文档库 最新最全的文档下载
当前位置:文档库 › 直流电机维护及常见故障分析

直流电机维护及常见故障分析

直流电机维护及常见故障分析
直流电机维护及常见故障分析

直流电动机工作原理、维护及常见故障分析

阳钢项目部张广初

摘要:本文主要阐述了直流电动机工作原理,直流电动机的使用与维护,

直流电动机使用前的检查内容,使用过程中的检查内容,直流电机不能启动,转速不正常、火花过大等常见故障分析

关键词:直流电动机日常维护常见故障分析

前言直流电动机有着优越的调速性能及较大的启动转矩是其他的电机是无法比拟,具有响

应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,现代的工业生产尤其是调速要求较高的场所应用较为广泛、本文主要是分析了直流电动机的工作原理及根据本人在平常的工作提出维护的小建议

1、直流电动机工作原理及结构

1.1.、直流电机的工作原理

把电刷A、B接到直流电源上A是正电位,B是负电位,在N极范围内的导体ab 的电流是从a流向b的,在S极范围内的导体cd电流是从c流向d的,因此导体ab和cd都要受到磁场力F的作用根据磁场的方向及导体电流的方向和左手定律ab边受到的力的方向是向左而cd边受力的方向是向右,由于电流是相等的、磁场又是均匀的。所以ab边和cd边受到的磁场力是均匀的,这样线圈就在磁场力的作用下按逆时针的方向转动了当线圈转到磁极的中性面上时,电磁力为零但是由于线圈的惯性继续转动。线圈在转了半圈之后,cd到了N极范围之内,ab边到了S极范围之内,由于电刷和换向器的作用在导体ab和导体cd中的电流方向也相反,是从b流向a,从d流向c。因此电磁力F的方向不变,线圈依然按逆时针的方向在转动,可见,由于分别在N、S极范围内的电流的方向总是不变的,因此线圈两个边的受力的方向总是不变的,这样,线圈就可以按照的受力的方向不停旋转了,通过传动机构还可以带动其他的机械工作、

从以上的分析可以看出,要使线圈按照一定的方向旋转,关键是当导体从一个磁极的范围内到另一个磁极范围内,导体中的电流也要随之改变,换向器和电刷就是完成这个任务的装置。可见换向器和电刷是不可缺少的。

当然在实际的直流电动机中,线圈不止一个而是许多个线圈老固的镶嵌在转子的铁芯槽中,当导体中通过电流在磁场中受力的作用带动整个转子转动,这就是直流电动机最基本的工作原理

2.、直流电动机的使用与维护

2.1直流电动机使用前的检查

2.1.1用手动吹风机吹净内部的灰尘、电刷粉末、污垢和杂物等

2.1.2拆除与电机的一切连接线,用绝缘电阻表测量绕组有机座的绝缘电阻值,若小于0.5兆欧应进行烘干处理,测量合格后将拆除的线恢复。

2.1.3检查整流子表面是不是光洁,如发现机械损伤和烧伤的痕迹应进行必要的处理

2.1.4检查电刷是严重损坏,刷架的压力是不是适当,刷架的位置是不是在标记的位置

2.1.5检查电刷架有换向器之间的距离是否适当,一般为1.5mm。

有一次我们在阳春新钢铁棒材厂更换7#轧机主电机时就没有检查这一点,由于没有检查电刷架有换向器之间的距离是否适当,就导致电刷架将换向器刮坏的恶性事故。

2.1.6检查电机的冷却设备是否完好

2.1.7根据直流电动机的铭牌检查各绕组的接线方式是不是正确。电机的额定电压

与实际电压是否相符,电机的启动设备是否满足要求,是否完好无损

2.1.8检查电机主回路端子、励磁回路端子、测温电阻接线端子、风机电机接线端

子是否牢固;

2.1.9检查直流电机前后轴承及润滑油脂是否合适

2.2直流电动机的使用

2.2.1直流电动机在直接启动时电流很大,这将对电源及直流电动机本身都有很大

的影响,因此除非很小的直流电动机可以直接启动外,一般的直流电动机都要采取降压的措来限制启动电流,

2.2.2直流电动机在采取降压启动时要掌握好启动时间,不能太快也不能太慢,并

确保启动电流不能过的(一般为正常电流的1—2倍)

2.2.3在直流电动机启动时就应做好停车准备一旦出现意外情况,马上停机并查找故障原因

2.2.4在直流电动机正常运行时因观察运行是不是正常,声音是否正常震动是不是

正常,温度是不是正常,有无冒烟和焦臭味,如有应立即停机并查找原因2.2.5电机是否发出异常声音,振动。如果有的话要仔细检查发声源的位置(电机

本体、背包、前后轴承、编码器等),及引起振动的原因

2.2.6测量电机各个部分的温度是否正常。(表2.2)(电机本体≥70℃、风机电机

本体≥65℃、背包≥55℃、前后轴承≥60℃视为异常)

表2.2:温度等级 A级 E级 B级 F级 H级

最高允许温度(℃) 105 120 130 155 180

绕组温升限值(K) 60 75 80 100 125

性能参考温度(℃) 80 95 100 120 145

2.2.7观察换向器和电刷的火花情况。在额定的负载下工作只允许有14

1级火花

的发生电刷火花等级见下表(表2.1) 表2.1:火花等级

2.3直流电动机的维护

应保持电机清洁,应尽量的减少灰尘,雨水,油污和杂物进入电动机内部,直流电动机的结构及运行过程中的薄弱环节是换向器和电刷部分,因此我们在平时的维护中应特别注意

2.3.1换向器的维护和保养

换向器的表面是否光洁,不得有机械损伤和火花灼伤,有轻微的火花灼伤1000目的砂纸轻轻仔细的的研磨,如换向器表面出现严重的灼痕、粗糙不平、表面不圆或有局部的凸凹不平时,应拆下进行重新的车削加工,车削加工完毕后,将片间云母槽中的云母片下刻1mm左右,并清除表面金属粉尘及毛刺等最后用压缩空气吹扫干净,再进行重新装配。

换向器在长期负荷下运行表面会产生黑褐色的薄膜。这层薄膜能够保护表面不受磨损,因此我们应保护好这层薄膜,

2.3.2电刷的使用

电刷应与换向器表面应有良好接触,正常的压力应为15—25kpa,卡簧的压力可用弹簧称称量,刷架和电刷不应太紧密,应留有适当的空间,

电刷卡簧

电刷磨损严重时或破损时应经进行更换,更换电刷时型号应是一样进行更换,更换的新电刷应与换向器表面结合紧密,保证与换向器接触面有75%。

电机的轴承的正常工作温升应不大于80℃,且有轻微的均匀的运转声音,巡检时如发现温升太高且有不正常杂声时均应及时通知相关专业人员进行检查

见表3.1

3.2.1电枢绕组接地故障

这是直流电机最常见到的接地故障,电枢绕组接地故障一般发生在槽口处和槽内底部,对其的判断可采用绝缘电阻表法或校验灯法,用绝缘电阻表测量电枢绕组和机座的电阻时,如果电阻值为零说明电枢绕组接地;或者用毫伏表法进行判定,将36V的低压电源接到额定电压为36V的照明灯连接到换向器片上及转轴一端,若灯泡发亮说明绕组接地,具体到那个绕组可用毫伏表进行判定,将6—12V直流电源分别接到相隔M/2或M/4的换向片上(M为换向片的片数),然后用毫伏表一支笔触及电机轴另一支笔触及换向片上,一次测量换向器片与电机轴之间的电压,若毫伏表有度数,说明该换向器所连接绕组元件没有接地,若读数为零,说明该换向器所连接绕组元件接地,最后是绕组元件接地还是换向器接地,还要把绕组和换向器分开来进行一一判定,

表3.2

毫伏表法

电枢绕组接地点找出来以后,可以根据绕组元件接地部位,采取适当的处理方法,若接地点在绕组元件和换向器的连接部位或者在电枢铁芯槽口处接地,只需要进行绝缘处理就可以了,若接地点在铁芯槽内部,一般需要更换电枢,若是只有一个电枢而又在急用的情况下,可采用紧急处理方法:就是用短接片将两换向器之间的接地点短接,此时的电机可以继续使用,但是电流和火花都增大。

3.2换向器故障检修

换向器最常见的故障就片间短路故障,如发现是换向器片间短路时,可仔细观察短路换向片的表面状况,一般是电刷碳粉在槽口断路和灼伤所致,检修时用拉槽工具将换向器槽中的碳粉清楚即可,若用上述方法不能消除片间短路,故障点就是发生在换向器内部,这时要更换新的换向器。

如果一台直流电机长期使用一定要经常检查换向器表面是不是平整,如发现不平整要及时的打磨平整,

事故案例:我2008年8月在日照项目部的时候,日钢照钢铁高速线材厂2#生产线5#轧机电刷卡簧几乎每天都有断的,最后发现是换向器被电刷磨出几道近0.5mm的沟槽出来,电刷正好恰在沟槽里,加上电机运转时的轴向串动,导致卡簧断裂。

3.2.2换向器接地故障

接地故障一般前端的云母环上,该环有一部分裸露在外面,由于灰尘,油污和其他的杂物的堆积,很容易造成接地故障,当故障发生时这部分的云母环大部分已烧毁,查找起来比较容易,修理时只需要击穿烧坏处的杂物清理干净,并用胶漆和云母材料填补烧坏之处,再用可塑云母板覆盖1-2层即可,

3.2.3云母突出

由于换向器上换向片磨损比云母磨损的要快,所以直流电动机在较长一段时间使用后有可能造成云母突起,在修理时只需拉槽工具将突起的云母刮削至比换向器上的换向片低1mm即可。

4电刷中性线位置的确定及电刷的研磨

4.1电刷中性线位置的确定

常用的是感应法如图4.1所示,将励磁绕组通过开关接到1.5-3V的直流电源上,毫伏表连接到相邻的两组电刷架上(电刷与换向器接触要好)当断开或闭合开关时,毫伏表的指针会左右摆动,这时将电刷架顺着电机的转向或反方向缓慢移动,直至指针几乎不动为止,时的位置就是中性线的位置,

表4.1

4.2电刷的研磨

电刷与换向器表面的接触面积大小将直接影响到点刷下火花的大小,对新更换的电刷必行研磨,以保证电刷与换向器的接触面在75%以上,

研磨电刷时一般用零号纱布,纱布的宽度等于换向器的长度,纱布能将整个换向器包住,再用胶带将纱布固定在换向器上,再将电刷放入刷窝内,然后按电机旋转的方向转动电机即

表4.2

可进行研磨。

1—换向器 2—电刷 3—砂布头部 4—砂布 5-胶带

5、结束语:

随着科学技术的不断发展。电动机及其控制设备的性能也日益完善,在实际的工作中如何使用和掌握其性能还需我们在实际的工作中不断的积累经验,判断电动机及其控制设备存在的问题与故障处理,找出故障的原因并加以分析,及时采取对策,确保电机及控制设备正常运行,

6、参考文献

1、直流电动机实际应技巧谷腰欣司科学出版社 (2006-08出版)

2、大电机水轮机标准汇编:铸锻件卷哈尔滨大电机研究所中国标准出版社(2006-11出版)

7、谢词:本文在在写作过程中得到了检修公司高级技师王正明和检修公司阳钢项目部经理黄晓照的大力支持和帮助,我在此一并表示感谢。

直流电机测试方法和常见不良问题的分析

测试方法和常见不良问题的分析 一、测试方法 1.电机空载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),无负载时的电机每分钟转动的圈 数 (空载转速)及此时流过端子的电流 2)测试方法:使用测速计、胶轮、直流电源,如下连接, 直流电源 电机测速计 参考测试 方法:使 用电机综 合测试仪测试(但誨定范围及电机的冲片槽数,测试 数据不准) 2.负载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),额定负载时的电机每分钟转动的 圈数(负载转速)及此时流过端子的电流(负载电 流) 2)测试方法:见上图,一般选择胶轮的直径为20mm,如 果负载为M gem,则所挂舷码的重量则为M g,同时胶 轮上的圈数取决于绳子A处必须松动才行(即祛码的重 量必须全部加到轮子上才行) 3.堵转力矩和堵转电流的测试

1); “ 定义:使电机正好停止转动时的负载力矩Ts即为堵转力

矩,此时的电流即为堵转电流Is 3)一般采用两点法进行测试,选择两个负载T1及T2,测 试此负载下的nl> n2及II、12,使用下而的公式计算堵 转力矩和堵转电流: Ts=(n2Tl-nlT2)/(n2-nl) I S=(I2T1-I2T2)/(T1-T2)+(I1-I2)/(T1-T2)*T S 注意点:T1最好在最大效率点附近,而T2最好在最大 功率点附近 参考测试方法:可以采用测功计测试(不精确)或者使 用扭力计测试(较准) 4.窜动量的测试 1)定义:转子在电机中沿轴向可以松动的最大的间隙量 2)测试方法:使用百分表,电机轴前后最大窜动的位置在 百分表上显示的位置分别是A和B,则电机窜动量为B-A 电机 5.电流波形 1)定义:电机在额定电压下旋转时,流过电机两端子间的电 流的变化的波形,可以用示波器进行显示 2)测试方法:如图连接,示波器上显示的波形即为电机的电 流波形,电容一般为qf的电解电容,如果槽数为n 个,则 电机转动一周的完整的波形数为2n个

电动机常见故障分析与维修

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这

直流电机常见故障及排除方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 直流电机常见故障及排除 方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9217-56 直流电机常见故障及排除方法(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。

对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升………..

电动机故障分析与维护

兰州理工大学毕业论文 姓名:宋惠平 专业: 电气工程及其自动化 毕业年限: 2.5 年 题目:电动机故障与维护分析

电动机故障与维护分析 摘要 在现代化生产程度较高的今天,电动机在工农业社会生产中发挥着重要的作用。但是,电动机在使用过程中时常会发生各种各样的故障。给人们的生活带来极大的不便本文重点分析了电动机的一些常见故障,以及针对这些故障的一些日常维护措施。由于电气控制系统的安全保障,在安全管理中占有非常重要的地位。因此,电气控制系统必须在安全可靠的前提下,满足生产工艺要求,为此在电气控制系统的设计和运行中,必须考虑系统发生各种故障和不正常工作情况的可能性,在控制系统中设置有各种保护装置。保护环节是所有电气控制系统不可缺少的组成部分。本文也着重分析了低压电动机所常用控制系统中设置有各种保护装置。 关键词电动机故障分析维护保护装置电气控制系统

目录 一、电动机常见故障分析 ........................................................................ 错误!未定义书签。 (一)、启动故障分析.............................................................................................. 错误!未定义书签。 (二)、运行中的故障分析?错误!未定义书签。 1、机械故障?错误!未定义书签。 2、电气故障?错误!未定义书签。 二、电动机的日常维护?错误!未定义书签。 三、低压电动机各种保护装置?错误!未定义书签。 (一)短路保护?错误!未定义书签。 (二)过电流保护?错误!未定义书签。 (三) 过载保护 ................................................................................................. 错误!未定义书签。 (四)失电压保护?错误!未定义书签。 (五)欠电压保护 ................................................................................................... 错误!未定义书签。 (六)过电压保护?错误!未定义书签。 (七)断相保护 ................................................................................................... 错误!未定义书签。 (八)弱磁保护 ................................................................................................... 错误!未定义书签。 (九)其他保护..................................................................................................... 错误!未定义书签。参考文献 .................................................................................................... 错误!未定义书签。

电动机常见故障分析及处理(案列)

项目:排除电动机常见故障 学习目的 掌握排除电动机常见故障方法 工作准备 电动机一台,万用表、电桥、常用电动工具 操作步骤 电源接通后,电动机不转,熔丝烧断 运作中的电动机要严格按照国家相关质量标准进行检查以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有晃动,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1、事故现象: 原因分析: 1)缺一相电源,或定子绕组一接反。 2)定子绕组相间短路。 3)定子绕组接地。 4)定子绕组接线错误。 5)熔丝截面过小。 6)电源线短路或接地。 故障判断: 1)首先可用万用表电阻档检查电源开关三相触头是否可靠闭合。 2)如开关正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用摇表测量电机定子绕组和电源线对地绝缘电阻,判断电源线或电机是否发生接地故障。 4)如电机定子和电源线绝缘均正常则检查电机电源熔丝(如有)所标熔断电流同电机功率是否相匹配。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕

组首尾端。 处理方法: 1)检修故障开关触头,消除缺相。 2)查出短路点,并修复。 3)消除接地。 4)查出误接,改正之。 5)换较粗的熔丝。 6)重换电源线。 2、事故现象:通电后电动机不转动,有嗡嗡声 原因分析: 1)定子、转子绕组断路或电源一相无电。 2)绕组引出线首末接错,或绕组内部接反。 3)电源回路接点松动,接触电阻大。 4)负载过大,或转子被卡住。 5)电源电压过低。 6)小型电动机装配太紧或轴承内油脂过硬。 7)轴承卡住。 故障判断: 1)首先可用万用表电压档检查三相电源是否电压过低或有缺相。 2)如电源电压正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用手转动电机转子以判断电机是否有卡涩现象,如有卡涩可将电机与负载解开再转动转子看卡涩是否消失,如消失则应检查负载是否过大或卡涩;如卡涩现象仍存在则需将电机解体做进一步检查。 4)如电机没有卡涩现象就仔细检查电机电源线螺丝是否松动,电源线本身是否损坏。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕组首尾端。 处理方法:

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

浅谈直流电机的故障诊断及维护

浅谈直流电机的故障诊断及维护 摘要】直流电机系统的维护决定其正常运行;直流电机结构的特殊性决定其故 障的多样性和故障诊断的复杂性。只有正确维护,准确诊断,才能实现高效稳定 地运行。本文阐述了直流电机故障诊断、直流电机的检查维护、直流电机控制部 分的维护与检修以及直流电机的日常管理,旨在提高直流电机的工作效率以及企 业的经济效益。 【关键词】直流电机故障诊断检查维护日常管理 有关直流电机最早的历史可以追溯到十九世纪二十年代,那时候有关电机的 相关理论已经开始普遍流传,人们将直流电机不断地改造以适应时代的需求。直 流电机过载能力较强,热动和制动转矩较大,调速性能优越,易平滑调速,而且 控制系统简单,电控系统造价低,这个是交流电机无法取代的。因此在钻井中, 直流电机仍在广泛应用着。 一、直流电机故障诊断 直流电机的复杂结构决定了其故障的多样性原因的多样性。主要分为机械性 故障和电气性故障。 1、机械故障。机械性故障包括安装不良松动、轴承不良、润滑脂泄漏等问题,判断机械故障先看电机是否有异响、振动是否过大,两电机电流是否相差过大,解决方法主要通过重新校正平衡以及更换相应设备等措施进行故障排查。机 械故障是难以避免的,而且往往在现场无法解决,这需要我们提前发现处理,防 止事故扩大化。 2、电气故障。直流电机运行的电气故障主要表现在以下几个方面:(1)运 行过程中电机温度升高;(2)电刷下火花强烈引起换向片烧黑;(3)绝缘老化 速度加快等。电气故障可通过电流的波动来判断。运行中的温度升高主要由电机 过载、风机工作不正常、电枢线圈短路等原因所致。处理过程中要找准引起温度 上升的原因,并对相应部位进行检修维护。电刷打火主要是因为碳刷磨损过大或 电刷弹簧老化引起的,应及时更换。换向片应视灼烧情况处理,对于轻微的灼烧 可以拿砂纸打磨凹凸面,严重的应考虑返厂更换了。电机绝缘性能下降最直观的 表现是电控柜直流接地灯亮,电机启动后电压很低,但电流很大。应用兆欧表测 量电枢的绝缘电阻,最低不能低于0.7兆欧。解决方法可以先用热风机或大灯泡 烘烤线圈,若结果不理想,应及时返厂做绝缘处理。 二、直流电机的检查维护 虽然直流电机的故障有很多,但主要集中在碳刷、换向器、轴承等元件,同 时亦是故障的多发区。钻井直流电机主要使用T900的碳刷,而且分直、斜两种。 1、电刷的维护。电刷的质量对换向有很大的影响,合理的选择电刷可以改 善换向。而电刷的维护需要从以下几个方面进行:(1)确认电刷辫螺丝是紧固的,刷辫不影响电刷的自由运动。(2)确保电刷辫不接触到电机内部非绝缘部分。(3)检查电刷能否在刷握内自由移动,弹簧的位置必须正确,功能正常。(4)刷握离换向器表面的距离应一致。 2、换向器的维护。换向器工作状况好坏直接关系直流电机的工作状况,因 此必须加强对换向器的维护。而直流电机换向故障主要标志是换向火花,换向火 花实际上是电刷的换向片脱离接触时,释放的电磁能量。换向器的维护和电刷的 维护与质量直接挂钩,正确的进行电刷质量选择和合理维护电刷运行时换向器维

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

直流电机的认识与检测维修方法

直流电机的认识与检测维修方法 直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。陕西西玛金都机电生产部李工程师说:起动机使用的直流电动机为短时额定工作的串激式直流电动机,它起动柴油机时的导线较粗,产生的转矩也很大。 直流电动机主要由电枢、换向器、磁极、激磁绕组和电刷等组成。壳体内部电枢绕组和激磁绕组串联在一起,当蓄电池供电时,激磁绕组和铁心形成磁极而产生磁场,同样,电枢绕组也产生磁场。两个磁场相互作用而产生很大的转矩,然后通过起动机驱动齿轮输出动力。 1.直流电动机的修理。 (1)检修电刷和电刷架,电刷总成的安装位置如图02所示。图02 ST614型起动机的构造。在正常情况下.电刷的高度一般在20mm左右。若在检修中发现磨损到小于原高度1/2时,应换用同型号的新电刷。更换后的电刷,应保证工作面与换向器接触面积在75%以上。若接触面不符合要求时,可用"0"号细砂纸垫在换向器表面上.将电刷工作面研磨成圆弧状的接触面。电刷弹簧的压力一般为13土2N,否则,应更换或调整电刷弹簧。 (2)看图检修电枢 ①电枢的实物外形如图03所示。图03 电枢的实物外形 电枢线圈在使用中出现短路、断路和搭铁现象时,可用万用表电阻挡进行检测。 ②换向器表面应无烧损、划伤、凹坑和云母片凸起等缺陷。换向器表面上的污物,应用汽油将其清洗干净。对于松脱的接头要用锡焊重新牌。换向器表面出现较严重的烧损、磨损和划.并造成表面不光滑或失圆时,可根据具体情况进行修复或更换。 ③电枢两端轴颈与轴承衬套的配合间隙应控制在o. 04 ~ o. 15mm范围内。若测量出的问隙值超过o. 15mm时,应换用新衬套。 (3)看图检修磁场线圈 ①磁场线圈的实物外形如图04所示。图04 磁场线圈的实物外形。 磁场线圈损坏后,可用万用表电阻挡检测磁场线圈的工作情况。 ②磁极铁,心松动、线圈出现松动或其他原因造成损坏后,可将旧绝缘稍加处理后,用布带重新包好,再进行绝缘处理。 ③检修中发现有断路或短路的线圈时,一般应换用新线圈或重新绕制 (4)看图检修后端盖 后端盖的实物外形如图05所示。 图05 后端盖的实物外形 ①在后端盖的4个电刷架中有2个与盖体绝缘,另外2个与盖体搭铁。 ②相邻2个电届IJ架之间的绝缘电阻应大于0.5Mn。若绝缘电阻过小,应查明原因后修复. 电枢绕组接地故障 这是直流电动机绕组最常见的故障。电枢绕组接地故障一般常发生在槽口处和槽内底部,对其的判定可采用绝缘电阻表法或校验灯法,用绝缘电阻表测量电枢绕组对机座的绝缘电阻时,如阻值为零则说明电枢绕组接地;或者用图所示的毫伏表法进行判定,将36V低压电源通过额定电压为36V的低压照明灯后,连接到换向器片上及转轴一端,若灯泡发亮,则说明电枢绕组存在接地故障。具体到是哪个糟的绕组元件接地,则可用图所示的毫伏表法进

三相异步电动机的绕组常见故障分析与处理方法(精)

班级:07自动化 学号:0709111016 姓名:高顺 三相异步电动机的绕组常见故障分析与处理方法 关键词:断路电流不平衡短路绝缘损坏磁场不均绕组接地绕组接错 一、绕组开路 由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路、短路与接地故障也可使导线烧毁,在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组发热而断路。一般分为一相绕组端部断线、匝间短路、并联支路处断路、多根导线并烧中一根断路、转子断笼。 1. 故障现象 电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。 2. 产生原因 (1)在检修和维护保养时碰断或制造质量问题。 (2)绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。 (3)受机械力和电磁场力使绕组损伤或拉断。 (4)匝间或相间短路及接地造成绕组严重烧焦或熔断等。 3. 检查方法 (1)观察法。断点大多数发生在绕组端部,看有无碰折、接头出有无脱焊。(2)万用表法。利用电阻档,对“Y”型接法的将一根表棒接在“Y”形的中心点上,另一根依次接在三相绕组的首端,无穷大的一相为断点;“△”型接法的短开连接后,分别测每组绕组,无穷大的则为断路点。 (3)试灯法。方法同前,等不亮的一相为断路。 (4)兆欧表法。阻值趋向无穷大(即不为零值)的一相为断路点。 (5)电流表法。电机在运行时,用电流表测三相电流,若三相电流不平衡、又无短路现象,则电流较小的一相绕组有部分短断路故障。 (6)电桥法。当电机某一相电阻比其他两相电阻大时,说明该相绕组有部分断路故障; (7)电流平衡法。对于“Y”型接法的,可将三相绕组并联后,通入低电压大电流的交流电,如果三相绕组中的电流相差大于10%时,电流小的一端为断路;对于“△”型接法的,先将定子绕组的一个接点拆开,再逐相通入低压大电流,其中电流小的一相为断路。

电动机常见故障的主要原因和处理方法

目录 一、电动机结缘电阻低电流泄露大的主要原因和处理方法 ----------- 2 二、电机不能正常起动的主要原因 ----------------------------------------- 2电机通电时熔丝熔片烧断或跳闸的主要原因 ----------------------------- 3电机运行时噪声大,有杂声或尖叫声的主要原因 ----------------------- 3电机绕组匝间绝缘短路故障的主要原因 ----------------------------------- 4电机空载电流大的主要原因 -------------------------------------------------- 5七.电机三相电流不平衡主要原因 ----------------------------------------- 5八.电机接地的主要原因 ----------------------------------------------------- 5九.电机过热的主要原因 ----------------------------------------------------- 6十.定子转子摩擦扫膛的主要原因 ----------------------------------------- 6十一.电机振动的主要原因 -------------------------------------------------- 7十二.电机轴承过热和抱轴的主要原因 ----------------------------------- 7十三.电机出力不够的主要原因 -------------------------------------------- 8

直流电机常见故障的处理

直流电机常见故障的处理: 直流电机由于其启动转矩大,调速平稳,控制简单等优点,在生产生活中广泛应用。其按励磁方式可分为他励、并励、串励和并励。串励电动机在使用时,应注意不允许空载起动,不允许用带轮或链条传动;并励或他励电动机在使用时,应注意励磁回路绝对不允许开路,否则都可能因电动机转速过高而导致严重后果的发生。我们也知道在一定的条件下直流电动机和直流发电机可以相互转换的。下面我们主要说一下电机的一些常见故障。

电枢绕组接地故障 这是直流电动机绕组最常见的故障。电枢绕组接地故障一般常发生在槽口处和槽内底部,对其的判定可采用绝缘电阻表法或校验灯法,用绝缘电阻表测量电枢绕组对机座的绝缘电阻时,如阻值为零则说明电枢绕组接地;或者用图所示的毫伏表法进行判定,将36V低压电源通过额定电压为36V的低压照明灯后,连接到换向器片上及转轴一端,若灯泡发亮,则说明电枢绕组存在接地故障。具体到是哪个糟的绕组元件接地,则可用图所示的毫伏表法进行判定。将6~12V低压直流电源的两端分别接到相隔K/2或K/4的两换向片上(K 为换向片数),然后用毫伏表的一支表笔触及电动机轴,另一支表笔触在换向片上,依次测量每个换向片与电动机轴之间的电压值。若被测换向片与电动机轴之间有一定电压数值(即毫伏表有读数),则说明该换向片所连接的绕组元件未接地;相反,若读数为零,则说明该换向片所连接的绕组元件接地。最后,还要判明究竟是绕组元件接地还是与之相连接的换向片接地,还应将该绕组元件的端都从换向片上取下来,再分别测试加以确定。 电枢绕组接地点找出来后,可以根据绕组元件接地的部位,采取适当的修理方法。若接地点在元件引出线与换向片连接的部位,或者在电枢铁心槽的外部槽口处,则只需在接地部位的导线与铁心之间重新进行绝缘处理就可以了。若接地点在铁心槽内,一般需要更换电枢绕组。如果只有一个绕组元件在铁心槽内发生接地,而且电动机又急需使用时,可采用应急处理方法,即将该元件所连接的两换向片之间用短接线将该接地元件短接,此时电动机仍可继续使用,但是电流及火花将会有所加大。 电枢绕组短路故障 若电枢绕组严重短路,会将电动机烧坏。若只有个别线圈发生短路时,电动机仍能运转,只是使换向器表面火花变大,电枢绕组发热严重,若不及时发现并加以排除,则最终也将导致电动机烧毁。因此,当电枢绕组出现短路故障时,就必须及时予以排除。 电枢绕组短路故障主要发生在同槽绕组元件的匝间短路及上下层绕组元件之间的短路,查找短路的常用方法有: ①短路测试器法与前面查找三相异步电动机定子绕组匝问短路的方法一样,将短路测试器接通交流电源后,置于电枢铁心的某一槽上,将断锯条在其他各槽口上面平行移动,当出现较大幅度的振动时,则该槽内的绕组元件存在短路故障。 ②毫伏表法如图所示,将6.3V交流电压(用直流电压也可以)加在相隔K/2或K/4两换向片上,用毫伏表的两支表笔依次接触到换向器的相邻两换向片上,检测换向器的片间电压。在检测过程中,若发现毫伏表的读数突然变小,例如,图中4与5两换向片间的测试

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

直流电机常见故障及排除方法(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 直流电机常见故障及排除方法 (新版) Safety management is an important part of production management. Safety and production are in the implementation process

直流电机常见故障及排除方法(新版) 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变

极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升……….. (2)换向极绕组接反。此情况会使换向严重恶化,可看到电刷下火花随负载增加而更加明显,发现这种情况,先检查换向极性是否正确,可将换向极绕组的接头互换位置,进行试验以观察效果。 (3)电刷偏离中性线过多,严重时不发电空载下电刷有火花,

三相异步电动机常见故障分析与排除示范文本

三相异步电动机常见故障分析与排除示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

三相异步电动机常见故障分析与排除示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 三相异步电动机应用广泛,但通过长期运行后,会发 生各种故障,及时判断故障原因,进行相应处理,是防止 故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和 冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔 断(至少两相熔断);③过流继电器调得过小;④控制设 备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是 否有断点,修复;②检查熔丝型号、熔断原因,换新熔 丝;③调节继电器整定值与电动机配合;④改正接线。

二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小;⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断线;消除反接故障;②查出短路点,予以修复;③消除接地;④查出误接,予以更正;⑤更换熔丝; ③消除接地点。 三、通电后电动机不转有嗡嗡声 l.故障原因①定、转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反; ③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。 2.故障排除①查明断点予以修复;②检查绕组极性;

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

直流无刷电机控制器常见故障及排除方法

直流无刷电机控制器常见故障及排除方法 (1)断开电源用二极管档检测 A 红表笔接控制器电源输入正极、黑笔接负极、有充电现象为正常,短路则损坏。 B 红笔接控制器电源输入负极,黑笔接红色、黄色、绿色,短路则损坏。 C 红笔接控制器电源输入负极,黑笔接电机负极应有400-700参数。 D 红表笔接电机负极,黑表笔接控制器正极,应有100-300参数。 E 转把红、黑、绿,不应有短路现象。 (2)通电测量 F 检测控制器电源输入正负极是否有36V与48V以上电压。 G 检测转把电源是否有5V以上电压。 H 转动转把,检测电压是否在0.8V-4.2V之间变化。 I 转动转把检测控制器电压输出。 (3)短路刹车断电线控制器应停止输出 无刷控制器检测方法 一、断电检测 1、检测控制器电源输入正负极是否短路 2、检测控制器绕组线参数: A 用黑表笔接电源正极,用红表笔分别接触黄、绿、蓝三根绕阻线,参数在400-700之间 B 重复2的步骤 3、霍尔信号线检测:用黑表笔接黑线,红表笔接红、黄、绿、蓝四根线,应无短路故障 二、通电检测 1、检测控制器电源输入电压是否有36V(48V)以上电压;

2、检测霍尔信号线是否有5-7V电压; 3、检测转把电源是否有5V以上电源; 4、转动转把,检测信号线上是否在0.8-4.2V之间变化。其它3故障则可配合上面状态推断维修: 1:电机不转: a:电压不足,测试MCU的第3脚电压是否大于3.2V; b:刹车电平接法是否正常,检测MCU的第7脚,高电平刹只要电压高于2..5V:低平刹车时电压低于2.0V; c;调速电压是否加到MCU的第5脚; d:接插件未按装良好,缺相导致无法输出; e:上述条件都满足时,则输出及驱动电电路有故障,外力强行转动电机,内部有明显的不均匀阻力时则多为MOS功率管损坏、但有部分为前级驱动三极管损坏。 2:电机转;但不正常: a:控制器60度120度工作方式选择是否对应: b:电机靠外力能力,且转动时有叫大的操声不平稳;输出缺相,检测连接线情况,线路板上元件有漏焊、虚焊、短路、错焊等: c:霍尔信号不对,部分电机需调整控制器输出线或霍尔信号线; d:电机在低速转动时不平稳,多为驱动电路元件参数差异太大,测试三相驱动元件有无错焊,性能不良; 3:电机易停、带负载能力差: a:控制器短路比较电阻R9、R10是否为20K或1.2K: b:电容C7(1000Pf)、死区调节电容C24(100PF)容量偏离太大; c:康铜线过长(*当控制器电容C7、C24容量不对时,工作电流将异常,一般反映为工作电流大而将康铜调得过长); d:驱动电路的部分元件漏电,性能不良。 4:限流电阻发热,静态电流偏大; a:检测电路中有短路: b:驱动输出有无器件错焊;

相关文档
相关文档 最新文档