文档库 最新最全的文档下载
当前位置:文档库 › 解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法、公式法)
解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法)

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

1.用适当的数填空:

①、x 2+6x+ =(x+ )2 ②、x 2-5x+ =(x - )2;

③、x 2+ x+ =(x+ )2 ④、x 2-9x+ =(x - )2

2.将二次三项式2x 2-3x-5进行配方,其结果为_________.

3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.

4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为___ ____,?所以方程的根为_________.

5.若x 2+6x+m 2是一个完全平方式,则m 的值是

6.用配方法将二次三项式a 2-4a+5变形,结果是

7.把方程x 2+3=4x 配方,得

8.用配方法解方程x 2+4x=10的根为

9.用配方法解下列方程:

(1)3x 2-5x=2. (2)x 2+8x=9

(3)x 2+12x-15=0 (4)

4

1 x 2-x-4=0

10.用配方法求解下列问题

(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

解一元二次方程练习题(公式法)

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:

)04(2422≥--±-=ac b a

ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c

一、填空题

1.一般地,对于一元二次方程ax 2+bx+c=0(a≠0),当b 2

-4ac≥0时,它的根是__ ___ 当b-4ac<0时,方程___ ______.

2.方程ax 2+bx+c=0(a≠0)有两个相等的实数根,则有____ ____ ,?若有两个不相等的实数根,则有_____ ____,若方程无解,则有__________.

3.用公式法解方程x 2 = -8x-15,其中b 2-4ac= _______,x 1=_____,x 2=________.

4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.

5.用公式法解方程4y 2=12y+3,得到

6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有 个 7.当x=_____ __时,代数式13x +与2214

x x +-的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________.

二、利用公式法解下列方程

(1)220x -+= (2) 012632=--x x (3)x=4x 2+2

(4)-3x 2+22x -24=0 (5)2x (x -3)=x -3 (6) 3x 2+5(2x+1)=0

(7)(x+1)(x+8)=-12 (8)2(x -3) 2=x 2-9 (9)-3x 2+22x -24=0

解一元二次方程练习题(因式分解法)

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

1.x 2-5x 因式分解结果为_______;2x (x-3)-5(x-3)因式分解的结果是______.

2.方程(2x-1)2=2x-1的根是________.

3.如果不为零的n 是关于x 的方程x 2-mx+n=0的根,那么m-n 的值为( ).

A .-12

B .-1

C .12

D .1 4.下面一元二次方程解法中,正确的是( ).

A .(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x 1=13,x 2=7

B .(2-5x )+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x 1=25 ,x 2=35

C .(x+2)2+4x=0,∴x 1=2,x 2=-2

D .x 2=x 两边同除以x ,得x=1

5、解方程

(1)4x 2=11x (2)(x-2)2=2x-4 (3)25y 2-16=0 (4)x 2-12x+36=0

6. 方程4x 2=3x-2+1的二次项是 ,一次项是 ,常数项是

7. 已知关于x 的方程ax 2+bx+c=0有一根为1,一根为-1,则a+b+c= ,

a-b+c=

8. 已知关于x 的方程3)12(2=++-x m mx m 是一元二次方程,则m=

9. 关于x 的一元二次方程(a-1)x 2+a 2-1=0有一根为0,则a=

10. 方程(x-1)2=5的解是 11.用适当方法解方程:

(1)(2x-3)2=9(2x+3)2 (2)x 2-8x+6=0 (3)(x+2)(x-1)=10

12.已知08)2)((=-+++y x y x ,则x+y 的值( )

(A )-4或2 (B)-2或4 (C)2或-3 (D)3或-2

13.能力提升

若a 2+b 2+ba-2+45=0 ,则b

a b a +-=______________ 14.中考链接:已知9a 2-4b 2=0,求代数式22

a b a b b a ab +--的值

公式法解一元二次方程教案-人教版

《公式法解一元二次方程》教案 教学目标 、知识技能 掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程. 、数学思考 通过求根公式的推导,培养学生数学推理的严密性及严谨性. 、解决问题 培养学生准确快速的计算能力. 、情感态度 通过公式的引入,培养学生寻求简便方法的探索精神及创新意识;通过求根公式的推导,渗透分类的思想. 重难点、关键 重点:求根公式的推导及 用公式法解一元二次方程. 难点:对求根公式推导过程中依据的理论的深刻理解. 关键:掌握一元二次方程的求根公式,并应用求根公式法解简单的一元二次方程. 教学过程 一、复习引入 【问题】(学生总结,老师点评) .用配方法解下列方程 ()- ()- .总结用配方法解一元二次方程的步骤。 ()移项; ()化二次项系数为; ()方程两边都加上一次项系数的一半的平方; ()原方程变形为()的形式; ()如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 【活动方略】 教师演示课件,给出题目. 学生根据所学知识解答问题. 【设计意图】 复习配方法解一元二次方程,为继续学习公式法引入作好铺垫. 一、 探索新知 如果这个一元二次方程是一般形式(≠),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 【问题】 已知(≠)且-4ac≥,试推导它的两个根为2b a -+,2b a - 分析:因为前面具体数字已做得很多,我们现在不妨把、、?也当成一个具体数字,根据

上面的解题步骤就可以一直推下去. 解:移项,得:- 二次项系数化为,得 b a - c a 配方,得:b a (2b a )-c a (2b a ) 即(2b a )2244b ac a - ∵-4ac≥且4a> ∴2244b ac a -≥ 直接开平方,得:2b a 即2b a - ∴2b a -,2b a -- 【说明】 这里a ac b b x 242-±-= (042≥-ac b )是一元二次方程的求根公式 【活动方略】 鼓励学生独立完成问题的探究,完成探索后,教师让学生总结归纳,由形式是一元二次方程的一般形式,得出一元二次方程的求根公式. 【设计意图】 创设问题情境,激发学生兴趣,引出本节内容,导出一元二次方程的求根公式。 【思考】 利用公式法解下列方程,从中你能发现什么 ()2320;x x -+=()2222 -=-x x ()24320x x -+= 【活动方略】 在教师的引导下,学生回答,教师板书 引导学生总结步骤:确定c b a ,,的值、算出ac b 42-的值、代入求根公式求解. 在学生归纳的基础上,老师完善以下几点: ()一元二次方程)0(02 ≠=++a c bx ax 的根是由一元二次方程的系数c b a ,,确定的;

高中数学方法篇之配方法

高中数学方法篇之配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 一、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 2 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5] B. [5,+∞) C. (-1,5] D. [5,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则实 数a=_____。

解一元二次方程(公式法)

应用拓展 某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元二次方程m 是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①211(1)(2)0m m m ?+=?++-≠?或②21020m m ?+=?-≠?或③1020 m m +=??-≠? 解:(1)存在.根据题意,得:m 2+1=2 m 2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x 2-1-x=0 a=2,b=-1,c=-1 b 2-4ac=(-1)2-4×2×(-1)=1+8=9 134 ±= x 1=,x 2=-12 因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=- 12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m 2+1=0,m 不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=-13 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-?1时,其一元一次方程的根为x=- 13. 布置作业 1.教材P 45 复习巩固4. 2.选用作业设计:

解一元二次方程练习题(配方法公式法)

解一元二次方程练习题 (配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+)2②、x 2-5x+=(x -)2;③、x 2+ x+=(x+)2④、x 2-9x+=(x -)22.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______, ? 所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是 6.用配方法将二次三项式a 2-4a+5变形,结果是 7.把方程x 2+3=4x 配方,得 8.用配方法解方程x 2+4x=10的根为 9.用配方法解下列方程: (1)3x 2-5x=2.(2)x 2+8x=9 (3)x 2+12x-15=0 (4)41 x 2-x-4=0 10.用配方法求解下列问题 (1)求2x 2-7x+2的最小值;(2)求-3x 2+5x+1的最大值。

解一元二次方程练习题(公式法) 一、填空题 1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是_____ 当b-4ac<0时,方程_________. 2.方程ax 2+bx+c=0(a ≠0)有两个相等的实数根,则有________,?若有两个不相等的实数根,则有_________,若方程无解,则有__________. 3.用公式法解方程x 2=-8x-15,其中b 2-4ac=_______,x 1=_____,x 2=________. 4.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________. 5.用公式法解方程4y 2=12y+3,得到 6.不解方程,判断方程:①x 2+3x+7=0;②x 2+4=0;③x 2+x-1=0中,有实数根的方程有个 7.当x=_____ __时,代数式与的值互为相反数. 8.若方程x-4x+a=0的两根之差为0,则a 的值为________. 二、利用公式法解下列方程 (1)25220x x (2)(3)x=4x 2+2 13x 22 1 4x x 012632x x

公式法解一元二次方程及答案详细解析

公式法解一元二次方程及答案详细解析 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

21.2.2公式法 一.选择题(共5小题) 1.用公式法解一元二次方程x2﹣5x=6,解是() A.x1=3,x2=2 B.x1=﹣6,x2=﹣1 C.x1=6,x2=﹣1 D.x1=﹣3,x2=﹣2 2.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣ 4x2+3=5x,下列叙述正确的是() A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3 C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣3 3.(2011春?招远市期中)一元二次方程x2+c=0实数解的条件是() A.c≤0B.c<0 C.c>0 D.c≥0 4.(2012秋?建平县期中)若x=1是一元二次方程x2+x+c=0的一个解,则c2+c=() A.1 B.2 C.3 D.4 5.(2013?下城区二模)一元二次方程x(x﹣2)=2﹣x的解是() A.﹣1 B.2 C.﹣1或2 D.0或2 二.填空题(共3小题) 6.(2013秋?兴庆区校级期中)用公式法解一元二次方程﹣x2+3x=1时,应求出a,b,c的值,则:a=;b=;c=. 7.用公式法解一元二次方程x2﹣3x﹣1=0时,先找出对应的a、b、c,可求得 △,此方程式的根为. 8.已知关于x的一元二次方程x2﹣2x﹣m=0,用配方法解此方程,配方后的方程是.

三.解答题(共12小题) 9.(2010秋?泉州校级月考)某液晶显示屏的对角线长30cm,其长与宽之比为4:3,列出一元二次方程,求该液晶显示屏的面积. 10.(2009秋?五莲县期中)已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值. 11.x2a+b﹣2x a+b+3=0是关于x的一元二次方程,求a与b的值. 12.(2012?西城区模拟)用公式法解一元二次方程:x2﹣4x+2=0. 13.(2013秋?海淀区期中)用公式法解一元二次方程:x2+4x=1. 14.(2011秋?江门期中)用公式法解一元二次方程:5x2﹣3x=x+1. 15.(2014秋?藁城市校级月考)(1)用公式法解方程:x2﹣6x+1=0; (2)用配方法解一元二次方程:x2+1=3x. 16.(2013秋?大理市校级月考)解一元二次方程: (1)4x2﹣1=12x(用配方法解); (2)2x2﹣2=3x(用公式法解). 17.(2013?自贡)用配方法解关于x的一元二次方程ax2+bx+c=0. 18.(2014?泗县校级模拟)用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式. 19.(2011秋?南开区校级月考)(1)用公式法解方程:2x2+x=5 (2)解关于x的一元二次方程:. 20.(2011?西城区二模)已知:关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根. (1)求k的取值范围;

解二元一次方程“十字交叉法”

解二元一次方程:“十字交叉法” 十字相乘就是把二次项拆成两个数的积 常数项拆成两个数的积 拆成的那些数经过十字相乘后再相加正好等于一次项 看一下这个简单的例子m2+4m-12 m -2 ╳ M 6 把二次项拆成m与m的积(看左边,注意竖着写) -12拆成-2与6的积(也是竖着写) 经过十字相乘(也就是6m与-2m的和正好是4m) 所以十字相乘成功了 m2+4m-12=(m-2)(m+6) 重点:只要把2次项和常数项拆开来(拆成乘积的形式),可以检验是否拆的对,只要相加等于1次项就成了,十字相乘法实际就是分解因式。 解释说明:

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 十字相乘法解题实例 常规题例1:把m2+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -2 ╳ 1 6 所以m2+4m-12=(m-2)(m+6)

例2:把5x2+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4, -4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解:因为 1 2 ╳ 5 -4 所以5x2+6x-8=(x+2)(5x-4) 例3:解方程x2-8x+15=0 分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 解:因为 1 -3 ╳ 1 -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4:解方程6x2-5x-25=0 分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解:因为 2 -5 ╳ 3 5

初中数学方法篇一:配方法

数学方法篇一:配方法 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 【范例讲析】 1.配方法在确定二次根式中字母的取值范围的应用 在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。 例1、二次根式322+-a a 中字母a 的取值范围是_________________________. 点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。 2.配方法在化简二次根式中的应用 在二次根式的化简中,也经常使用配方法。 例2、化简526-的结果是___________________. 点评:题型b a 2+一般可以转化为y x y x +=+2 )((其中? ??==+b xy a y x )来化简。 3.配方法在证明代数式的值为正数、负数等方面的应用 在证明代数式的值为正数或负数,配方法也是一种重要的方法。 例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。 点评:证明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式来证明。 4.配方法在解某些二元二次方程中的应用 解二元二次方程,在课程标准中不属于考试内容,但有些问题,还是可以利用我们所学的方法得以解决。 例4、解方程052422=+-++y x y x 。 点评:把方程052422=+-++y x y x 转化为方程组???=-=+010 2y x 问题,把生疏问题转化为熟悉 问题,体现了数学的转化思想,正是我们学习数学的真正目的。 5.配方法在求最大值、最小值中的应用 在代数式求最值中,利用配方法求最值是一种重要的方法。可以使我们求出所要求的最值。 例5、若x 为任意实数,则742++x x 的最小值为_______________________. 点评:配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,同时也是求二次三项式最值的一种常用方法。 6.配方法在一元二次方程根的判别式中的应用 配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,并且也是解决其他问题的方法,其用途相当广泛。在一元二次方程根的判别式中也经常要应用到配方法。 例6、证明:对于任何实数m ,关于x 的方程()22231470x m x m m +-+--=都有两个不相等的实数根。 点评:利用判别式证明方程根的情况是一种常见的题型,其实质上判断判别式的正负,一般都可以利用配方法解决。 7.配方法在恒等变形中的应用 配方法在等式的恒等变形中也经常用到,特别是含有多个二次式时,经常把他们分别配方,转变为平方式。然后再进行解决。 例7、已知ac bc ab c b a ++=++222又知a 、b 、c 为三角形的三条边, 求证:该三角形是等边三角形。 点评:配方法在等式恒等变形中的应用,经常会让我们收到意想不到的效果。

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

初二解二元一次方程公式知识点

解二元一次方程公式知识点设ax+by=c,dx+ey=f,x=(ce-bf)/(ae-bd),y=(cd-af)/(bd-ae),其中/为分数线,/左边为分子,/右边为分母解二元一次方程组一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解二元一次方程组。消元将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。如:{5x+6y=72x+3y=4,变为{5x+6y=74x+6y=8消元的方法代入消元法。加减消元法。顺序消元法。(这种方法不常用)消元法的例子(1)x-y=3(2)3x-8y=4(3)x=y+3代入得(2)3(y+3)-8y=4y=1所以x=4这个二元一次方程组的解x=4y=1教科书中没有的,但比较适用的几种解法(一)加减-代入混合使用的方法.例1,13x+14y=41(1)14x+13y=40(2)解:(2)-(1)得x-y=-1x=y-1(3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2,(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。(3)另类换元例3,x:y=1:45x+6y=29令x=t,y=4t方程2可写为:5t+6*4t=2929t=29t=1所以x=1,y=4

一元二次方程解法-公式法

第6课时 22.2.3 公式法 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)?的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程 (1)x2=4 (2)(x-2) 2=7 提问1 这种解法的(理论)依据是什么? 提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊 二次方程有效,不能实施于一般形式的二次方程。) 2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。) (学生活动)用配方法解方程 2x2+3=7x (老师点评)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根. 二、探索新知 用配方法解方程 (1)ax2-7x+3 =0 (2)a x2+bx+3=0 (3)如果这个一元二次方程是一般形式a x2+bx+c=0(a≠0),你能否用上面配方法的 步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=

一元二次方程配方法_公式法_因式分解法

一元二次方程的根 一元二次方程的解也叫做一元二次方程的根 因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1:下面哪些数是方程0121022=++x x 的根? —4、—3、—2、—1、0、1、2、3、4 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可. 复习 ()2222b ab a b a ++=+ 2222)(b ab a b a +-=- 根据公式完成下面的练习: (1)()22____________8-→+-x x x (2)()2 2______3______129+→++x x x (3)()22____________+→++x px x (4) ()2 2____________6+→++x x x (5)()22____________5-→+-x x x (6) ()2 2____________9-→+-x x x 例2:解方程:2963=++x x 2532=-x x 解:由已知,得:()232=+x 解:方程两边同时除以3,得3 2352=-x x 直接开平方,得:23±=+x 配方,得22265326535??? ??+=?? ? ??+-x x 即23=+x ,23-=+x 即 3649652=??? ? ?-x ,6765±=-x ,6765±=x 所以,方程的两根231+-=x ,232--=x 所以,方程的两根267651=+=x ,3 167652-=-=x 像这种求出一元二次方程的根的方法叫做配方法。 练一练: (1)982=+x x (2)015122=-+x x (3) 044 12=--x x (4) 03832=-+x x (5)08922=+-x x (6) ()x x 822=+ 练一练

公式法解一元二次方程(教案)

21.2.2公式法 教案设计(张荣权) 教学内容:用公式法解一元二次方程 教材分析:在解一元二次方程时,仅仅是直接开平方法、配方法解一元二次 方程是远远不够的。对于系数不特殊的一元二次方程,这两种方法就不方便了。而用求根公式法解较复杂的一元二次方程教方便了。因此,学习用公式法解一元二次方程很有必要,也是不可缺少的一个重要内容。而公式法是一元二次方程的基本解法,它为进一步学习一元二次方程的解法级简单应用起到铺垫作用。 教学目标: 知识与技能目标:1.理解一元二次方程求根公式的推导。 2.会用求根公式解简单数字的一元二次方程。 3.理解一元二次方程的根的判别式,并会用它判别一元二次方程根的情况。 过程与方法:在教师的指导下,经过观察、推导、交流归纳等活动导出一元二次方程的求根公式,培养学生的合情推理与归纳总结能力。 情感态度与价值观:培养学生独立思考的习惯和合作交流意识。 教学重点、难点及突破 重点:1.掌握公式法解一元二次方程的步骤。 2.熟练的利用求根公式解一元二次方程。 难点:理解求根公式的推导过程及判别公式的应用。 教学突破 本节课我主要采用启发式、探究式教学法。教学中力求体现“试——究——升”模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配方能力有限,所以,崩皆可借助于多媒体辅助教学,指导学生通过观察,分析,总结配方规律,从而突破难点。学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性,主动性和创造性。 教学设想 通过复习配方法解一元二次方程,导入对一般形式的一元二次方程的解法探讨,通过提问引导学生观察思考,产生问题,进行小组合作探讨,发现结论。加深对应用公式法的理解。渗透由特殊到一般和分类讨论及化归的数学思想,运用解一元二次方程的基本思想----开方降次,重视相关的知识联系,建立合理的逻辑过程,突出解一元二次方程的基本策略。 教学准备 教师准备:课件精选例题 学生准备:配方法解一元二次方程、二次根式的化简 教学过程:

二元一次方程万能公式总结

含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。 使方程左右两边相等的未知数的值叫做方程的解。接下来分享二元一次方程的万能公式, 供参考。 二元一次方程万能公式 b^2-4ac>=0,方程有实数根,否则是虚数根。 实数解是: [-b+sqrt(b^2-4ac)]/2a [-b-sqrt(b^2-4ac)]/2a 二元一次方程的解法 代入消元法 (1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个 未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b 的形式; (2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元 一次方程; (3)解这个一元一次方程,求出x的值; (4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解; (5)把这个方程组的解写成x=c y=d的形式。 换元法 解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某 些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。 加减消元法 (1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以 适当的数,使两个方程里的某一个未知数的系数互为相反数或相等。

(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程。 (3)解这个一元一次方程,求得一个未知数的值。 (4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值。

二元一次方程解法大全.

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

一元二次方程(配方法)

21.2 解一元二次方程 教学目标 1. 掌握配方法、公式法、因式分解法解一元二次方程的基本步骤和过程. 2. 了解一元二次方程求根公式的推导过程,会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等. 3. 了解一元二次方程的根与系数的关系. 4. 能根据具体问题的实际意义,检验方程的解是否合理. 教学重点 1. 掌握配方法、公式法、因式分解法解一元二次方程的基本步骤和过程,明确各种解法的来源和特点. 2. 一元二次方程求根公式的推导过程. 教学难点 1. 在具体问题时,如何根据方程的特点恰当选择解方程的基本方法. 2. 一元二次方程求根公式的推导过程. 课时安排 7课时. 第1课时 教学内容 21.2.1 配方法(1). 教学目标 1.能运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程. 2.通过实例,合作探讨,建立数学模型,掌握直接开平方法的的基本步骤. 3.在经历用直接开平方法解一元二次方程的过程中,进一步体会化归思想. 教学重点 运用开平方法解形如(x+n)2=p(p≥0)的方程,领会降次—转化的数学思想. 教学难点 通过根据平方根的意义解形如x2=p的方程,然后知识迁移到根据平方根的意义解形如(x+n)2=p(p≥0)的方程. 教学过程 一、导入新课 问题:一桶油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 通过问题,导入新课的教学. 二、新课教学 1.解决问题. 学生思考、讨论,教师引导,汇报解题过程和步骤. 设其中一个盒子的棱长为x dm,则这个盒子的表面积为6x2 dm2,根据一桶油漆可刷的面积,列出方程

解一元二次方程练习题公式法

解一元二次方程练习题——公式法 一.填空题。(每小题5分,共25分) 1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________. 2.方程a x2+bx+c=0(a≠0)有两个相等的实数根,则有________,?若有两个不相等的实数根,则有_________,若方程无解,则有__________. 3.若方程3x2+bx+1=0无解,则b应满足的条件是________. 4.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________. 5.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________. 二.选择题。(每小题5分,共25分) 6.用公式法解方程4y2=12y+3,得到() A... D. 7.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个 B.1个 C.2个 D.3个 8.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是() A、k>-1 B、k>1 C、k≠0 D、k>-1且k≠0 9.下列方程中有两个相等的实数根的是() A、3x2-x-1=0; B、x2-2x-1=0; C、9x2=4(3x-1); D、x2+7x+15=0. 10.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(). A. 4或-2 B. -4或2 C. 4 D.-2 11.(20分)用公式法解方程 (1)x2+15x=-3x; (2)x2+x-6=0; (3)3x2-6x-2=0; (4)4x2-6x=0

23用公式法求解一元二次方程教学设计

第二章一元二次方程 3.用公式法求解一元二次方程(一) 横山县第三中学柳金帛 一、学生知识状况分析 学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程. 学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力. 二、教学任务分析 公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。 其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。 为此,本节课的教学目标是: ①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。 ②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.

③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。 ④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力 三、教学过程分析 本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。 第一环节;回忆巩固 活动内容: ①用配方法解下列方程:(1)2x 2+3=7x (2)3x 2+2x+1=0 全班同学在练习本上运算,可找位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2 023272=+-x x 配方:加上再减去一次项系数一半的平方 0231649)47(2722=+-+- x x 即: 016 25)47(2=--x 1625)47(2=-x 两边开平方取“±” 得: 4547±=-x 4547±= x 写出方程的根 ∴ x1=3 , x2=21

一元二次方程的解法(公式法)

一元二次方程的解法(公式法)教案 ——小店一中潘卫生 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)?的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 (学生活动)用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老师点评)(1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-7 6 x=- 1 6 配方,得:x2-7 6 x+( 7 12 )2=- 1 6 +( 7 12 )2 (x- 7 12 )2= 25 144 x- 7 12 =± 5 12 x1= 5 12 + 7 12 = 75 12 + =1 x2=- 5 12 + 7 12 = 75 12 - = 1 6 (2)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.

二、探索新知 如果这个一元二次方程是一般形式a x 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根 x 1=2b a -+x 2=2b a -- 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c?也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:a x 2+bx=-c 二次项系数化为1,得x 2+ b a x=- c a 配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0 直接开平方,得:x+2b a = 即x=2b a -± ∴x 1=2b a -,x 2=2b a - 由上可知,一元二次方程a x 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时, ?将a 、b 、c 代入式子x=2b a -就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.

配方法公式法练习题

1、若224()x x p x q -+=+,那么p 、q 的值分别是() A 、p=4,q=2 B 、p=4,q=-2 C 、p=-4,q=2 D 、p=-4,q=-2 2若x 2+6x+m 2是一个完全平方式,则m 的值是() A .3 B .-3 C .±3 D .以上都不对 3.用配方法将二次三项式a 2-4a+5变形,结果是() A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 4.把方程x 2+3=4x 配方,得() A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为() A .2.-2..6.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值() A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 7.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______. 8.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 用配方法解一元二次方程 用公式解法解下列方程。 1、0822=--x x 2、22 314y y -=3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 1代数式2221 x x x ---的值为0,求x 的值. 2解下列方程: (1)x 2+6x+5=0;(2)2x 2+6x-2=0;(3)(1+x )2+2(1+x )-4=0. 3用配方法求解下列问题 (1)求2x 2-7x+2的最小值;(2)求-3x 2+5x+1的最大值。 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你

初中数学:《公式法解一元二次方程》练习(含答案)

初中数学:《公式法解一元二次方程》练习(含答案) 一、选择题: 1.一元二次方程x(x﹣2)=0根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.只有一个实数根D.没有实数根 2.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.有两个实数根 3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣ B.m≥0 C.m≥1 D.m≥2 4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 二、填空题 5.一元二次方程x2+x=3中,a=______,b=______,c=______,则方程的根是______. 6.若x 1,x 2 分别是x2﹣3x+2=0的两根,则x 1 +x 2 =______. 7.已知三角形两边长是方程x2﹣5x+6=0的两个根,则三角形的第三边c的取值范围是______.8.已知关于x的一元二次方程(k+1)x2﹣2x﹣1=0有两个不相同的实数根,则k的取值范围是______. 9.写出一个一元二次方程,使它有两个不相等的实数根______. 10.一次二元方程x2+x+=0根的情况是______. 11.若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是______. 12.已知代数式7x(x+5)与代数式﹣6x2﹣37x﹣9的值互为相反数,则x=______. 13.已知一次函数y=﹣x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是______.

相关文档
相关文档 最新文档