文档库 最新最全的文档下载
当前位置:文档库 › 【揭秘混凝土】第24篇:普通硅酸盐水泥熟料的矿物成分和水化性能

【揭秘混凝土】第24篇:普通硅酸盐水泥熟料的矿物成分和水化性能

【揭秘混凝土】第24篇:普通硅酸盐水泥熟料的矿物成分和水化性能
【揭秘混凝土】第24篇:普通硅酸盐水泥熟料的矿物成分和水化性能

【揭秘混凝土】第24篇:普通硅酸盐水泥熟料的矿物成分和水化性能

普通硅酸盐水泥熟料含有四种主要矿物成分:

1.阿利特(Alite)或称A矿:主要成分是硅酸三钙(C3S)及少量其他氧化物。A矿晶体是细长的,

截面为六边形,长度一般为20μm--60μm。

2.贝利特(Belite)或称B矿:主要成分是硅酸二钙(C2S)及少量其他氧化物。B矿晶体多数是圆

形,直径为10μm—30μm。

3.铝酸三钙(C2A)

4.铁铝酸四钙(C4AF)

铝酸相和铝铁酸相晶体的形状不固定,变化很大。有时这两种晶体交织生长在一起。

阿利特—硅酸三钙(C3S):

C3S具有很强的反应活性和较快的水化速度,是普通硅酸盐水泥中的主要成分,通常占到50%--70%左右(重量比)。它是水泥强度的主要贡献者,28天可以水化约70%,强度达到一年强度的70%-80%。

C3S的水化热较高。

贝利特—硅酸二钙(C2S):

C2S的反应活性比C3S稍差。在普通硅酸盐水泥中,它的含量一般在10%--30%左右。C2S的水化速度较慢,28天仅水化20%左右,早期强度较低。但强度可持续增长,一年后和C3S持平。C2S的水化热低,抗腐蚀性好。

铝酸三钙(C3A):

C3A是普通硅酸盐水泥熟料中反应活性最强的成分,但其强度很低。由于其反应速度快,能造成普通硅酸盐水泥速凝,因此必须加入石膏控制它的凝结速度。C3A的水化过程放热量大,干缩变形大,抗硫酸盐腐蚀的能力差。

铁铝酸四钙(C4AF):

C4AF的反应速度介于C3S和C3A之间,但强度不高。水化热较C3A小,抗冲磨性能和抗硫酸盐腐蚀性能较好。

既然铝酸盐和铁铝酸盐对普通硅酸盐水泥的强度贡献不大且有很多的负面作用,那为什么还要添加它们?简单来说,添加铝酸盐和铁铝酸盐的目的是为了促进C3S的形成。在熟料烧成过程中,只有四分之一的原料能熔融成液体,而其他四分之三的原料保持固体状态不变。离子在液体中的转移速度要比在固体中的转移速度快很多,有利于C3S的形成。而添加铝酸盐和铁铝酸盐的目的就是促进液体的形成。液体冷却后,就形成了C3A晶体和C4AF晶体。

大体积混凝土水化热计算

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

特性水泥及专用水泥

专用水泥是指有专门用途的水泥,如砌筑水泥、道路水泥、大坝水泥、油井水泥等。 一、砌筑水泥(GB3183-2003) 凡由活性混合材料或具有水硬性的工业废料为主要原料,加入少量硅酸盐水泥熟料和石膏,经磨细制成的工作性较好的水硬性胶凝材料,称为砌筑水泥,代号M。 应用:砌筑水泥适用于工业与民用建筑的砌筑砂浆和内墙抹面砂浆,不得用于结构混凝土。 二、道路水泥(GB13693-2005) 以适当成分生料烧至部分熔融,得到以硅酸钙为主要成分和较多量的铁铝酸盐的硅酸盐水泥熟料,加入本标准规定的混合材料和适量石膏磨细制成的水 AF含量大于16.0%。硬性胶凝材料,称为道路硅酸盐水泥(简称道路水泥)。C 4 矿物组成:高铁(铁铝酸四钙)低铝(铝酸三钙) 特性与应用:道路硅酸盐水泥强度高,特别是抗折强度高,耐磨性好,干缩小,抗冲击性好,抗冻性好,抗硫酸盐腐蚀性能好。适用于道路路面、机场跑道道面、城市广场等工程。随着我国高等级道路的迅速发展,水泥混凝土路面已成为主要路面类型之一。 三、大坝水泥(GB200-2003) 中热水泥适用于要求水化热较低的大体积混凝土,如大坝、大体积建筑物和厚大基础等工程中,可以克服因水化热引起的温差应力而导致混凝土的破坏;低热矿渣水泥主要适用于大坝或大体积混凝土及水下等要求低水化热的工程。

特性水泥是指某种性能比较突出的一类水泥。如快硬硅酸盐水泥、快凝硅酸盐水泥、抗硫酸盐硅酸盐水泥、膨胀硫铝酸盐水泥、自应力水泥等。 一、快硬硅酸盐水泥 由硅酸盐水泥熟料和适量石膏磨细制成,以3d抗压强度表示强度等级的水硬性胶凝材料称为快硬硅酸盐水泥(简称快硬水泥)。 快硬硅酸盐水泥凝结硬化快,早期强度高,后期强度也高,抗冻性及抗渗性强,水化放热量大,耐腐蚀性差。适用于要求早期强度高的工程,紧急抢修工程,冬期施工工程以及制作预应力钢筋混凝土或高强混凝土预制构件。不适用于大体积混凝土工程及与腐蚀介质接触的混凝土工程。 二、快凝快硬硅酸盐水泥 以硅酸三钙,氟铝酸钙为主的熟料,加入适量的硬石膏、粒化高炉矿渣、无水硫酸钠经磨细制成的一种凝结快的水硬性胶凝材料。简称双快水泥。 特性与应用: 凝结很快,早期强度增长很快。主要用于军事工程、机场跑道、桥梁、隧道和涵洞等紧急抢修、堵漏及冬季施工工程。 三、抗硫酸盐硅酸盐水泥 以硅酸钙为主的特定矿物组成的熟料,加入适量石膏,磨细制成的具有一定抗硫酸盐侵蚀的水硬性胶凝材料。 适用于有硫酸盐侵蚀的工程 四、白色硅酸盐水泥 以白色硅酸盐水泥熟料加入适量石膏磨细制成的水硬性胶凝材料。 适用于装饰及装修工程 五、铝酸盐水泥 凡以铝酸钙为主的铝酸盐水泥熟料,磨细制成的水硬性胶凝材料称为铝酸盐水泥,代号为CA。 铝酸盐水泥的特点是快硬早强,后期强度下降;耐热性强;水化热高,放热快;抗渗性及耐腐蚀性强。 用于工期紧急的工程、抢修工程、冬季施工的工程。

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度检测方案

大体积混凝土水化热温度 检 测 方 案 方案编制人: 方案批准人: XX工程质量检测有限责任公司 20 年月日

目录 封面 (1) 一、测温描述 (3) 二、工程概况 (4) 三、依据标准规范及温控指标 (5) 四、测温仪器及设备 (5) 五、测温点的布置 (5) 六、温度测试元件的安装及保护 (7) 七、测温时间 (7) 八、温控措施与建议 (8) 九、监测程序 (9) 十、安全、文明措施 (9) 十一、质量保证体系及服务承诺 (10) 十二、委托单位的配合工作 (11) 十三、测温点布置图………………………………………附图页

XX名都工程2#、3#楼筏板基础 大体积混凝土水化热温度和温差 监测方案 一、测温描述 因大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。 在混凝土硬化初期,水泥水化释放出较多热量,而混凝土与周围环境的热交换较慢,故混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行慢慢减少,混凝土的温度降低,混凝土产生收缩。当此收缩受到约束时,混凝土内部产生拉应力(此应力简称为温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。 此外,混凝土的导热系数较小。混凝土内部热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成了混凝土里表温差。如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。 因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。而温度应力和温差应力大小,又涉及到结构的平面尺寸,结构厚度,约束条件,周边环境情况,含筋率,混凝土各种组成材料的特性和物理力学性能,施工工艺等许多因素影响。故为了保证大体积混凝土施工质量,

超高性能混凝土的水化、微观结构 和力学性能研究进展

Hans Journal of Civil Engineering 土木工程, 2018, 7(2), 194-204 Published Online March 2018 in Hans. https://www.wendangku.net/doc/f5759549.html,/journal/hjce https://https://www.wendangku.net/doc/f5759549.html,/10.12677/hjce.2018.72024 Hydration, Microstructure and Mechanical Properties of the Research Progress of Ultra-High-Performance Concrete Pu Zhang*, Erli Wang, Yang Xia, Danying Gao, Pinwu Guan Zhengzhou University, Zhengzhou Henan Received: Feb. 26th, 2018; accepted: Mar. 14th, 2018; published: Mar. 21st, 2018 Abstract Ultra-High Performance Concrete (UHPC) is an ultra-high strength cement-based material with ultrahigh strength, high toughness and low porosity. It has the features of impermeability, fatigue resistance and high durability. Although UHPC has many significant advantages, there are some examples of defects, such as the amount of cementitious materials up to 1000 kg/m3, which in-creases the heat of hydration, results in shrinkage and improves the project cost. The production of ultra-high performance concrete often adopts steam or autoclave curing, and the complicated production technology limits the application of UHPC in practical engineering. In order to better study the UHPC material, this paper introduces the development history and research status of UHPC based on the existing research results at home and abroad, summarizes the current re-search status of UHPC condensation hardening process hydration process, microstructure, me-chanical properties and durability, analyzes meso-mechanics of fiber reinforced toughening me-chanism. The results show that UHPC has made gratifying progress in both theoretical research and engineering applications. With the increasing emphasis on environmental protection in China, UHPC has broad application prospects. Keywords Ultra-High Performance Concrete, Hardening, The Hydration Heat, Microstructure, Durability 超高性能混凝土的水化、微观结构 和力学性能研究进展 张普*,王二丽,夏洋,高丹盈,管品武 郑州大学,河南郑州 *通讯作者。

几种常见硅酸盐水泥的特性

几种常见硅酸盐水泥的特性 一、组成部分 1)硅酸盐水泥(又称波特兰水泥) 由硅酸盐水泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成。 硅酸盐水泥熟料的主要成分为硅酸三钙3CaO·SiO2,硅酸二钙2CaO·SiO2,铝酸三钙3CaO·Al2O3和铁铝酸四钙4CaO·Al2O3·Fe2O3。 2)矿渣硅酸盐水泥(简称故渣水泥) 由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成 水泥中粒化高炉矿渣掺加量按重量计为20~70%;允许用不超过混合材料总掺量1/3的火山灰质混合材料(包括粉煤灰)、石灰石、窑灰来代替部分粒化高炉矿渣,这些材料的代替数量分别不得超过15%、10%、8%;允许用火山灰质混合材料与石灰石,或与窑灰共同来代替矿渣,但代替的总量不得超过15%,其中石灰石不得超过10%、窑灰不得超过8%;替代后水泥中的粒化高炉矿渣不得少于20%。 3) 火山灰质硅酸盐水泥(简称火山灰水泥) 由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制成。 水泥中火山灰质混合材料掺加量按重量计为20~50%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,代替部分火山灰质混合材料,代替后水泥中的火山灰质混合材料不得少于20%。 4)粉煤灰硅酸盐水泥(简称粉煤灰水泥) 由硅酸盐水泥熟料和粉煤灰、适量石膏磨细制成 水泥中粉煤灰掺加量按重量计为20~40%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,此时混合材料总掺量可达50%,但粉煤灰掺量仍不得少于20%或大于40%。 5)复合硅酸盐水泥(简称复合水泥) 由硅酸盐水泥熟料和粉煤灰混合材料、适量石膏磨细制成 水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥

大体积混凝土水化热计算

球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取~ Q----水泥28d水化热(kJ/kg)见下表 C---混凝土比热,取(kJ/kg·K) ρ—混凝土密度,取2400(kg/m3) e----为常数,取 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 2、混凝土中心温度计算 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(*2400)=℃ 代入(2)得: T3=*=℃; T4=*=℃; T5=*=℃; T7=*=℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+*=℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

熟料的矿物组成对强度影响

熟料矿物组成对水泥强度的影响 在硅酸盐水泥熟料中,四种主要矿物C3S、C2S、C3A、C4AF每一种都以单独的相存在,并在水化反应中显示各自不同的特征。因此,矿物组成及相对含量对水泥的水化速度、水化物的形态和尺寸有决定性影响,对水泥强度的形成和发展有着至关重要的作用。可以说,矿物组成是水泥早期强度、强度增长速度和后期强度高低位重要的影响因素。 表1和表2是水泥熟料四种单矿物质强度的测定结果。由于试验条件的差异,各方面所测单矿物的绝对强度不一样,但就其基本规律却是一致的,即硅酸盐矿物的含量是决定水泥强度的主要因素。 表1 四种主要矿物的抗压强度(一)单位:Mpa

其中C3S的早期强度最大,28天强度基本上依赖于C3S,C3S含量高,水泥的早期强度高,但以后强度增长不大。而C2S高的水泥虽然早期强度不高,但长期强度增幅大,到1年以后可以赶上甚至超过C3S高的水泥。C3S、C2S的相对含量对强度发展的影响如图2所示。 表2 四种主要矿物的抗压强度(二)单位:Mpa C3A的早期强度增长很快,一般认为,C3A主要对早期强度有利,但强度绝对值不高,而后期强度增长随龄期延长逐渐减少,甚至有倒缩现象。实验表明,当水泥中C3A含量较低时,水泥强度随C3A的增多而提高,但超过某一最佳含量后,强度反而降低,同时龄期越短,C3A的最佳含量越高。C3A的含量对1d、3d 的早期强度影响最大,如果超过最佳含量,则将对后期产生不利影响。 关于C4AF的强度,目前国内外有关实验证明,C4AF不仅对早期强度有利,而且有助于后期强度的发展,由表1和表2数据可知,其3d、7d、28d抗压强度远比C2S和C3A高,其一年强度甚至还能超过C3S。由此可知,C4AF也是一种

大体积混凝土水化热计算公式

九、基础混凝土浇筑专项施工方案 江苏广兴建设集团有限公司 基础混凝土浇筑专项施工方案 工程名称:镇江新区平昌新城配套公建工程 编制: 审核: 批准:

江苏广兴建设集团有限公司 镇江新区平昌新城配套公建工程项目部 2012年3月14日 基础混凝土浇筑专项施工方案 第一节、工程概况 一、工程概况 【本方案针对重要施工技术措施节点的分部分项工程的特点及要求进行编写】镇江新区平昌新城配套公建工程;工程建设地点:镇江新区平昌新城平昌路;属于框剪结构;地上12层;地下1层;建筑高度:44.65m;标准层层高:3.6m ;总建筑面积:25000平方米;总工期:450天。 本工程由镇江瑞城房地产开发有限公司投资建设,常州市规划设计院设计,镇江市勘察设计院地质勘察,镇江兴华工程建设监理有限责任公司监理,江苏广兴集团有限公司组织施工;由胡金祥担任项目经理,周道良担任技术负责人。 本工程地下室基础为带人防核6防6、二级防水等级要求的人防地下室,地下室主体结构混凝土强度等级:基础底板为C35,地下室顶板、梁为C30,地下室墙、柱均为C40,地下车道底板混凝土为C35,侧壁为C40。地下室底板、外墙、地下车道底板及侧板、单层车库顶板、覆土顶板及水池围护结构均需采用P6抗渗混凝土,地下室底板、外墙、顶板采用补偿收缩混凝土,后浇带采用膨胀混凝土,地下室混凝土在混凝土中掺入抗裂纤维。本工程地下室底板厚度600mm/800mm (主楼位置),地下室板墙厚度分别为200mm/250mm/300mm/450mm(详见地下

结施13墙定位及配筋图),板墙浇筑高度3.8m/4.4m(详见顶板施工图)。 【本工程地下室基础混凝土标号众多,抗渗、膨胀、纤维等外加剂的参数以及使用位置,不同型号混凝土浇筑节点处的处理要严格参照图纸结构总说明中4.1.3要求进行施工】 二、施工要求 1、确保混凝土施工在浇筑时期内安全、质量、进度都达到优质工程标准。 2、本工程混凝土浇筑施工质量技术措施控制重点:(1)、大体积混凝土水化热的处理;(2)、地下室后浇带防水措施。 第二节、编制依据 《混凝土结构工程施工质量验收规范》GB50204-2002 《混凝土外加剂应用技术规范》GB50119-2003 《地下工程防水做法》苏J02-2003 及江苏广兴集团有限公司以往类似工程的施工方案和本工程相关施工设计图纸等。 第三节、施工计划 材料与设备计划 本工程基础混凝土按后浇带划分三个区域:(1)以3#楼为主,2-F轴以北后浇带划分;(2)以2#楼为主,2-A轴以北后浇带划分;(3)以1#楼为主,2-A轴以南后浇带划分。 1、混凝土浇筑以商品混凝土泵送浇捣,投入4台振动棒,2台平板振动器,1台混凝土收光机,水泵4台,自吸泵2台等其他小型工具。机修人员必须在机械使用前对所有机械进行检查养护,在浇筑混凝土过程中,安排人员进行定时检修。 2、养护混凝土使用的塑料薄膜以及覆盖用的草袋,水管等养护材料。 3、对预拌混凝土的要求 与预拌混凝土搅拌站签订供应合同,对原材、外加剂、混凝土坍落度、初凝时间、混凝土罐车在路上运输等作出严格要求。 A、对预拌混凝土坍落度的要求 混凝土搅拌站根据气温条件、运输时间、运输道路的距离、混凝土原材料(水泥品种、外加剂品种等)变化、混凝土坍落度损失等情况来适当地调整原配合比,确保混凝土浇筑时的坍落度能够满足施工生产需要,确保混凝土供应质量。 当气候变化时,要求混凝土预拌站提供不同温度下、单位时间内坍落度损失值,以便现场能够掌握混凝土罐车在现场的停置时间。并且可以根据混凝土浇筑情况随时调整混凝土罐车的频率。浇筑混凝土时,搅拌站派一名调度现场调配车辆。同时鉴于现场处的特殊地理位置,项目安排人员协调现场内外的交通问题。 对到场的混凝土实行每车必测坍落度,实验员负责对当天施工的混凝土坍落度实行抽测,混凝土工长组织人员对每车坍落度进行测试,负责检查每车的坍落度是否符合预定预拌混凝土坍落度的要求,并做好坍落度测试记录。如遇不符合要求的,退回搅拌站,严禁使用。 B、对预拌混凝土的添加剂的要求

浅谈硅酸盐水泥特性

浅谈硅酸盐水泥特性 摘要:水泥作为建筑行业重要的基础原料,成为了国民经济建设的必要物资基础,而硅酸盐水泥因为其自身的特性,在特定环境下更是显得必不可少。 关键字:硅酸盐;水泥;特性 Abstract: Cement as the construction industry important basic material, become the national economic construction of the necessary material base, and Portland cement because its own characteristics, in certain circumstances it is to appear more indispensable. Key Word: Portland; Cement; characteristics 1.硅酸盐水泥定义及分类 硅酸盐水泥在国外又称为波特兰水泥,在我国的定义是凡是由硅酸盐水泥熟料,搀和0-5%的石灰石或者是粒化高炉矿渣,在添加适量的石膏,研磨成细粉状的水硬性胶凝材料,这是中国的国家通用标准对硅酸盐水泥的定义。 按照国家标准,硅酸盐水泥一般分为两种类型,第一种是Ⅰ型硅酸盐水泥这种硅酸盐水泥的代号是P怠,其定义为不掺加任何混合材料的硅酸盐水泥。第二种是Ⅱ型硅酸盐水泥,这种硅酸盐水泥的代号是P愠,其定义为在硅酸盐水泥粉磨时搀和石灰石或者是粒化高炉矿渣,掺加的质量不得超过水泥本身质量的5%。 2.硅酸盐水泥特性及应用 2.1硅酸盐水泥特性 (1硅酸盐水泥强度高 硅酸盐水泥的特性与一般水泥相比,最显著的特性是凝结快,凝结快预示着硬化快,硬化快意味着硅酸盐水泥的早期强度增长率比一般谁大,强度比一般水泥高。 (2硅酸盐水泥水化热高

水泥熟料矿物组成

硅酸盐水泥熟料的矿物组成 硅酸三钙3CaO·SiO2,可简写为C3S,50%左右,有时高达60%以上; 硅酸二钙2CaO·SiO2,可简写为C2S,20-33% 铝酸三钙3CaO·Al2O3:可简写为C3A,7-15% 铁相固溶体:常以铁铝酸四钙4CaO· Al2O3· Fe2O3代替,可简写为C4AF,10-18%。 另外,还有少量的游离氧化钙(f-CaO)、方镁石(结晶氧化镁f-MgO)、合碱矿物以及玻璃体等。使用萤石或萤石、石膏复合做矿化剂的硅酸盐水泥熟料中,还有氟铝酸钙(C11A7·CaF2)、硫铝酸盐矿物等。 硅酸三钙的化学性质: 加水调和后,凝结时间正常,水化较快,粒径为40-45μm的硅酸三钙颗粒加水后28天,可以水化70%左右。强度发展比较快,早期强度高,强度增进率较大,28天强度可以达到一年强度的70-80%,四种熟料矿物中强度最高。水化热较高,抗水性较差。 硅酸二钙的化学性质 C2S与水作用时,水化速度较慢,至28天龄期仅水化20%左右,凝结硬化缓慢,早期强度较低,28天以后强度仍能较快增长,一年后可接近C3S。它的水化热低,体积干缩性小,抗水性和抗硫酸盐浸蚀能力较强。 中间相:填充在阿利特、贝利特之间的物质通称为中间相,它包括铝酸盐、铁酸盐、组成不定的玻璃体、含碱化合物、游离氧化钙及方镁石等。 铝酸三钙的化学性能:铝酸三钙水化迅速,放热多,凝结硬化很快,如不加石膏等缓凝剂,易使水泥急凝。铝酸三钙硬化也很快,水化3天内就大部分发挥出来,早期强度较高,但绝对值不高,以后几乎不再增长,甚至倒缩。干缩变形大,抗硫酸盐浸蚀性能差。 铁相固溶体:C4AF水化硬化速度较快,因而早期强度较高,仅次于C3A。与C3A不同的是它的后期强度也较高,类似C2S。抗冲击,抗硫酸盐浸蚀能力强,水化热较铝酸三钙低。 游离氧化钙性能:1过烧的游离氧化钙结构比较致密,水化很慢,通常在加水3d以后反应比较明显。2游离氧化钙水化生成氢氧化钙时,体积膨胀97.9%。3 随着游离氧化钙含量的增加,试体抗拉、抗折强度降低,3d以后强度倒缩,严重时甚至引起安定性不良。 方镁石的水化比游离氧化钙更为缓慢,要几个月甚至几年才明显起来。 方镁石水化生成氢氧化镁时,体积膨胀148%,导致体积安定性不良。 方镁石膨胀的严重程度与其含量、晶体尺寸等都有关系。方镁石晶体小于1μm,含量5%时,只引起轻微膨胀;方镁石晶体5-7μm,含量3%时,就会严重膨胀。 率值:用来控制熟料中各氧化物含量和彼此间比例关系的系数,称为率值。 水硬率的物理意义:表示熟料中氧化钙与酸性氧化物之和的质量百分数的比值,常用HM表示影响:水硬率假定各酸性氧化物所结合的氧化钙是相同的。当各酸性氧化物的总和不变,它们之间的比例变化时,所需的氧化钙不同。 硅率的物理意义:硅率又称硅酸率,它表示熟料中SiO2的百分含量与Al2O3和Fe2O3百分含量之比,用SM或n表示。 影响:熟料硅率过高,由于高温液相量显著减少,熟料煅烧困难,硅酸三钙不易形成,如果熟料中游离氧化钙含量低,硅酸二钙含量多时,熟料易于粉化。熟料硅率过低,则熟料因硅酸盐矿物太少而强度低,且由于液相量过多,易出现结大块,结炉瘤,结圈等,影响窑的操作。

建筑材料复习-硅酸盐类水泥

学习指导 本章学习主要围绕着由水泥的生产到最终形成水泥石这一过程来进行的。在这一过程中主要讲述了水泥熟料的矿物组成和掺混合材的水化特性及反应对生成的水泥性质的影响,从而掌握通用水泥的特性,如何用通过水泥的技术性质来控制水泥的质量,水泥石的腐蚀及防腐。在掌握通用水泥的基础上了解其它品种的硅酸盐水泥。同时要求了解铝酸 盐类水泥。 一、解释名词 1.水硬性胶凝材料 2.硅酸盐类水泥 3.水泥的初凝和终凝 4.体积安定性 5.活 性混合材 6.火山灰性7.潜在水硬性8.标准稠度需水量9.水化热10.水泥的风化11.水泥的细度12.非活性混合材13.水泥的废品及不合格品14.水泥标号富余系数。 二、填空 1.通用水泥中,硅酸盐水泥代号为_、_,普通水泥代号为_,矿渣水泥代号为_,火山灰水泥代号为_,粉煤灰水泥代号为_。 2.硅酸盐水泥水泥熟料的矿物组成为_、_、_、_,简写为_、_、_、_。 3.变硅酸盐水泥的矿物组成可制得具有不同特性的水泥,提高_含量,可制得_,提高_和_,可制得快硬水泥,降低_和_的含量,提_的含量,可制得中、低热水泥;提高_含量降低_含量可制得道路水泥;降低_含量可制得白水泥。 4.在硅酸盐水泥矿物组成中,水化放热量最大且最快,为_,其次_,_水化放热量最小,最慢的为_。对前期强度起决定性影响的为_。对后期强度提高有较大影响的为_。 5.石膏在硅酸盐水泥中起到_的作用,在矿渣水起到_和_的作用。 6.常用的活性混合材为_、_、_,活性混合材料的主要化学成分是_和_,这些活性成分能与引起水泥腐蚀的水化产物_反应,生成_和_而参与水泥凝结硬化。 7.在水泥矿物组成中反应速度最快的为_,其次为_,最慢的为_。 8.水泥矿物组成与水化反应后,生成的主要水化产物有_凝胶、_凝胶、_晶体、_晶体、_晶体,其中_约占70%,_约占20%。 9.在火山灰水泥生产加人石膏,生成钙矾石晶体,它不仅在水泥初期起到一定作用,而且会起_的作用。 10.水泥硬化过程中,_天强度增长幅度较大,_天强度增长率有所降低,_天强度增长率进一步下降。28天后强度_。 11.活性混合材的激发剂分为_和_两类。 12.掺混合材硅酸盐水泥的水化首先是_的水化,然后水化生成的_与_发生反应。故掺混合材硅酸盐水泥的水化进行了二次反应。 13.水泥熟料中掺有活性混合材可使水泥早期强度_,后期强度,水化热_,耐酸及耐水性。 14.硬化后水泥主要是由_、_、_、_等组成结构体。 15.引起水泥石腐蚀的内因主要是由于水化产物中含有_、_及水泥石的_所造成的。 16.水泥石腐蚀的类型主要有_、_、_、_。 17.防止水泥石腐蚀的措施主要有_、_、_三种方法。 18.硅酸盐水泥的细度用_表示,其他品种的通用水泥用_表示。

混凝土水化热分析

例题大体积混凝土水化热分析 2 例题. 大体积混凝土水化热分析 概要 此例题将介绍利用MIDAS/Gen做大体积混凝土水化热分析的整个过程,以及查看分析 结果的方法。 此例题的步骤如下: 1.简要 2.设定操作环境及定义材料 3.定义材料时间依存特性 4.建立实体模型 5.组的定义 6.定义边界条件 7.输入水化热分析控制数据 8.输入环境温度 9.输入对流函数 10.定义单元对流边界 11.定义固定温度 12.输入热源函数及分配热源 13.输入管冷数据 14.定义施工阶段 15.运行分析 16.查看结果

例题大体积混凝土水化热分析 1.简要 本例题介绍使用MIDAS/Gen 的水化热模块来进行大体积混凝土水化热分析的方法。例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。(该例题数据仅供参考) 基本数据如下: 地基:17.6 x 12.8 x 2.4 m 板式基础:11.2 x 8.0 x 1.8 m 水泥种类:低热硅酸盐水泥(Type IV) 板式基础 地基 1/4模型 图1 分析模型 3

例题大体积混凝土水化热分析 4 2.设定操作环境及定义材料 在建立模型之前先设定环境及定义材料 1.主菜单选择文件>新项目 2.主菜单选择文件>保存:输入文件名并保存 3.主菜单选择工具>单位体系:长度 m,力 kN 图2 定义单位体系 4.主菜单选择模型>材料和截面特性>材料: 添加:定义新材料 材料号:1 名称:基础规范:GB(RC) 混凝土:C30 材料类型:各向同性 材料号:2 名称:地基设计类型:用户定义材料类型:各向同性 弹性模量:1e6 泊松比:0.2 线膨胀系数:1e-5 容重:18 5.主菜单选择工具>单位体系:长度 m,力 kgf,热度 kcal 6.主菜单选择模型>材料和截面特性>材料: 注:也可以通过程序右下 角 随时更改单位。

大体积混凝土水化热及温度计算

大体积混凝土水化热及温度计算 水泥:334kg/m3; 水:190kg/m3;大气温度在30℃,水温在27℃ 粗骨料:1010 kg/m3; 细骨料:731kg/m3; 粉煤灰:78kg/m3; 缓凝型减水剂:1%。 3) 混凝土温度计算 a 搅拌温度计算和浇筑温度 混凝土拌和温度计算: T c=∑T i*W*c/∑W*c=89405.4/3426.1=26.1℃。 考虑到混凝土运输过程中受日晒等因素,入模温度比搅拌温度约高4℃。混凝土入模温度约T j =30.1℃。 b 混凝土中心最高温度 Tmax=T j+T h*ξ

T j=33.04℃(入模温度),ξ散热系数取0.70 混凝土最高绝热温升T h=W*Q/c/r=350*377/0.973/2321=50.43℃ 其中350 Kg为水泥用量;377KJ/Kg为单位水泥水化热;0.973KJ/Kg.℃为水泥比热;2321Kg/m3为混凝土密度。 则Tmax=T j+T h*ξ=33.04+50.43*0.70=70.94℃。 c 混凝土内外温差 混凝土表面温度(未考虑覆盖): T b=T q+4h’(H-h’)△T/H2。 H=h+2h’=3+2*0.07=3.14m, h’=k*λ/β=0.666*2.33/22=0.07m 式中T bmax--混凝土表面最高温度(℃); T q--大气的平均温度(℃); H-一混凝土的计算厚度; h’--混凝土的虚厚度; h--混凝土的实际厚度; ΔT--混凝土中心温度与外界气温之差的最大值; λ--混凝土的导热系数,此处可取2.33W/m·K; K--计算折减系数,根据试验资料可取0.666; β--混凝土模板及保温层的传热系数(W/m*m·K),取22 T q为大气环境温度,取30℃,△T= Tmax-T q=40.94℃ 故T b=33.73℃。 混凝土内表温度差:△T c=Tmax-T b=70.94-33.73=37.21℃>20℃ 2.温度应力计算 计算温度应力的假定: ①混凝土等级为C30,水泥用量较大311 kg/m3;

大体积混凝土水化热计算

大体积混凝土水化热计 算 标准化管理部编码-[99968T-6889628-J68568-1689N]

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 C---混凝土比热,取0.97(kJ/kg·K) ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 2、混凝土中心温度计算 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

五种常用硅酸盐系水泥的成分、特性的适用范围

五种常用硅酸盐系水泥的成分、特性的适用范围 (一)硅酸盐水泥PI PII 成分:1. 水泥熟料及少量石膏(Ⅰ型) ;2. 水泥熟料、5%以下混合材料、适量石膏(Ⅱ型) 主要特征:1. 早期强度高;2. 水化热高;3. 耐冻性好;4. 耐热性差;5. 耐腐蚀性差;6. 干缩较小。 适用范围:1. 制造地上地下及水中的混凝土、钢筋混凝土及预应力混凝土结构,包括受循环冻融的结构及早期强度要求较高的工程; 2. 配制建筑砂浆 不适用处:1. 大体积混凝土工程;2. 受化学及海水侵蚀的工程 (二)普通水泥(P.O) 成分:在硅酸盐水泥中掺活性混合材料6%~15%或非活性混合材料10%以下 主要特征:1. 早强;2. 水化热较高;3. 耐冻性较好;4. 耐热性较差;5. 耐腐蚀性较差;6.干缩较小; 适用范围:与硅酸盐水泥基本相同 不适用处:同硅酸盐水泥 (三)矿渣水泥(P·S) 成分:在硅酸盐水泥中掺入20%~70%的粒化高炉矿渣 主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较好;4. 对硫酸盐类侵蚀抗和抗水性较好;5. 抗冻性较差;6. 干缩较大;7. 抗渗性差;8. 抗碳化能力差抵 适用范围:1. 大体积工程;2. 高温车间和有耐热耐火要求的混凝土结构;3. 蒸汽养护的构件;4. 一般地上地下和水中的混凝土及钢筋混凝土结构;5. 有抗硫酸盐侵蚀要求的工程;6. 配建筑砂浆 不适用处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程 (四)火山灰水泥(P·P) 成分:在硅酸盐水泥中掺入20%~50%火山灰质混合材料 主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较差;4. 对硫酸盐类侵蚀抵抗力和抗水性较好;5. 抗冻性较差;6. 干缩较大;7. 抗渗性较好 适用范围:1. 地下、水中大体积混凝土结构;2. 有抗渗要求的工程;3. 蒸汽养护的工程构件;4. 有抗硫酸盐侵蚀要求的工程; 5. 一般混凝土及钢筋混凝土工程; 6. 配制建筑砂浆 不适用范处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程;3. 干燥环境的混凝土工程;4. 耐磨性要求的工程 (五)粉煤灰水泥(P·F) 成分:在硅酸盐水泥中掺入20%~40%粉煤灰 主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较差;4. 对硫酸盐类侵蚀和抗水性较好;5. 抗冻性较差;6. 干缩较小;7. 抗碳化能力较差 适用范围:1. 地上、地下、水中和大体积混凝土工程;2. 蒸汽养护的构件;3. 有抗裂性要求较高的构件;4. 有抗硫酸盐侵蚀要求的工程;5. 一般混凝土工程;6. 配制建筑砂浆 不适用处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程;3. 抗碳化要求的工程

混凝土水化热温度计算

附录五 混凝土水化热温度计算 混凝土配合比(Kg) 实际采用的原材料情况如下: 水泥为枣庄生产的普通42.5水泥,总水化热为Q0=461kJ/kg,入罐温度为50℃。 粉煤灰入罐温度为40℃。 矿粉入罐温度为40℃。 细骨料为细度模数大于2.3的中砂,含水量为5%,入罐温度为12℃。粗骨料为5-31.5mm的连续级配碎石,含水量为0.5%,入罐温度为12℃。 水为地下水,入罐温度为4℃。 考虑骨料含水量以后,混凝土原材料的实际用量见下表。 混凝土密度ρ=320+34+38+7.7+153+832+1000=2376.7kg/m3 温度计算步骤如下: 1、计算每方混凝土中水泥折算用量W h

W h=W c + kW f =312+35+38=385kg 2. 计算混凝土出机器温度T0,按下表进行 合计:2776.5 40384.4 T0 =40384.4 /2776.5=14.55℃ 3.计算混凝土浇筑温度T j : 运算、浇筑时日平均气温约为Ta=18℃,参考T0 =14.55℃, 取Tj=18℃ 4.计算混凝土最大绝热温升值T r ,取混凝土的比热c=0.96kj/(kg.k): Tr=W h Q0 / cρ=(385×461)/(0.96×2376.7)=77.8℃ 5.计算1m厚承台混凝土内部最高温度Tmax,对1m厚、浇筑温度为15.3℃的混凝土,可取ζ=0.65进行计算:

Tmax =Tj+Tr=18+0.65×77.8=68.6℃ 6.计算1m厚承台底板混凝土保温养护材料厚度δ: 养护时最低气温约为Ta=18℃,允许最大的表面温度Tb=68.6 –25=43℃,采用塑料薄膜和草袋进行保湿保温不透风养护,导热系数λ=0.14W/(m.K),传热修正系数α=1.3, δ=0.5hλ(Tb-Ta)×α/ (λc(Tmax – Tb)) =0.5×1×0.14×(43 – 18)×1.3 / (2.3×25) = 0.0395(m) 即3.4mm。 每层草帘厚约2cm,需一层薄膜加1层草帘即可满足保湿保温需求,也可改为塑料薄膜和纤维毛毯,导热系数 λ0.05W/(m.k),传热修正系数α=1.3 δ= 0.5×1×0.05×(43 –18)×1.3 / (2.3×25) = 0.014m(1.4mm) 实际施工时,筏板可采用一层塑料薄膜和一层纤维毛毯的保温保湿养护方案。 经过上述计算得知,现场采用覆盖一层地膜后再选用一层草帘或一层棉毡即可保证混凝土的保温工作,满足混凝土的内外温差不超过25℃温差要求,计算结论:采用覆盖保温即可满足温度控制,不需要采用暗敷设冷凝管降温措施。

第一节硅酸盐水泥熟料矿物组成

第一节硅酸盐水泥熟料矿物组成 如前所述,硅酸盐水泥熟料是以适当成分的生料烧到部分熔融,所得以硅酸钙为主要成分的烧结块。因此,在硅酸盐水泥熟料中CaO,SiO2,A1203,Fe2O3 不是以单独的氧化物存在,而是以两种或两种以上的氧化物经高温化学反应而生成的多种矿物的集合体。其结晶细小,一般为30^-60Icm 。因此可见,水泥熟料是一种多矿物组成的结晶细小的人工岩石。它主要有以下四种矿物: 硅酸三钙一~3Ca0 .'3i02 ,可简写为C3S ; 硅酸二钙2Ca0 · Si02 ,可简写为C2S ; 铝酸三钙3Ca0 · A1203 ,可简写为 C 3 A ; 铁相固溶体通常以铁铝酸四钙4Ca0 . A1203 . Fe203 作为代表式,可简写成 C 4 AF, 此外,还有少量游离氧化钙(.f-Ca0 ) 、方镁石(结晶氧化镁)、含碱矿物及玻璃体。通常熟料中C3S 和C2S 含量约占75 %左右,称为硅酸盐矿物。C3-ft 和C,AF 的理论含量约占22 %左右。在水泥熟料锻烧过程中,C 3 A 和C,AF 以及氧化镁、碱等在1250 ^ - 12800C 会逐渐熔融形成液相,促进硅酸三钙的形成,故称熔剂矿物。 一? 硅酸三钙 C3S 是硅酸盐水泥熟料的主要矿物。其含量通常为50 %左右,有时甚至高达60 %以上。纯C3S 只有在2065^ 12500C 温度范围内才稳定。在20650C 以上不一致熔融为Ca0 和液相;在1250 0 C 以下分解为CZS 和Ca0 ,但反应很慢,故纯C,S 在室温可呈介稳状态存在。C,S 有三种晶系七种变型: 1070 0 C 1060 0 C 990 0 C 960 0 C 920 0 C 520 0 C R ←―― → M Ⅲ←――→ M Ⅱ←――→ M Ⅰ←――→ ~T Ⅲ←――→ T Ⅱ←――→ T Ⅰ

相关文档
相关文档 最新文档