文档库 最新最全的文档下载
当前位置:文档库 › 雷电冲击试验

雷电冲击试验

雷电冲击试验
雷电冲击试验

浅谈干式变压器雷电冲击试验故障判断及要点 黄永昶

浅谈干式变压器雷电冲击试验故障判断及要点黄永昶 发表时间:2018-03-13T10:41:23.687Z 来源:《电力设备》2017年第30期作者:黄永昶 [导读] 摘要:本文中介绍的产品质量问题是在试验过程中发现的,由于表现出来的现象比较典型,因此总结出来供读者参考。 (顺特电气设备有限公司广东顺德 528300) 摘要:本文中介绍的产品质量问题是在试验过程中发现的,由于表现出来的现象比较典型,因此总结出来供读者参考。 关键词:干式变压器;雷电冲击;产品试验;故障分析 变压器是电力系统中重要的设备之一,它的质量直接关系到电力系统的安全和经济效益,也影响到厂矿企业的经济效益和居民生活,为此在变压器制造过程中一定要严把产品的质量关。本文用变压器线圈内的电压暂态振荡的原理分析了干式变压器雷电冲击试验中所出现的一些异常问题,指出了变压器线圈内的电压暂态振荡过程是危害变压器绝缘的重要因素。 1.基本情况 对SC—1000/10联接组别为DYNn的千式变压器进行了雷电冲击试验,推荐的试验接线图如图1所示。 在C端进波、A端接地的试验中,比较50%试验电压和100%试验电压的电流示份映形可看到,在10μs左右100%试验电压的电流示伤波形出现严重的尖峰振荡,电压波形也有微小变化,而且在试验过程中观察到B相线圈有火花出现。 为了进一步研究B相线圈的缺陷,拆除了A、B、C三相绕组之间的连接线,单独对B相线圈进行雷电全波试验。对B线圈头部进彼、B 线圈尾部接地和B线圈尾部进波、B线圈头部接地等接线方式进行了试验,电流示伤波形中没有出现异常情况。在进行B相线圈的雷电冲击试验中,B相线圈没有发现缺陷,而在进行C相线圈试验时,与A相线圈串联的B相线圈发现缺陷。 二、故障诊断分析 分析单独一个线圈进波和两个线圈串联进波的波过程。为了简化计算,不考虑变压器的损耗和线圈之间的互感,同时假定线圈的电感、纵向电容和对地电容都是均匀分布参数。 设L0、K0、C0分别表示线圈单位长度的电感、纵向电容和对地电容,L是线圈的长度,如图3: 如果简单地从电位梯度的角度考虑问题,从式(4)可知,随着 L的增大,首端的电位梯度是下降的,单个线圈首端的电位梯度高于或起码等于两个线圈串联起来的首端的电位梯度。所以,简单地从电位梯度的角度分析问题解析不了试验中所出现的现象。 上面所分析的起始电压分布,线圈首端的电位梯度虽高,但其作用时间短,一般不会危及线圈的绝缘。而随之而来的线圈内的波振荡过程,才是危及变压器绝缘的主要原因。为了分析线圈上的电压振荡,先求出电压沿线圈的稳态电压分布。电压沿线圈的稳态分布由线圈的电阻决定,它是一条斜直线,如图4中的曲线2所示。 从上面的分析可看出:两个线圈串联时,两个线圈连接点附近的起始电压分布和稳态电压分布的差值比单个线圈时起始电压分布和稳态电压分布的差值要大得多,由此引起振荡强烈得多。如果变压器的绝缘强度较弱,则首先在这里出现缺陷。这种分析得出的结论与试验中出现的现象是一致的。 三、结论 在变压器雷电冲击试验中,电压梯度的大小是影响变压器绝缘的一个因素。但危害变压器绝缘的主要因素,是由于变压器绕组的起蛤电压分布和稳态电压分布不一致而引起的电压振荡过程。在三角形连接绕组的变压器雷电冲击试验中,如果试验接线方式为只有一个非被试相端子接地,则两个线圈串联的电压振荡过程有可能比单个线圈的电压波振荡过程更为严重,对变压器的绝缘考核也更为严重。 参考文献: [1]不同接线方式下直流电缆雷电冲击试验研究[J].乐彦杰,宣耀伟,俞恩科,郑新龙,陈国东,沈耀军.高电压技术.2015(08) [2]传递函数在变压器雷电冲击试验中的应用[J].刘杰.变压器.2015(04) [3]变压器雷电冲击试验的调波理论与计算[J].蒋将,汪春祥,郑军,张迪,周海京.变压器.2015(06) [4]变压器雷电冲击试验空间磁场对智能组件影响的计算分析[J].赵军,陈维江,高飞,张建功.中国电机工程学报.2016(14)

雷电冲击试验报告

绝缘液体雷电冲击击穿电压测定 一、试验目的 电力系统中的高压电气设备除承受长期工作电压(交流或直流)作用外,还受到大气感应造成的过电压的作用,为保证绝缘液体的绝缘质量,需对绝缘液体进行雷电冲击电压试验。变压器由多种材料组合而成,结构形状也极为复杂。绝缘结构任一局部范围内的破坏都会使整个设备丧失绝缘性能。因此,一般只能用可以耐受多高的试验电压(单位为KV)来表示设备的整体绝缘能力。绝缘耐压试验电压可表明设备耐受的电压水平,但并不等同于该设备所实际具有的绝缘强度。 二、试验原理 雷电击中架空线路导线或户外变电站将产生雷电过电压,其波形变化范围很大,人工模拟这种暂态电压,以研究和考验绝缘液体的绝缘强度。 三、试验仪器 试验容器欧姆表测微计或螺旋计或厚度规金相显微镜脉冲发生器电阻分压器峰值电压表 四、试验步骤 1.试验容器的准备:试验容器是一个带有垂直间隙的容器,其内可容纳液体的 体积约为300mL,限定只有两极和支撑的部分可以是金属材料,容器所用的绝缘材料必须具有高介电强度、在80o C下具有良好的热稳定性、能与被测绝缘液体相容,并耐溶剂、耐常用于被测液体的清洁剂;试验容器应易拆卸易清洗彻底,其尺寸应保证闪络电压至少为250kV。 2.试验容器的清洗:试验容器的所有零件包括球电极和唱针都应用试剂级的庚 烷脱脂,用洗涤剂洗涤,用热自来水彻底冲洗,然后用蒸馏水冲洗,用无油脱水的压缩空气干燥各零件。

3.液体取样:用待测液体彻底地清洗试样容器和电极,并慢慢地将试样注入试 验容器,切勿产生气泡,在试验前让液体静置至少5min。试验时试样的温度应与实验室温度相同,通常在15o C到30o C之间。 4.电极间隙的调整:轻轻使两电极接触,用欧姆表检测是否接触良好。然后用 一个测微计或螺旋计或厚度规使其中一个电极移开达期望的间隙值,其允许偏差为±0.1mm。 5.脉冲电压的校准:用一个精确标定的电阻分压器和一个峰值电压表,根据 GB/T 311.6-2005用球隙法校正测量系统,脉冲电压的峰值电压测量误差应已知且不超过3%。 6.试验过程: 6.1逐级试验:先使用15mm间隙,50kV其实电压和步进10kV升压1来 进行试验,每个电压等级下要加一个脉冲,在相邻两脉冲之间时间间 隔只是1min,直至击穿。按照所确定的起始电压、电压步进值和电 极间隙重复试验直至获得被试液体的五个击穿值2,取其平均值作为 被试液体的雷电脉冲击穿电压。 值及参数画出判定图,按照6.1的结论选择 6.2 连续试验:根据相应的P 一个脉冲电压峰值U 3并设定脉冲发生器,准备试验,施加第一个脉冲 到电极上,如果没有击穿,则在另一个脉冲前等待一分钟,然后继续加 脉冲直至发生击穿,在判定图上对脉冲和相应的击穿描点;重复试验, 至能进行判定为止4,当超85次脉冲数后还不能裁定时,则应在更低 水平上重复试验。 五、试验数据及处理

雷电冲击电压实验

雷电冲击电压实验 一、实验目的 电气设备在电力系统运行中除承受正常运行的工频电压外,还可能受到暂时过电压及雷电过电压的袭击。本实验通过实验装置及控制平台模拟产生相应的雷电冲击波,观察长气隙击穿放电现象以及通过控制台观察冲击波的波形,了解冲击电压发生器的功能要求及技术要求,了解其工作原理、系统组成、具体结构以及相关操作,明确冲击电压实验的有关注意事项,掌握完整的操作流程和操作技能,初步具备开展相关试验任务的能力。 二、试验项目 通过雷击冲击电压发生器产生高压冲击波击穿长气隙放电 三、实验说明 1、冲击电压在系统中的存在形式和表现 因雷电影响会在电力系统中产生大气过电压,有两种基本形式,即直击雷过电压和感应雷过电压,他们都表现为一段作用时间很短的过电压脉冲波。这种过电压波一般会引起绝缘子闪络或避雷器动作,从而形成冲击截波。如果过电压幅值很大,其波头上升很快,引发的绝缘子闪络或避雷器动作就可能发生在波头部分,将形成冲击陡波。 因系统的倒闸操作、元件动作或发生故障等原因,使系统状态改变,引发过渡过程,可能产生涌动的电压升高,形成操作冲击波。它是一种作用时间较长的过电压波。 2、冲击电压的特点 雷电冲击电压波是一种作用时间很短的过电压脉冲波,具有单极性,一般为负极性,如果引起放电,其产生的冲击电流很强。 冲击截波对电感线圈类设备可能造成更严重的威胁,而冲击陡波对绝缘子内绝缘的威胁更大。 操作冲击波的能量来自于系统内部,其作用时间比雷电波长的多,持续的能量累积造成的损害可能比雷电波更为严重 3、冲击电压发生器就是一种产生脉冲波的高电压发生装置。它被用于研究电力设备遭受大气过电压(雷电)时的绝缘性能。冲击电压的破坏作用不仅决定于波形、幅值、还与波形陡度有关。目前国内冲击电压发生器能产生8种冲击波形。下面简单介绍一下: GB311《高压输变电设备的绝缘配合-高电压试验技术》规定了三种标准冲击波形(1)1.2/50微妙标准雷电冲击全波 (2)1.2/2~5微妙标准雷电截波 过零系数0.25-0.35 (3)250/2500微妙的标准操作冲击波 Tf为20~250us90%持续时间≥200us 过零时间≥500us IEC517规定GIS组合电器现场冲击试验的二种标准冲击波形 (4)Tf<15微妙的振荡雷电冲击波 (5)Tcr>100微妙的振荡操作冲击波 图1雷电冲击电压全波波形 来源:网络转载

雷电冲击电压波形

雷电冲击电压波形 (1) 1.2/50us冲击电压:雷击时户内走在线产生的感应过电压模拟波形,用于设备过电压耐受水平测试,主要测试范围:通信设备的电源端和建筑物内走线的信号线测试。 (2) 1.2/50us(8/20us)混合波:浪涌发生器输出的一种具有特定开路/短路特性的波形。发生器输出开路时,输出波形是1.2/50us的开路电压波;发生器输出短路时,输出波形是8/20us 的短路电流波。具有这种特性的浪涌发生器主要用于设备端过电压耐受水平测试,主要测试范围:通信设备的电源端和建筑物内走线的信号线测试。 (3) 10/700us冲击电压:雷击时户外走在线产生的感应雷过电压的模拟波形。用于设备过电压耐受水平测试时用的波形,主要测试范围:建筑物外走线的信号线测试。 (4) 8/20us冲击电流:雷击时线缆上产生的感应过电流模拟波形,设备的雷击过电流耐受水平测试用标准波形,主要用于通信设备的电源口、信号口、天线口。 冲击波形表示(expression of impulse waveform):冲击波用两数值的组合T1/T2来表示,T1表示波头时间(从10%峰值上升到90%峰值的时间),T2表示半峰值时间(从波头始点到波尾降至50%峰值的时间),时间单位均为us,记作T1/T2,符号“/”无数学意义。其中如:1.2/50us冲击电压,其波头时间为1.2us,半峰值时间为50us;8/20us冲击电流,其波头时间为8us,半峰值时间为20us;10/350us最大冲击电流,其波头时间为10us,半峰值时间为350us。 冲击电流实验的模拟脉冲波形需要尽量接近自然环境中雷击时通信设备电缆上产生的感应雷过电流的波形。因此冲击电流测试一般采用国际上防雷学科给出的一些标准波形。根据国家、地区、研究机构的不同,目前各国在冲击电流测试中对脉冲波形的要求有一定差异。在IEC标准、国标中规定的雷击测试波形主要有:8/20us、10/350us(电流波)、10/700us 以及 1.2/50us(电压波)等。

雷电冲击电压波形

雷电冲击电压波形 (1) 50us冲击电压:雷击时户内走在线产生的感应过电压模拟波形,用于设备过电压耐受水平测试,主要测试范围:通信设备的电源端和建筑物内走线的信号线测试。 (2) 50us(8/20us)混合波:浪涌发生器输出的一种具有特定开路/短路特性的波形。发生器输出开路时,输出波形是50us的开路电压波;发生器输出短路时,输出波形是8/20us 的短路电流波。具有这种特性的浪涌发生器主要用于设备端过电压耐受水平测试,主要测试范围:通信设备的电源端和建筑物内走线的信号线测试。 (3) 10/700us冲击电压:雷击时户外走在线产生的感应雷过电压的模拟波形。用于设备过电压耐受水平测试时用的波形,主要测试范围:建筑物外走线的信号线测试。 (4) 8/20us冲击电流:雷击时线缆上产生的感应过电流模拟波形,设备的雷击过电流耐受水平测试用标准波形,主要用于通信设备的电源口、信号口、天线口。 冲击波形表示(expression of impulse waveform):冲击波用两数值的组合T1/T2来表示,T1表示波头时间(从10%峰值上升到90%峰值的时间),T2表示半峰值时间(从波头始点到波尾降至50%峰值的时间),时间单位均为us,记作T1/T2,符号“/”无数学意义。其中如:50us冲击电压,其波头时间为,半峰值时间为50us;8/20us冲击电流,其波头时间为8us,半峰值时间为20us;10/350us最大冲击电流,其波头时间为10us,半峰值时间为350us。 冲击电流实验的模拟脉冲波形需要尽量接近自然环境中雷击时通信设备电缆上产生的感应雷过电流的波形。因此冲击电流测试一般采用国际上防雷学科给出的一些标准波形。根据国家、地区、研究机构的不同,目前各国在冲击电流测试中对脉冲波形的要求有一定差异。 在IEC标准、国标中规定的雷击测试波形主要有:8/20us、10/350us(电流波)、10/700us以及50us(电压波)等。

相关文档