文档库 最新最全的文档下载
当前位置:文档库 › 二级弹簧结构受力分析

二级弹簧结构受力分析

二级弹簧结构受力分析
二级弹簧结构受力分析

二级开启电磁阀动力学分析

一、工作原理:

图1 初始状态

【注】设连接拉杆和阀芯的弹簧9为K1,连接阀芯和阀盖的弹簧8为K2

初始状态,开关4打开,6、7关闭,a、b、c三个支路同时给腔体A、B、C、D进气,其中B、D联通,气压均为P1,腔体E和下游接通,气压为P2,此时拉杆和阀芯均受力平衡;

当关闭4,打开6时,腔体C和下游联通,此时腔体C压力由P1降为P2,P1>P2,拉杆开始被提升,拉杆被提升过程中,要求阀芯静止不动,此时阀芯应受力平衡

当拉杆被提升至预定位置时,打开开关7,此时腔体B、D和下游联通,压力由P1降为P2,阀芯受力平衡状态被打破,阀芯开始提升。

阀芯一旦开始上升,腔体A和腔体E联通,此时阀体内各个腔体压强趋于一致,并且由于阀芯顶部和底部受压强面积也相同,由气体压强产生的压力差消失,此时阀芯所受向上的力只有K1提供的弹簧力。

二、各状态受力分析

假设该结构能够符合设计目标,则对该结构整个动作过程进行分析如下:

初始状态:拉杆阀芯都保持静止

图3 拉杆的提升

F lb-G1-F1lt+N1-k1x1=0 (1)

F fb1+ F fb2+k1x1+N2=G2+k2x2+ N1+F1ft (2)

状态Ⅰ:

图3 拉杆的提升

关闭4,打开6,此时腔体C卸压,腔体C压力由P1降为P2,P1>P2,拉杆开始被提升,提升过程中拉杆受力情况:

图4 拉杆提升至预定位置图5 阀芯保仍持静止

拉杆的动力学方程:F lb-G1-F2lt-f1-k1*( x1+h)>0

P1* S lb - G1- P2* S lt- f1- k1*( x1+h)>0 (3)

阀芯的静力学方程:F fb1+ F fb2+k1*(x1+h)

P1*S fb1+ P2*S fb2+k1*(x1+h)- G2-k2*x2-f2-P1*S ft) <0 (4)

第二状态

拉杆提升至预定位置时,打开7,此时腔体B、D

和下游联通,压力由P1降为P2,阀芯受力不平

衡,阀芯要提升

图6 阀芯的提升

拉杆被提升至预定位置时,阀芯被提升前瞬间的受力情况

阀芯提升前的受力

F fb1+ F fb2+k1*(x1+h)-G2-k2*x2-f2-F2ft>0

P1*S fb1+ P2*S fb2+ k1*(x1+h)-G2-k2*x2-f2- P2* S ft >0 (5)

k1*(x1+h)-k2x2-f2- G2>0 (6)

K2(x1+h)-k1x1- f2+G2>0 (7)

三、整理计算

综上,经受力分析,若要实现设计期望目标,则要必须满足下面7个方程式:

P1S lb-G1-P1S lt+N1-k1x1=0 (1)

P1S fb1+P2S fb2+k1x1+N2=G2+k2x2+N1+P1S ft (2)

P1S lb-G1-P2S lt-f1-k1(x1+h)>0 (3)

P1S fb1+P2S fb2+k1(x1+h)-G2-k2x2-f2-P1S ft<0 (4)

P1S fb1+ P2S fb2+ k1(x1+h)-G2-k2x2-f2-P2S ft>0 (5)

k1(x1+h)-k2x2-f2-G2>0 (6)

K2(x1+h)-k1x1-f2+G2>0 (7)

整理上述方程式,其中:

由(1)(2)消去N1得:P1S lb-G1-P1S lt+P1S fb1+P2S fb2+N2=G2+k2x2+P1S ft

从而k2=(P1(S lb+ S fb1- S lt- S ft)+N2+P2S fb2-G1-G2)/x2 (8)

由(3)得k1=(P1S lb -P2S lt-f1-G1)/(x1+h) (9)

(9)代入(4)得:k2= (k1(x1+h)+ P1S fb1+P2S fb2- P1S ft- G2-f2 )/x2 (10)

由(4)知(5)必然成立,故可消去(5)

由(6)得:k1(x1+h)-k2x2 -f2-G2>0 (11)

(7):K2(x1+h)-k1x1-f2+G2=0 (12)

由(9)(10)可分别算的K1,K2,后代入(11)(12),若能满足,则该结构设计应当满足设计目标

四,计算及分析结果

已知条件如下:

拉杆顶部有效受力面积S lt=3.14x16.5x16.5=854.865 mm2=0.86x10-3m2

拉杆底部有效受力面积S lb=3.14x17.5x17.5=961.625 mm2=0.96x10-3m2

阀芯顶部有效受力面积S ft=3.14x84x84/4=5538.96 mm2=5.54x10-3m2

阀芯底部有效受力面积S fb1=3.14x(85-61)x(85-61)/4=452.16 mm2=0.45x10-3m2

阀芯底部有效受力面积S fb2=3.14x20x20=1256 mm2=1.256x10-3m2

拉杆重量:G1=11.22N

阀芯重量:G2=21.22N

拉杆最大静摩擦力:f1=85.6N

阀芯最大静摩擦力f2=337N

拉杆和阀芯行程:h=18mm

设弹簧初始压缩量x1=10mm x2=6mm

在各个压力状态下,将已知条件代入上述方程式,发现直接求解获得的两个弹簧的刚度系数K1,K2非常大,且其中一个为负数,不合常理。经过讨论,依然将各个已知条件带入上述方程式,并将一系列预先设定的刚度系数K1,K2代入方程式(3)(4)(6)(7)进行验证(见下表),发现随着上游压力越高,弹簧的K1,K2可选值的范围就越宽,并且在合理取值范围内,若固定K1值,则K2的变化也会存在一个取值范围,经过上述分析,可知该二级卸荷结构在理论上存在一定的可行性,但是结构比较复杂,对于弹簧的选取要求比较严苛。

设定P1,P2,

K1

K2,验证

(3)(4)

1 2 3 4 5 6 7 8 9 10 11 12 13

(6)(7) S

lt /mm2S

lb

/mm2S

ft

/mm2S

fb1

/mm2S

fb2

/mm2G1/N

G2/N

f1/N

f2/N

x1/mm x2/mm h/mm

860 960 5539 450 1256 11.

22

21.

22

80

.6

33

7

10 6 18

P1(MPa) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 P2(MPa) 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 K1(N/mm) 15.343 23 30 30.8 47 55 63 71 79 87 95 95.6 96 K2(N/mm) 1 10 12 18.7 18 0.925 0 22 25 28 31 31.763 32

方程式(3) 430.57

6

216.18 20.18 -2.22

-455.8

2

-679.8

2

-903.8

2

-1127.

82

-1351.

82

-1575.

82

-1799.

82

-1816.

62

-1827.

82

方程式(4) -14229

.3

-14068

.9

-13884

.9

-13902

.7

-13444

.9

-13118

.5

-12888

.9

-12796

.9

-12590

.9

-12384

.9

-12178

.9

-12166

.7

-12156

.9

方程式(6) 65.384 225.78 409.78 391.98 849.78 1176.2

3

1405.7

8

1497.7

8

1703.7

8

1909.7

8

2115.7

8

2128.0

02

2137.7

8

方程式(7) 445.21 305.78 327.78 174.98 353.78 843.58 945.78 497.78 505.78 513.78 521.78 509.46

8

507.78

- 5 -

设定P1,P2,

K1

K2,验证

(3)(4)

1 2 3 4 5 6 7 8 9 10 11 12 13

(6)(7) S

lt /mm2S

lb

/mm2S

ft

/mm2S

fb1

/mm2S

fb2

/mm2

G1/N G2/N f1/N f2/N

x1/mm x2/mm h/mm

0.0008

6 0.0009

6

0.0055

39

0.0004

5

0.0012

56

11.22 21.22 85.6 337 0.006 0.01 0.018

P1(MPa) 4 4 4 4 4 4 4 4 4 4 4 4 4 P2(MPa) 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 K1(N/mm) 15.343 23 30 39 47 55.63 56 71 79 87 95 95.6 96 K2(N/mm) 1 10 12 17.5 21.34 23.196 24 22 25 28 31 31.763 32

方程式(3) 966.94

8

783.18 615.18 399.18 207.18 0.06 -8.82

-368.8

2

-560.8

2

-752.8

2

-944.8

2

-959.2

2

-968.8

2

方程式(4) -16839

.2

-16745

.4

-16597

.4

-16436

.4

-16282

.8

-16094

.3

-16093

.4

-15713

.4

-15551

.4

-15389

.4

-15227

.4

-15220

.7

-15213

.4

方程式(6) 0.012 93.78 241.78 402.78 556.38 744.94 745.78 1125.7

8

1287.7

8

1449.7

8

1611.7

8

1618.5

5

1625.7

8

方程式(7) 379.83

8

173.78 159.78 59.78 0.26 0.072 -20.22 125.78 89.78 53.78 17.78 0.016 -4.22

- 6 -

设定P1,P2,

K1

K2,验证

(3)(4)

1 2 3 4 5 6 7 8 9 10 11 12 13

(6)(7) S

lt /mm2S

lb

/mm2S

ft

/mm2S

fb1

/mm2S

fb2

/mm2

G1/N G2/N f1/N f2/N

x1/mm x2/mm h/mm

0.0008

6 0.0009

6

0.0055

39

0.0004

5

0.0012

56

11.22 21.22 85.6 337 0.006 0.01 0.018

P1(MPa) 5 5 5 5 5 5 5 5 5 5 5 5 7 P2(MPa) 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 K1(N/mm) 15.343 23 30 39 47 55 63 71 79 87 95 95.63 175.5 K2(N/mm) 1 10 12 10 13 16 19 22 25 28 31 31.763 48.85

方程式(3) 1926.9

48

1743.1

8

1575.1

8

1359.1

8

1167.1

8

975.18 783.18 591.18 399.18 207.18 15.18 0.06 3.18

方程式(4) -21928

.2

-21834

.4

-21686

.4

-21450

.4

-21288

.4

-21126

.4

-20964

.4

-20802

.4

-20640

.4

-20478

.4

-20316

.4

-20308

.9

-28740

.9

方程式(6) 0.012 93.78 241.78 477.78 639.78 801.78 963.78 1125.7

8

1287.7

8

1449.7

8

1611.7

8

1619.2

7

3365.2

8

方程式(7) 379.83

8

173.78 159.78 269.78 233.78 197.78 161.78 125.78 89.78 53.78 17.78 0.196 0.98

- 7 -

[键入文字]

(word完整版)高中物理弹簧问题

弹簧问题 轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。 无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。 弹簧读数始终等于任意一端的弹力大小。 弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。 性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。 其伸长量等于弹簧任意位置受到的力和劲度系数的比值。 性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性; 有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。 性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。 分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。 弹簧问题的题目类型 1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数) 2、求与弹簧相连接的物体的瞬时加速度 3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化) 4、有弹簧相关的临界问题和极值问题 除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题 1、弹簧问题受力分析 受力分析对象是弹簧连接的物体,而不是弹簧本身 找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法); 通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化 弹簧长度的改变,取决于初末状态改变。(压缩——拉伸变化) 参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。 抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零的特点求解。 注:如果a相同,先整体后隔离。 隔离法求内力,优先对受力少的物体进行隔离分析。 2、瞬时性问题 题型:改变外部条件(突然剪断绳子,撤去支撑物) 针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析 3、动态过程分析 三点分析法(接触点,平衡点,最大形变点) 竖直型: 水平型:明确有无推力,有无摩擦力。物体是否系在弹簧上。 小结:弹簧作用下的变加速运动, 速度增减不能只看弹力,而是看合外力。(比较合外力方向和速度方向判断) 加速度等于零常常是出现速度极值的临界点。速度等于零往往加速度达到最大值。

史上最全受力分析图组(含答案)

受力分析一、下面各图的接触面均光滑,对小球受力分析: 二、下面各图的接触面均粗糙,对物体受力分析: 图 1 图2 图 3 图 5 图 6 图 7 图9 图 11 图10 图 12 图 8 图 4 图19 物体静止在斜面上图20 图21 图13 v 图15 v 图16 图14 物体处于静止 物体刚放在传送带上 图17 物体随传送带一起 做匀速直线运动 图18 图22 物体处于静止(请画出物体 受力可能存在的所有情况) 图23

三、分别对A 、B 两物体受力分析: 图28 杆处于静止状态,其中杆与半球面之间光滑 图29 杆处于静止状态,其中 杆与竖直墙壁之间光滑 图30 杆处于静止状态 图31 O A B C 图32 匀速上攀 图33 v v 图34 匀速下滑 A B F 图36 A 、 B 两物体一起做匀速直线运动 A 、 B 两物体均静止 A B 图37 F 图42 B v A A 、B 两物体一起匀速下滑 A 、B 、 C 两物体均静止 B C 图38 A 随电梯匀速上升 v (7) (9) (8)

(16) (17) (18) (19) (20) (21) (28) (29) (30) 三球静止 (25) (26) (27) 小球A静止 弹簧处于压缩状态 (22) (23) (24) O P Q B AO表面粗糙,OB表面光滑 分别画出两环的受力分析图

(31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) A、B匀速运动A、B匀速运动 (37)(38)(39)(40)A、B、C三者都静止,分别画出ABC三者的受力图 分别画出各物块的受力分析图 此环为轻环,重力忽略A沿墙壁向上匀速滑动

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习 , 吊着重为180N的物体,不计摩

例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为 ( ) A. mg B. 33mg C. 21mg D. 4 1 mg 变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳( ) A .必定是OA B.必定是OB C .必定是OC D.可能是OB ,也可能是OC 变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围. 变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时 A .绳OA 的拉力逐渐增大 B .绳OA 的拉力逐渐减小 C .绳OA 的拉力先增大后减小 D .绳OA 的拉力先减小后增大 变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1 = 4Kg 和m 2 = 2Kg 的物体,如图所示。在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。

常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再 用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-2 1 kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p = 2 1kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2, 两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题若求m l 移动的距离又当如何求解? 参考答案:C

水平面的圆盘模型史上最全版

水平面的圆盘模型史上最全版 模型概述: 水平方向上的“圆盘”模型大多围绕着物体与圆盘间的最大静摩擦力为中心展开的,因此最大静摩擦力的判断对物体临界状态起着关键性的作用。 静摩擦力通常属于被动力,应根据物体所受主动力的情况以及其运动状态判断物体的静摩擦力的大小,如果物体受到的静摩擦力已经达到最大静摩擦力,则应考虑物体是否还受到其他力的作用。 模型讲解: 1.单个物体置于水平圆盘上 如图所示,水平圆盘上放有质量为m 的物块A (可视为质点),物块A 到转轴的距离为r 。物块A 和圆盘间最大静摩擦力f m 等于滑动摩擦力,动摩擦因数为μ。当圆盘以角速度ω转动时: (1) 若物体与圆盘无相对滑动,则物体随圆盘一起做匀速圆周运动的向心力全部由静摩擦力提供,所以有mg f r m f m μω=≤=2,解得r g μω≤。 (2) 当r g μω>时,mg f r m F m n μω=>=2 ,物体所受静摩擦力不足以提供其做圆周运动的向心力,物体将从圆周与切线的夹角范围内飞出。 (3) 若在物体A 与转轴间有一不可伸长的细线相连,一开始绳子只是拉直,没有张力。设线对物体的拉力为T ,当r g μω≤ 时,静摩擦力提供向心力,0=T ;当r g μω>时,必有r m T mg 2ωμ=+,所以必有0>T ,物体必受到指向圆心O 点的细线的拉力,而且当 ω增大时,T 也随之增大。若此时剪断细线,物体将从圆周与切线的夹角范围内飞出。 2.两个物体叠放在水平圆盘上 如图所示,质量为m 1的物体A 叠放在质量为m 2的物体B 上,A 与B 、B 与圆盘的动摩擦因数分别为μ1和μ2。最大静摩擦力等于滑动摩擦力。当圆盘以角速度ω转动时,分别对B 和A 受力分析可知: (1)若21μμ<,当r g 1μω≤时,A 与B 、B 与圆盘无相对滑动;当r g 1μω>时,

弹簧模型的动力学分析方法

弹簧模型的动力学分析方法 【例二】如图所示,劲度系数为21,k k 的轻质弹簧竖直悬挂,两弹簧之间有一质量为1m 的重物,最下端挂一质量为2m 的重物,用一力竖直向上缓慢托起2m ,当力为多少时,两弹簧的总长等于弹簧原长之和? 解析: 两弹簧的总长等于弹簧原长之和,必定是弹簧1k 伸长, 1k 弹簧2k 压缩,且形变量21x x = 1m 对1m 物体有 g m x k x k 12211=+ 2k 对2m 物体有 222x k g m F += 2m 21121k k g m x x +==∴ 2 1122k k g m k g m F ++= 【变式3】如图所示,竖直放置的箱子内,用轻质弹簧支撑着一个重G 的物块, 静止时物块对箱顶P 的压力为2 G ,若将箱子倒转,使箱顶向下,静止时物块对箱顶P 的压力是多少?(物块和箱顶间始终没有发生相对滑动) P 【变式4】如图所示,在倾角为θ的光滑斜面上有两个轻质 弹簧相连的物块B A ,,它们的质量分别为B A m m ,,弹簧的 劲度系数为k ,C 为一固定挡板,现开始用一恒力F 沿斜面 方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位置d (重力加速度为g ) (变式3图) C A B θ (变式4图) 【变式5】如图所示,水平面上质量均为m 的两木块B A ,用劲度系数为k 的轻质弹簧连接,整个系统处于平衡状态,现用一竖直向上的力F 拉动木块A ,使木块A 向上做加速度为a 的匀加速直线运动,取木块A 的起始位置为坐标原点,图乙

中实线部分表示从力F 作用在木块A 到木块B 刚离开地面这个过程中,F 和木块A 的位移x 之间的关系,则( ) A.k ma x /0-= F F B.k g a m x /)(0+-= A 0F C.ma F =0 B D.)(0g a m F += 0x O x 甲 乙 【2】如图所示,B A ,两个物快的重力分别是N G N G B A 4,3==,弹簧的重力不计,系统沿着竖直方向处于静止状态,此时弹簧的弹力N F 2=,则天花板受到的拉力和地板受到的有压力有可能是( ) A.N N 6,1 A B.N N 6,5 C.N N 2,1 B D.N N 2,5 【5】如图所示,一辆有力驱动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是() A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 左 右 【6】如图所示,质量均为m 的物体B A ,通过一劲度系数为k 的轻质弹簧相连,开始时B 放在地面上,B A ,都处于静止状态,现通过细绳缓慢地将A 向上提升距离1L 时,B 刚要离开地面,若将A 加速向上拉起,B 刚要离开地面时,A 上升的距离为2L ,假设弹簧一直都在弹性限度范围内,则( ) A.k mg L L = =21 B. k mg L L 221== A C.121,L L k mg L >= C.121,2L L k mg L >= B

弹簧与弹簧测力计练习题精选附答案讲解学习

弹簧与弹簧测力计练习题精选附答案

2017年12月05日弹簧与弹簧测力计练习题精选 一.选择题(共14小题) 1.甲体重大、乙手臂粗、丙手臂长,三位同学用同一个拉力器比试臂力,结果每个人都能把手臂撑直,则下列说法中正确的是() A.甲所用拉力大B.乙所用拉力大 C.丙所用拉力大D.甲乙丙所用拉力一样大 2.在图中,A、B两球相互间一定有弹力作用的图是() A.B.C.D. 3.小明使用弹簧测力计前发现指针指在0.4N处,没有调节就测一物体的重力,且读数为2.5N,则物体重力的准确值应为() A.2.1N B.2.5N C.2.7N D.2.9N 4.如图所示的四个力中,不属于弹力的是() A. 跳板对运动员的支持力B. 弦对箭的推力 C.

熊猫对竹子的拉力D. 地球对月球的吸引力 5.使用弹簧测力计时,下面几种说法中错误的是() A.弹簧测力计必须竖直放置,不得倾斜 B.使用中,弹簧、指针、挂钩不能与外壳摩擦 C.使用前必须检查指针是否指在零点上 D.使用时,必须注意所测的力不能超过弹簧测力计的测量范围 6.如图所示,一根弹簧,一端固定在竖直墙上,在弹性限度内用手水平向右拉伸弹簧的另一端,下列有关“弹簧形变产生的力”描述正确的是() A.弹簧对手的拉力 B.手对弹簧的拉力 C.墙对弹簧的拉力 D.以上说法都正确 7.如图所示,一个铁块放在一块薄木板上,下列关关于铁块和木板受力情况的叙述正确的是() ①木板受到向下的弹力是因为铁块发生了弹性形变;②木板受到向下的弹力是因为木板发生了弹性形变;③铁块受到向上的弹力是因为木板发生了弹性形变;④铁块受到向上的弹力是因为铁块发生了弹性形变. A.①③B.①④C.②③D.②④

弹簧质量块模型过程分析

过程分析之弹簧 如图11所示,两个木块质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面的弹簧,在这过程中下面木块移动的距离 A . 1 1k g m B. 22k g m C. 2 1k g m D.22 k g m 如图所示,劲度系数为2k 的轻弹簧B 竖直固定在桌面上.上端连接一个质量为m 的物体,用细绳跨过定滑轮将物体m 与另一根劲度系数为1k 的轻弹簧C 连接。当弹簧C 处在水平位置且没发生形变时.其右端点位于a 位置。现将弹簧C 的右端点沿水平方向缓慢拉到b 位置时,弹簧B 对物体m 的弹力大小为 mg 3 2 ,则ab 间的距离为________。 如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k1和k2,它们的D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上,当物体m 静止时,上方的弹簧处于原长;若将物体的质量增加了原来的2倍,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了 ( ) A . B . C . D . 如图10所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1 、m 2 的物块1、2拴接,劲度系数为k 2的轻质弹 m 1 m 2 K 2 K 1 图11 m 1 m 2 1 2 k 1 K 2 图10

簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面,在此过程中物块2的重力势能增加了多少?物块1的重力势能增加了多少? 如图所示,重80N 的物体A 放在倾角为30°的粗糙斜面上,有一根原长为10cm ,劲度系数为1000N/m 的弹簧,其一端固定在斜面底端,另一端放置物体A 后,弹簧长度缩短为8cm 。现用一测力计沿斜面向上拉物体。若物体与斜面间的最大静摩擦力为25N ,当弹簧的长度仍为8cm 时,测力计的示数可能为 A .10N B .20N C .40N D .60N 如图所示,在水平板的左端有一固定挡板,挡板上连接一轻质弹簧.紧贴弹簧放一质量为m 的滑块,此时弹簧处于自然长度.已知滑块与板之间的动摩擦因数为 ,且最大静摩擦力等于滑动摩擦力.现将板的右端缓 慢抬起(板与水平面的夹角为θ),直到板竖直,此过程中弹簧弹力的大小F 随夹角θ的变化关系可能是( ) A B C D 用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L 。现用该弹簧沿斜面方向拉住质里为2 m 的物体,系统静止时弹簧伸长量也为L 。斜面倾角为30°,如图所示。则物体所受摩擦力 A .等干零 B .大小为1 2 mg ,方向沿斜面向下 C .大小为 3 2 mg ,方向沿斜面向上 D . 大小为mg ,方向沿斜面向上

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力

弹簧的强度计算 1、弹簧的受力 图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩 T= FRcosα ,弯矩 M= FRsinα,切向力F Q = Fcosα和法向力 N F = Fsinα (式中R为弹簧的平均半径)。由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90 ),所以弯矩M和法向力N 可以忽略不计。因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。α的值较小时,cosα≈ 1,可取T = FR 和 Q = F。这种简化对于计算的准确性影响不大。 当拉伸弹簧受轴向拉力F时,弹簧丝横剖面上的受力情况和压缩弹簧相同,只是扭矩T 和切向力Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。 2、弹簧的强度 从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝

系数K s可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力 式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径 3、弹簧的刚度 圆柱弹簧受载后的轴向变形量 式中n为弹簧的有效圈数;G为弹簧的切变模量。 这样弹簧的圈数及刚度分别为 对于拉伸弹簧,n>20时,一般圆整为整圈数,n<20时,可圆整为1/2圈;对于压缩弹簧总圈数n的尾数宜取1/4、1/2或整圈数,常用1/2圈。为了保证弹簧具有稳定的性能,通常弹簧的有效圈数最少为2圈。C值大小对弹簧刚度影响很大。若其它条件相同时,C值愈小的弹簧,刚度愈大,弹簧也就愈硬;反之则愈软。不过,C值愈小的弹簧卷制愈困难,且在工作时会引起较大的切应力。此外,k值还和G、d、n有关,在调整弹簧刚度时,应综合考虑这些因素的影响。

弹簧的应力分析.

CosmosWorks Designer 2005 Training Manual 第七章:吸振器的应力分 析 目的顺利修完本章以后,你将学会: 利用连接器加载约束并简化模型 控制网格密度以获得精确的应力解

COSMOSWorks 2005 Designer Training Manual 第七章:吸振器的应力分析 工程描述某一微型吸振器的组成包括 一根管子、活塞、夹钳以及 一螺旋状的弹簧。在本章 中,我们研究当该装置承受 10N压力时,由压环所产生 的应力分布情况。 由于螺旋弹簧中的应力情况 并不是我们所关心的,因 此,我们把弹簧从模型中去 掉,取而代之的是一等效的 弹簧连接器。 计算受压弹簧的刚度 首先,螺旋弹簧的刚度是我们必须考虑的。为此,我们单独分析该弹簧。 下面计算受压弹簧的刚度: 1打开零件. 打开SolidWorks 零件:弹簧副本。 弹簧的有效长度为方便加载约束与载荷,我们在弹簧的两端分别加上一个圆盘。 相应地,两圆盘间的距离为弹簧未受压时它的有效长度。 2创建研究名称. 进入COSMOSWorks, 然后创建一研究名称,取名为spring stiffness。 (静态分析,实体网格) 3回顾材料属性. 材料的属性(合金钢)可由SolidWorks中转移过来。 4加载固定约束. 在1号圆盘的底面施加一固定约束。 5施加径向约束. 在2号圆盘的柱面上 沿径向施加一径向约 束。 该约束使得弹簧仅能 沿轴向压缩(或伸 长)。

COSMOSWorks 2005 Designer Training Manual 第七章:吸振器的应力分析6加载压力. 现在,在承受柱面径向约束的圆盘(2号)的底面施加1N的压 力。 7网格划分与分析运行. 8得出z向位移. 得到的位移结果显示: 轴向位移为3.8 mm, 且沿着z轴方向。 受压刚度因此,该弹簧的受压刚度为 260 N/m。(k = f/x) 在下一个模型中,我们用上述结果来定义弹簧连接器,即f = kx, 其中,k=260 N/m。 分析吸振器装置为了分析此吸振器装置: 9打开组件. 打开文件名为shock的组件, 并去掉螺旋状弹簧 (零件文件为 Front Spring)。 10创建研究名称. 创建一名为mesh1的研究模型。 (静态分析,实体网格) 11施加固定约束. 在激振管(1)中的孔眼侧面上 施加一固定约束。 该约束完全限制了激振管部件。 12施加径向约束. 在振动活塞的细杆(2)端部的孔眼侧面上,施加径向约束。

弹簧压轴题(非常实用)

弹簧类问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧上的弹力是变力;从能量的角度看,弹簧是个储能元件;因此,关于弹簧的问题,能很好的考察学生的分析综合能力,备受高考命题专家的青睐。解决这些问题除了一般要用动量守恒定律和能量守恒定律这些基本规律之外,搞清物体的运动情景,特别是弹簧所具有的一些特点,也是正确解决这类问题的重要法。 在有关弹簧类问题中,要特别注意使用如下特点和规律: 1.弹簧的弹力是一种由形变而决定大小和向的力。当题目中出现弹簧时,要注意弹力的大小与向时刻要与当时的形变相对应。在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几关系,分析形变所对应的弹力大小、向,以此来分析计算物体运动状态的可能变化。 2. 弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。在瞬间形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。如果弹簧被作为系统的

一个物体时,弹簧的弹力对系统物体做不做功都不影响系统的机械能。 4、对于只有一端有关联物体,另一端固定的弹簧,其运动过程可结合弹簧振子的运动规律去认识,突出过程的期性、对称性及特殊点的应用。如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是关联物的速度向发生改变的时刻。若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。若关联物同时处在电磁场中,要注重过程分析。 5、两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相同,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时,物体速度最大。针对此类问题,要立足运动和受力分析,在解题法上以动量定理、动量守恒定律和动能定理等为首选。 下面我们结合例题来分析一下弹簧类问题的研究法。 1.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地面上.平衡时,弹簧的压缩量为x。,如图4所示.一物块从钢板正上距离为3x。处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A

模型组合讲解——弹簧模型(动力学问题)

模型组合讲解——弹簧模型(动力学问题) [模型概述] 弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。 [模型讲解] 一. 正确理解弹簧的弹力 例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。②中弹簧的左端受大小也为F 的拉力作用。③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( ) ① ② ③ ④ 图1 A. l l 21> B. l l 43> C. l l 13> D. l l 24= 解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a 为多少,仍然可以得到弹簧两端受力大小相等。由于弹簧弹力F 弹与施加在弹簧上的外力F 是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。在题目所述四种情况中,由于弹簧的右端受到大小皆为F 的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F ,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D 。 二. 双弹簧系统

例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。用两根相同的轻弹簧夹着一个质量为2.0kg 的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a 、b 上,其压力大小可直接从传感器的液晶显示屏上读出。现将装置沿运动方向固定在汽车上,传感器b 在前,传感器a 在后,汽车静止时,传感器a 、b 的示数均为10N (取g m s =102 /) 图2 (1)若传感器a 的示数为14N 、b 的示数为6.0N ,求此时汽车的加速度大小和方向。 (2)当汽车以怎样的加速度运动时,传感器a 的示数为零。 解析:(1)F F ma 121-=,a F F m m s 112240= -=./ a 1的方向向右或向前。 (2)根据题意可知,当左侧弹簧弹力F 10'=时,右侧弹簧的弹力F N 220'= F ma 22'= 代入数据得a F m m s 22210= ='/,方向向左或向后 [模型要点] 弹簧中的力学问题主要是围绕胡克定律F kx =进行的,弹力的大小为变力,因此它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值,我们在处理变速问题时要注意分析物体的动态过程,为了快捷分析,我们可以采用极限方法,但要注意“弹簧可拉可压”的特点而忽略中间突变过程,我们也可以利用弹簧模型的对称性。 [模型演练] (2005年成都考题)如图3所示,一根轻弹簧上端固定在O 点,下端系一个钢球P ,球处于静止状态。现对球施加一个方向向右的外力F ,吏球缓慢偏移。若外力F 方向始终水平,移动中弹簧与竖直方向的夹角θ<90 且弹簧的伸长量不超过弹性限度,则下面给出弹簧伸长量x 与cos θ的函数关系图象中,最接近的是( )

受力分析之绳、弹簧、细线

受力分析之绳、弹簧、细线 1.光滑的水平面上有一质量m=1㎏的小球,小球与水平轻弹簧和水平面成?=30θ的角的轻绳的一端相连,如图所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断绳的瞬间,小球的加速度大小及方向如何?此时轻弹簧的弹力与水平面对球的弹力的比值是多少?(210s m g =) 2.如下图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量, ( ) A.都等于2g B.2g 和0 C.()B B m g m m 2A +和0 D.0和()B B m g m m 2A + 3.如下图所示,车厢内光滑的墙壁上,用线拴住一个重球。车静止时,线的拉力为T ,墙对球的支持力为N ,车向右做加速运动时,线的拉力为T ′,墙对球的支持力为N ′。 求(1)T ′____T ,N ′_____N 。 (2)若墙对球的支持力为0,则物体的运动状态可能是_________或_________。

4.如下图所示,小球m 用两根绳子拉着,绳子OA 水平。问: (1)若将绳子OA 剪断瞬间,小球m 的加速度大小、方向如何? (2)若将绳子OB 剪短瞬间,小球m 的加速度大小、方向如何? 5.如下图所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,它们的质量之比是1:2:3。设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬间,木块A 和B 的加速度分别是。、________==B A a a 6.如下图所示,以水平向右的加速度a 向右加速前进的车厢内,有一光滑的水平桌面,在桌面上用轻弹簧连接质量均为m 的两小球相对车静止。当剪断绳子瞬间,A 、B 两球加速度分别为(取向右方向为正方向)。、________==B A a a A B C

史上最全杠杆作图题

一、画出图中杠杆上的力F 1、F 2的力臂L 1、L 2。 二、找出动力和阻力并画出相应的力臂 1.如图12所示的是汽车液压刹车装置的一部分。该装置中AOB 实为一个杠杆,O 是杠杆的支点,请画出刹车时它所受的动力F 1、阻力F 2和动力臂L 1。 2.如图13所示的钢丝钳,其中A 是剪钢丝处,B 为手的用力点,O 为转动轴(支点),右图为单侧钳柄及相连部分示意图.请在图中画出出钢丝钳剪钢丝时的动力臂L 1,和阻力F 2, 3.夹子是我们生活中经常使用的物品,图14给出了用手捏开和夹住物品时的两种情况,动力和阻力并画出相应的力臂。 4.在图15中,画出作用在“开瓶起子”上动力F 1的力臂和阻力F 2的示意图. 图8 图10 2 1 图5 图9 图11 图12 图13 图15 甲 图14 乙

5.杠杆在我国古代就有了许多巧妙的应用,护城河上安装使用的吊桥就是一个杠杆,如图16所示,请画出动力F 1与阻力F 2的示意图,并画出动力F 1的力臂L 1。(设吊桥质地均匀) 6.如图17是静止在水平地面上的拉杆旅行箱的示意图,O 是轮子的转轴,O ′是箱体的重心。以O 为支点,画出力F 的力臂和箱体所受重力的示意图。 7.某同学在做俯卧撑运动时(如图18),可将他视为一个杠杆,支点为O ,他的重心在A 点,支撑力为F ,请画出重力和支撑力F 的力臂. 8.请你在图19中画出使用剪刀时,杠杆AOB 所受动力F ,的示意图及动力臂L 1、阻力臂L 2。 9.图20所示的是一种厕所坐便器的自动上水装置示意图。坐便器冲水之后由自来水自动上水,当水箱内的水达到一定深度时,浮标带动杠杆压住入水口,停止上水。请在图中作出力F 1、F 2的示意图及其力臂,并分别用L 1和L 2表示力臂,O 为支点。 10.如图21是用螺丝刀撬起图钉的示意图,O 为支点,A 为动力作用点,F 2为阻力。请在图中画出阻力F 2 的力臂l 2及作用在A 点的最小动力F 1的示意图。 11.筷子是我国传统的用餐工具,它应用了杠杆的原理,如图22所示,请你在右图中标出这根筷子使用时的支点O .并画出动力F 1,和阻力臂L 2。 12.为了防止翻倒,篮球架常常在底座后方加一个质量很大的铁块作为配重。如图23所示,O 为支点,试在A 点画出铁块对底座的压力F ,并画出F 的力臂。 13.如图24甲所示是小宇同学发明的捶背椅,当坐在椅子上的人向下踩脚踏板时,捶背器便敲打背部进行按摩。请你在图乙中画出踩下脚踏板敲打背部时,杠杆B 点受到的阻力F 2、阻力臂L 2及动力臂L 1。 14.如图25是一种简易晾衣架,它的横杆相当于一个杠杆, O 点是支点,F 2是阻力,请作出A 点受到的动力F 1的示意图和它的力臂L 1. 图 16 图17 图 20 图18 图 12 F 2 图21 图 22 图23

弹簧模型—力学问题

高三物理专题训练--------弹簧模型(动力学问题) 弹簧是高中物理中的一种常见的物理模型,几乎每年高考对这种模型有所涉及和作为压轴题加以考查。它涉及的物理问题较广,有:平衡类问题、运动的合成与分解、圆周运动、简谐运动、做功、冲量、动量和能量、带电粒子在复合场中的运动以及临界和突变等问题。为了将本问题有进一步了解和深入,现归纳整理如下 弹簧类题的受力分析和运动分析 (一)弹力的特点 1.弹力的瞬时性:弹簧可伸长可压缩,两端同时受力,大小相等,方向相反,弹力随形变量变化而变化。 2.弹力的连续性:约束弹簧的弹力不能突变(自由弹簧可突变) 3.弹力的对称性:弹簧的弹力以原长位置为对称,即相等的弹力对应两个状态。 (二)在弹力作用下物体的受力分析和运动分析 ①考虑压缩和伸长两种可能性 1.在弹力作用下物体处于平衡态—— ②作示意图 ③受力平衡列方程 2.在弹力作用下物体处于变速运动状态 形变 F m F a i ∑=,a 变化 v 变化 位置变化 (a = 0时v max ) (v=0时形变量最大) (1)变量分析:(a )过程——抓住振动的对称性 (b )瞬时 (2)运动计算: (a)匀变速运动 (b)一般运动 ①通过分析弹簧的形变而确定弹力大小、方向的改变,从而研究联系物的运动 ②弹簧处于原长状态不一定是平衡态 ③当作匀变速直线运动时,必有变化的外力作用,变化的外力常存在极值问题 ④充分利用振动特征(振幅、平衡位置、对称性、周期性、F 回与弹力的区别) ⑤临界态——脱离与不脱离:必共速、共加速且N=0 ⑥善用系统牛顿第二定律 针对性练习: 1、如图所示,竖直放置在水平面上的轻质弹簧上端叠放着两个

专题 受力分析之弹簧问题

弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做 功等于弹性势能增量的负值。弹性势能的公式,高考不作定量要求,可作定性讨论, 因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为 m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴 接,下端压在桌面上(不拴接),整个系统处于平衡状态。现 施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌 面。在此过程中,m2的重力势能增加了______,m1的重力势能 增加了________。 例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是 A.7N,0 B.4N,2N C.1N,6N D.0,6N 平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况。只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。 2.突变类问题 例3.如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态。现将l2线剪断,求剪断瞬时小球的加速度。若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度。 突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。所以,对于细线、弹簧类问题,当外界情况发生变化时(如撤力、变力、剪断),要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键。 3.碰撞型弹簧问题 此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,

专题三 弹簧与受力分析

专题三 弹簧与受力分析 - 1 - / 2 专题三 弹簧与受力分析 【初出茅庐】 如图所示,甲、乙两根相同的轻,分别与物块的上下表面相连接,乙的下端与地面连接.起初甲处于自由长度,乙的压缩长度为△L .现用手将甲缓慢上提,使乙承受物重的2/3,乙仍处于压缩状态,那么,甲的A 端应向上提起的距离为________。 【知识拓展】 将两根劲度系数分别为K 1和K 2的弹簧串联(并联),一端固定,合成后的弹簧的劲度系数为多少? 串联 并联 思考:把一根弹簧在其一半处折叠成一根双股弹簧,则其弹簧的劲度系数为多少? 【基础题】 用5N 的力可以使一轻弹簧伸长8mm ,现在把两个这样的弹簧串联起来,在两端各用10N 的力来拉它们,这时弹簧的总伸长应是( ) A .4mm B .8mm C .16mm D .32mm 2211 F kx k x k x ===12 x x x =+12 1 2 k k k k k ?=+F kx =12 F F F =+11F k x =22F k x =12 k k k =+

专题三弹簧与受力分析 如图所示,劲度系数均为k 的甲、乙两轻质弹簧,甲弹簧一 端固定在天花板上,乙弹簧一端固定在水平地面上.当在甲 的另一端挂一重物G,乙的另一端压一重物G时,两弹簧的 长度均为L,现将两弹簧并联,并在其下方系一重物G,此 时弹簧的长度应为() A.L+(G/2k) B.(L+G)/k C.(L-G)/2k D. (L-G)/k 如图所示,两木块的质量分别为m1和m2,两轻质的分别为k1和k2,上面木块压 在上面的上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到 它刚离开上面.在这过程中下面木块移动的距离为() A.m1g/k1 B.m2g/k1 C.m1g/k2 D.m2g/k2 【提高题】 已知在弹性限内,的伸长量△L与受到的拉力F成正比,用公式F=k?△L表示,其中k为的(k 为一常数).现有两个轻L1和L2,它们的分别为k1和k2,且k1=3k2,现按如图所示方式用它们吊起滑轮和重物,如滑轮和重物的重力均为G,则两的伸长量之比△L1:△L2为() A.1:1 B.3:2 C.2:3 D.3:4 如图,L1、L2是劲度系数均为 k 的轻质弹簧,A、B两只钩码均重G,则静止时两弹 簧伸长量之和为() A.3G/k B.2G/k C.G/k D.G/2k 2 / 2

史上最全工程施工全过程详解,没有之一!!

史上最全工程施工全过程详解,没有之一!! 2015-07-22 来源:微信公众号“建筑经济与管理” 一、前期施工准备阶段 地质勘察 地质单位受建设单位的委托,据设计提供的相关资料,对拟建场地通过各种勘察手段和方法对地质结构或地质构造:地貌、水文地质条件、土和岩石的物理力学性质等,做出分析评价出具详细的“岩土工程勘察报告”,为设计和施工提供所需的工程地质资料。

文物勘察 根据国家文物保护法相关规定:进行基本建设工程,建设单位应当事先报请政府文物行政部门组织从事考古发掘的单位在工程范围内有可能埋藏文物的地方进行考古调查、勘探。 考古调查、勘探中发现文物的,由省、自治区、直辖市人民政府文物行政部门根据文物保护的要求会同建设单位共同商定保护措施;遇有重要发现的,由省、自治区、直辖市人民政府文物行政部门及时报国务院文物行政部门处理。 建筑边坡与深基坑工程的设计方案评审 设计方案评审是指县级以上住房城乡建设主管部门或其委托机构依据国家、地方有关技术规范和相关的强制性条文,对建筑边坡与深基坑工程设计方案进行的安

全、经济、合理等方面的技术性论证。其目的是:为加强对建筑边坡与深基工程的管理,确保建设工程及其相邻建(构)筑物和地下管线、道路的安全,土方开挖图确定后,依据国家相关规定:建设单位应委托评审组织机构对建筑边坡与深基坑工程的设计方案进行评审。 工程测量定位 是指建筑工程开工后的第一次放线,建筑物定位参加的人员是:城市规划部门(下属的测量队)及施工单位的测量人员(专业的),根据建筑规划定位图进行定位,最后在施工现场形成(至少)4个定位桩。放线工具为“全站仪”或“比较高级的经纬仪。

弹簧模型不同情况分析

摘要:此类模型是涉及弹簧在内的系统机械能守恒,在这类模型中,一般涉及动能、重力势能和弹性势能,列等式一般采用“转移式”或“转化式”。 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。

相关文档
相关文档 最新文档