。于是笔者马上登陆核心交换机查看ARP转发表,看是否存在ARP 攻击。由于设备上设置的是ARP表300s更新一次,笔者等了大概10分钟,但还是没有发现什么异常。这下笔者开始有些犯难了,心里嘀咕起来,总不能让我到交换机上面一根一根网线去拔吧。这种方法虽然最有效,但终究过于原始,工作量也比较大,有时虽然可以发现问题解决网络故障,但未必能够查明原因,难保以后不会出现同样的问题。如今,自己也别无良策,单位领导同事也都在催,看来还是先用这种方法恢复网络再说了。正当笔者磨拳擦掌,准备付诸行动之时,忽然一个想法在脑海中闪现。刚才进交换机查看了设备CPU占用率,没有看其他诸如告警信息之类的,我何不先看看设备的系统日志再说。说不定会有什么蛛丝马迹呢。于是笔者再次登入设备,通过“display log”命令查看日志信息。结果还真发现了一些端倪,具体情况如下图: 图1 系统日志 从上图我们不难看出,在交换机E0/15端口存在环路,端口所配置的Vlan 为32,正是笔者单位所用的Vlan网段。由于笔者在交换机上开启了全局端口环回检测功能,当交换机检测到Vlan 32下属E0/15端口存在环路时,就会发出告警信息。众所周知,网络中如果存在环路的话,就很容易产生广播风暴,最终导致网络处于瘫痪状态。而这也正是笔者单位局域网频繁掉线的根本原因。为了让局域网其它端口的用户不受影响,笔者立即利用shutdown命令关闭了存在环路的E0/15端口。之后,笔者让同事们都试下各自的网络是否正常,结果除E0/15端口下的用户无法上网外,其它用户的网络均已恢复正常。既然知道了故障点,接下来要做的就是要找出“幕后元凶”了。于是笔者来到E0/15端口下接的用户处,

LTE网络优化案例

L T E网络优化案例Prepared on 21 November 2021

1LTE优化案例分析 1.1覆盖优化案例 1.1.1弱覆盖 问题描述:测试车辆延长安街由东向西行驶,终端发起业务占用京西大厦1小区(PCI =132)进行业务,测试车辆继续向东行驶,行驶至柳林路口RSRP值降至-90dBm以下,出现弱覆盖区域。 问题分析:观察该路段RSRP值分布发现,柳林路口路段RSRP值分布较差,均值在-90dBm以下,主要由京西大厦1小区(PCI =132)覆盖。观察京西大厦距离该路段约200米,理论上可以对柳林路口进行有效覆盖。 通过实地观察京西大厦站点天馈系统发现,京西大厦1小区天线方位角为120度,主要覆盖长安街柳林路口向南路段。建议调整其天线朝向以对柳林路口路段加强覆盖。 调整建议:京西大厦1小区天线方位角由原120度调整为20度,机械下倾角由原6度调整为5度。 调整结果:调整完成后,柳林路口RSRP值有所改善。具体情况如下图所示。 1.1.2越区覆盖 问题描述:测试车辆延月坛南街由东向西行驶,发起业务后首先占用西城月新大厦3小区(PCI= 122),车辆继续向西行驶,终端切换到西城三里河一区2小区(PCI =115),切换后速率由原30M降低到5M。 问题分析:观察该路段无线环境,速率降低到5M时,占用西城三里河一区2小区(PCI =115)RSRP为-64dBm覆盖良好,SINR值为导致速率下降。观察邻区列表中次服务小区为西城月新大厦3小区(PCI =122)RSRP为-78dBm,同样对该路段有良好覆盖。介于速率下降地点为西城三里河一区站下,西城月新大厦3小区在其站下应具有相对较好的覆盖效果,形成越区覆盖导致SINR环境恶劣,速率下降。 调整建议:为避免西城月新大厦3小区越区覆盖,建议将西城月新大厦3小区方位角由原270度调整至250度,下倾角由原6度调整为10度。 调整后 调整结果:西城三里河一区站下仅有该站内小区信号,并且SINR提升到15以上,无线环境有明显提升。 1.1.3重叠覆盖 问题描述:测试车辆延长安街由西向东行驶,终端占用中华人民共和国科技部2小区(PC=211)进行业务,随后切换至海淀京西大厦1(PC=133)小区,业务正常保持。车辆继续向东行驶,终端又回切至中华人民共和国科技部2小区(PC=211)发生掉话。 问题分析:观察该路段切换过程,终端由中华人民共和国科技部2小区(PC=211)正常切换至海淀京西大厦2小区后又出现回切情况导致掉话。两小区RSRP值相近,相差3dBm以内,造成该路段为无主覆盖路段,发生频繁切换最终导致掉话。 调整建议:针对该路段无主覆盖问题,建议调整京西大厦2小区功率由原15降低为5,使其不会对长安街路段实行有效覆盖。 调整结果:调整后,SINR值有明显改善,保持在20左右,多次测试该路段不会出现频繁切换情况,避免掉话等异常事件发生。

相关文档
相关文档 最新文档