文档库 最新最全的文档下载
当前位置:文档库 › 镉的硫族化合物半导体纳米线阵列的模板法合成及其紫外可见吸收光谱研究_英文_

镉的硫族化合物半导体纳米线阵列的模板法合成及其紫外可见吸收光谱研究_英文_

镉的硫族化合物半导体纳米线阵列的模板法合成及其紫外可见吸收光谱研究_英文_
镉的硫族化合物半导体纳米线阵列的模板法合成及其紫外可见吸收光谱研究_英文_

第6卷 第2期2000年5月

电化学

EL ECT ROCHEM IST RY

V ol.6 No.2

M ay2000

文章编号:1006_3471(2000)02_0151_06

T emplate Synthesis and UV_V is Absorption Spectra

of the Nanow ire Arrays of Cadmium Chalcogenides

XU Shi_min,XU E Kuan_hong*,KONG Jing_lin,

SU N Dong_mei,FENG Yu_ying,LU Hai_yan

(Dep t.of Chem.,Nanj ing Normal Univ.,N anj ing 210097,China)

WANG Guang_hou

(National Laboratory of Solid State Microstructures,Nanj ing Univ.,Nanj ing210093,China)

T he porous alumina mem brane formed in the anodic ox idation of highly pure aluminum foil has attracted a great deal of attention in recent years[1].It can be served as a desired template to prepare nanom eter scale materials[2]due to its unique structure of discrete and cy lindrical nanopores,paralleled one another,w ith the homogeneous size and distribution[3].Chalcog enide semiconductors have promising prospect in the applications of photovoltaic[4]and photoconducting devices[5]and have been ex tensively exploited for many years.Olbright and his co_workers stud ied ex perimentally and theoretically the optical nonlinearties of CdS x Se1-x_doped glass[6];Britt and Ferekides reported that the conversion efficiency in a solar cell of thin_film CdS/CdTe could be as high as15.8%[7].H ere w e report the fabrication and UV_Vis absorption spectra of CdS、CdSe and Cd x Zn1-x S nanow ire arrays deposited into the template m atrix of porous alum ina.The diameters of these nanowires were varied from10nm to50nm in our experiments.

Prior to anodization,a piece of highly pure(99.99%)alum inum foil w as deg reased in ace tone for two days and then electrochemically polished in a m ix ture of perchloric acid(70~72 w t%)and anhydrous ethanol in the volume ratio of1 5under the DC voltage of8V at tempera ture30 for3min to obtain a mirror surface.Alum inum anodization w as conducted in15w t% sulfuric acid and0.3mol/L or0.03mol/L ox alic acid under DC voltag es of10to50V at differ ent temperatures for30m in to produce varied diameters in the range from7nm to50nm.

Dsposition of CdS was carried out in a solution containing0.055mol/L CdCl2and0.19mol/ L element S in dimethysulphox ide(DMSO)under AC voltage30V at160 for5min[8,9].

R eceived2Dec.1999

* T o whom corr espondence should be addressed

Project supported by N ational Natur al Science Foundat ion of China(29973014),N atural Science F oundation of Jiangsu Prov ince(BK99062)and National Labor ator y of Solid State M icrostr uctures(Z970402)

We found that the deposition of CdSe could also be formed in a similar w ay.The co_deposition of Cd x Zn 1-x S w as done in a solution containing 0.055mol/L CdCl 2+ZnCl 2with various Zn/Cd ra tios and 0.19mol/L element S in DMSO under AC voltage 50V at 160 for 5min [10].After the deposition,the sample w as rinsed w ith successive acetone,ethanol and double distilled water thoroughly.The anodic oxide membrane deposited w ith the semiconductor nanow ire arrays was detached from the Al substrate by a treatment of saturated H gCl 2solution.The thickness of the membrane w as ca.10 m for the anodization in 15wt%H 2SO 4under DC 10V at 25 for 30min and ca.20 m in 0.3mol/L H 2C 2O 4under DC 25V at 0~5 for 30m in.

F ig.1 T he cross section of Cd 0.67Zn 0.33S nanow ire arr ays deposited in the matr ix of anodic aluminum ox ide(AAO)

Fig.1is a T EM (Transmission Electron M icroscopy )

image of a cross section of Cd 0.67Zn 0.33S nanow ire array in

the template matrix of alumina.T o characterize the struc

ture and morphology of the chalcogenide nanow ires,the

deposited membrane w as dissolved in 10w t%NaOH solu

tion and the nanow ires were freed from the alumina ma

trix.After the complete removal of salts produced in the

previous procedures,the solution w ith the suspension of

nanowires w as dropped onto a carbon coated Cu g rid for

T EM examination.Fig.2and Fig.3are the T EM and SAED (Selected Area Electron Diffraction)imag es of CdS and CdSe nanow ires freed from the alumina matrix ,respectively.The SAED analysis as show n in Tab.1re

vealed their w urtzite (hex agonal)

structure.Fig.2 T he T EM and SAED images of CdS nanow ires

with the diameter of 10

nm F ig.3 T he T EM and SAED images of CdSe nanow ires with the diameter of 40nm

152 电 化 学 2000年

T ab.1 T he d values in liter ature *and from the SAED images in our exper iments hk1d Literature data Calculated results CdS

(Hexagonal)

101 3.16 3.16002 3.36 3.36100 3.59 3.59CdSe

(Hexagonal)100 3.72 3.73002

3.51 3.50110 2.15 2.15

*Power diffr action standar ds file,inor ganic and organic.Inter national centre for diffraction data.1601Par lane,Swarthmo re,Pennsylvania.1991,CdS,set:41_1409;CdSe,set:8_459

T he UV_Vis absorption spectra of the semiconductor nanow ire arrays electrochemically de posited in the porous alumina were recorded on the Hitachi U_3400Spectrophotometer.Fig.4and Fig.5are the absorption spectra of CdS and CdSe nanow ire arrays w ith different diameters respec tively.It show s that the absorption edg es of the nanowire arrays shift tow ards higher energies w hen the diameters are less than 25nm,w ith respect to their bulk band gap (2.4eV for CdS [11],

1.7eV for CdSe [12],respectively.The data shown in Fig.4are in good agreement w ith the results obtained from the resonance Raman spectroscopy measured by Haslett and his co_w orkers [13].Fig.6shows the absorption spectra of the Cd 0.67Zn 0.33S nanow ire arrays w ith different diameters but the same composition.T he content of elements Cd and Zn w as determined by an ICP (in duced coupled plasma)measurement.In this figure,the absorption edge of the spectrum for the array w ith the diameter of 10nm is about 50nm less than the array w ith the diamter of 40nm in their w avelength.To clarify whether the blue shift occurred in the above experiments had some connections w ith the template matrix of alumina,the absorption spectra,one w ith a reference of blank quartz plate and another w ith a reference of the quartz plate plus a membrane of blank alu m ina,were compared as show n in Fig.7.T he tw o curves in the figure coincided very w ell,show ing that the free alumina matrix had no contribution to the blue shift in our experiments.It is w orthy to notice that the absorption edges in UV_Visible spectra of clusters of cadmium Chalco genide semiconductors show blue shift due to the quantum confinement effects [14,15]only when the size is less than or at least around the respective Bohr radius [16](

2.16nm for CdS and

3.23nm for CdSe),but the blue shift occurred for the nanow ire arrays of Chalcogenide semiconductors in our ex periments even w hen the diameters of nanow ires w ere as great as 25nm.It is under w ay in our group to ascertain the reasons for the phenomena.

In conclusion,porous alum ina can be used as a template to fabricate the Cadm ium chalco genide arrays of nanow ires w ith the discrete and parallel arrang ement and the homogeneous size of diameter.The arrays possess m any characteristics,such as show ing blue shifts of edges in their

153 第2期 徐士民等:镉的硫族化合物半导体纳米线阵列的模板法合成及其紫外可见吸收光谱研究

absorption spectra even w hen diam eters are as high as 25nm.The reasons for the results are w aiting to be

revealed.

Fig.4 T he U V_V is absorption spectra of CdS

nanow ire arrays w ith the diameters of (a)7

nm,(b)25nm,and (c)40nm,respec

tively F ig.5 T he U V_V is absorption spectra of CdSe nanowir e arrays with the diameters of (a)10nm,(b)25nm,and (c)50nm,re

spectively

Fig.6 T he U V_V is absor ption spectr a of Cd 0.67Zn 0.33

S nano wire arrays w ith different diameters of

(a)10nm,(b)40

nm F ig.7 T he U V_Vis spectr a of the same sample of a

CdS nanow ire arr ay w ith different references,one being blank quartz plate (a)and another being the quartz plate plus a membrane of

blank alumina(b)

154 电 化 学 2000年

Key words:

Template synthesis,Porous alumina,Semiconductor,Cadmium chalcogenide,

Nanow ires References:

[1] Jessensky O,M ller F ,G sele U.Self_organized for matio n of hex agonal pore ar rays in anodic alumica[J].

Applied P hysics Letters,1998,72(10):1173.

[2] Al _mawalw i D,Liu C Z,M oskovits M .Nano wires formed in anodic oxide nanotemplates[J].J.M ater,

Res.,1994,9(4):1014.

[3] M asuda H,Hasegwa F ,Ono S.Self_ordering of cell arr angement of anodic porous alumina formed in sulfuric

acid solution[J].J.Electro chem.Soc.,1997,144(5):L127.

[4] Wang B H,W ang D J,Cui Y ,et al.Photoelectrochemical investigations on size_quantized particulate CdS

film electrodes[J].Chemical Journal of Chinese U niversities,1995,16(10):1610.

[5] T orres J,Gor dillo G.P hotoconductors based on Zn x Cd 1-x S and CdSe 1-y S y thin films fabricated wit h multi

layer structur e[J].T hin Solid F ilms,1997,310:310.

[6] Olbrig ht G R,Peyghambarian N ,K och S W,et al.Optical nonlinearities o f g lasses doped w ith semiconduc

to r micr ocr ystallites[J].Optics Letters,1987,12(6):413.

[7] Br itt J,Ferekides S.T hin_film CdS/CdT e so lar cell w ith 15.8%efficiency [J].Appl.Phys.L ett.,1993,

62(22):2851.

[8] Baranski A S,Fawcett W R.T he Electro deposition of M etal Chalcogenides [J].J.Electrochem.Soc.,

1980,127(3):766.

[9] Routkevitch D ,Big ioni T ,M oskovits M ,et al.Elect rochemical fabrication o f CdS nanow ire arrays in porous

anodic aluminum oxide t emplates[J].J.P hys.Chem.,1996,100:14037.

[10] Routkevitch D,T ag er A A,Haruyama J,et al.N onlithog raphic nano_wire arrays:Fabrication,physics,

and device applications[J].IEEE T ransactions on Electron Devices,43(10):1646.

[11] Dhanabalan A,K udr olli H,M ajor S S,et al.Structur e of CdS nanoparticles containing cadmium ar achidate

LB films[J].Solid State Communicat ions,1996,99(11):859.

[12] Alivisatow s A P.Semiconductor clusters,nanocr ystals,and quantum dots[J].Science,1996,271:933.

[13] Routkevitch D,Haslett T L ,Ry an L,et al.Synthesis and resonance R aman spectroscopy of CdS nano_w ire

arrays[J].Chemical Physics,1996,210:343.

[14] Rama Kr ishna M V ,Fr iesner R A.Q uantum confinement effects in semiconductor clusters[J].J.Chem.

Phys.,1991,95(11):8309.

[15] Brus L E.Electron_electron and electron_hole interactions in small semiconductor crystallites:T he size de

pendence of the low est ex cited electronic state[J].J.Chem.Phys.,1984,80(9):4403.

[16] Alivisatos A P,Harris T D,Carro ll P J,et al.Electron_v ibration coupling in semiconductor clusters studied

by r eso nance Raman spectroscopy[J].J.Chem.P hys.,1989,90(7):3463.

155 第2期 徐士民等:镉的硫族化合物半导体纳米线阵列的模板法合成及其紫外可见吸收光谱研究

镉的硫族化合物半导体纳米线阵列的模板法

合成及其紫外可见吸收光谱研究

徐士民,薛宽宏*

,孔景临,孙冬梅,冯玉英,陆海彦

(南京师范大学化学系,江苏南京 210097)王广厚

(南京大学固体微结构国家重点实验室,江苏南京 210093)

摘要: 以多孔氧化铝为模板,用交流电分别通过含有相应的CdCl 2、ZnCl 2、单质S 、Se 等的二甲亚砜(DM SO )溶液,沉积CdS 、CdSe 以及Cd x Zn 1-x S 半导体纳米线阵列并研究其紫外可见吸收光谱.实验结果表明,当半导体纳米线的直径小于25nm 时,其吸收边相对于体相的吸收边产生蓝移,而且蓝移的幅度随着半导体纳米线直径的减小而增加,显示了明显的量子限域效应.

关键词: 模板法合成,多孔氧化铝,半导体,硫族化镉,纳米线

中国分类号: O 646,O 649.4 文献标识码: A 156 电 化 学 2000年

题名一维纳米结构和纳米线有序阵列

题名“一维纳米结构和纳米线有序阵列” 作者张立德;孟国文;李广海;叶长辉;李勇; 中文关键词 单位 中文摘要<正>随着纳米材料研究的不断深入,对性能的研究愈来愈迫切。但研究无序随机排列的纳米材料性能却非常困难,既便能获得一些结果,却由于试样之间的不统一与不均匀,使不同研究者获得的同类实验结果没有对比性。为此,我们发展了基于有序多孔氧化铝模板的纳米线有序阵列制备技术,实现了纳米线直径可控、密度可调。为纳米材料性能的研究提供了保障,为纳米材料的应用奠定了基础。 基金 刊名中国科技奖励 年2007 期03 第一责任人张立德; 2 题名纳米线阵列及纳米图形制备技术的研究进展 作者雷淑华;林健;黄文旵;卞亓; 中文关键词纳米线阵列;;纳米图形;;信息技术 单位同济大学材料科学与工程学院,同济大学材料科学与工程学院,同济大学材料科学与工程学院,同济大学材料科学与工程学院上海200092,上海200092,上海200092,上海200092 中文摘要当今纳米技术研究的前沿和热点之一是将纳米线按一定方式排列与组装构成纳米线阵列及纳米图形,它们是下一代纳米结构器件设计的材料基础,在激光技术、信息存储及计算技术、生物技术等各领域均有广阔的应用前景。介绍了在纳米线阵列材料制备以及纳米图形制作方面的技术研究进展,详述了模板法、自组装法以及纳米刻蚀法等技术的发展。 基金国家自然科学基金资助项目(50572069) 刊名材料导报 年2007 期01 第一责任人雷淑华; 3 题名硅纳米线阵列的制备及其光伏应用 作者吴茵;胡崛隽;许颖;彭奎庆;朱静; 中文关键词硅纳米线阵列;;减反射;;太阳电池 单位清华大学材料科学与工程系,清华大学材料科学与工程系,北京市太阳能研究所,清华大学材料科学与工程系,清华大学材料科学与工程系北京100084,北京100084,北京100083,北京100084,北京100084 中文摘要采用金属催化化学腐蚀方法在单晶硅片表面可以制备出大面积排列整齐、与原始硅片取向一致的硅纳米线阵列,得到的硅纳米线单晶性好、轴向可控且掺杂浓度不受掺杂类型和晶向的影响。基于此,我们成功制备了大面积硅纳米线p-n结二极管阵列。此外,硅纳米线阵列结构具有优异的减反射性能,探索了其在太阳电池中的应用。目前初步研制出了基于硅纳米线阵列的新型太阳电池,获得了最高为9.23%电池效率。同时也研究了限制硅纳米线阵列太阳电池转换效率的主要因素,为以后的应用做了前期的探索工作。 基金 刊名太阳能学报

纳米线制备

模板法: 按模板材料可分为碳纳米管模板法、多孔氧化铝模板法、聚合物膜模板法和生命分子模板法。其中聚合物模板法廉价易得。模板法的模板主要有两种:一种是径迹蚀刻聚合物膜,如聚碳酸脂膜,另一种是多孔阳极氧化铝膜,两者相比,氧化铝模板具有较好的化学稳定性、热稳定性和绝缘性,其余还有介孔沸石法、多孔玻璃、多孔Si 模板、MCM-41、金属、生物分子模板、碳纳米光模板等聚碳酸脂膜(聚合物)模板法:聚碳酸脂膜模板是所有聚合物膜模板中使用最广的一种,C.Schonenoberge等以不同规格不同厂家的聚碳酸酯过滤膜为模板,用电化学沉积的方法成功涤制备出了不同直径的Ni、Co、Cu和Au纳米线。 多孔氧化铝模板:采用该方法时,多孔氧化铝模板只是作为模具使用,纳米材料仍需要常规的化学反应来制备,如电化学沉积、化学镀、溶胶-凝胶沉积、化学 气相沉积等方法。多孔阳极氧化铝模板(AAO: porous anodic aluminum oxide)是典型的自组织生长的纳米结构的多孔材料,微孔直径大约在10~500nm之间, 密度为二丄1「「个/諾之间,阳极氧化法制备的有序多孔氧化铝模板的孔径大小一致,排列有序,呈均匀分布的六方密排柱状。通常孔径在20?250nm范围内,孔间距在5?500nm范围内。目前大部分究主要局限在以草酸为电解液的中孔径模板的制备和研究中。这是由于在草酸电解液中制得的模板较厚、孔径均一、大 小适中。膜厚可达100卩m以上。 当然模板法中这些只是作为模具使用,具体的纳米材料仍需要一些其它的方法来得到,常用的有电化学沉积、化学气相沉积法(CVD)化学聚合、溶胶-凝胶沉积等电化学沉积:电沉积方法主要分为三步,1、阳极氧化铝模板的制备及孔径的调节; 2、对氧化铝模板及阻挡层的径蚀,释放出有序的纳米线阵列,再经后续处理得到所需的纳米材料,开发出各种纳米器件。电沉积法只能制备导电材料纳米线,如金属、合金、半导体、导电高分子等。 按照电源不同分为直流沉积、交流沉积、循环伏安法沉积、脉冲电沉积。Al 在阳极氧化的过程中,表面生成由致密阻挡层和多孔外层组成的氧化铝膜,极薄的阻挡层具有半导体的特性,在沉积之前要先从铝基底上将多孔薄膜剥离,通孔,通过离子喷射或热蒸发等在模板表面涂上一层金属薄膜作为电镀阴极。该方法比 较复杂,也有研究者试图不将薄膜从铝基底上剥离,采用磷酸腐蚀致密层薄膜,但是该方法同时使多孔膜变薄,不易控制,也影响了纳米线的纵横比。 交流电沉积方法工艺简单可行,且不需要将模板和铝基底分离,通过控制电流、电压、频率、时间等参数,可合成各种纳米线有序阵列,其缺点是只能在孔中组装单一的金属或合金,当前对于交流沉积时,电流是如何通过阻挡层还没有定论。交流电沉积过程中的阳极电压作用至关重要! 循环伏安法、脉冲电流法:Sun等采用该法,制备了长径比达500的Ag纳米线阵列,Kim采用脉冲电化学沉积法首次利用Ti涂层解决了AAO膜的阻挡层去除问题,并得到了Si基底上的Pd纳米线阵列。 交流电沉积没有滞留点沉积得到的排列有序且易堆叠,。AAO模板与循环伏安法相结合,被证实是一种制备形状与尺寸可控的有序金属或半导体自支持纳米线阵列结构的有效方法。与直流电沉积相比,脉冲电沉积具有高度可靠性,可补偿纳米孔区域内离子扩散输运动力的不足。 国内学者近几年来在这方面做的工作也较多,于冬亮等人分别在AAO 模板中采

碳化硅纳米线的合成方法与制作流程

碳化硅纳米线的合成方法,它涉及一种碳化硅纳米线的合成方法。本技术是为了解决现有制备碳化硅纳米线的方法原材料浪费严重、成本高、结构不均匀、长径比低的技术问题。本方法如下:将处理后的生长基底放于坩埚内硅树脂的上方,将坩埚放于真空高温炉中在升温,保温,降温,即得。该方法在生长SiC纳米线的同时,在模具内部生成SiC纳米颗粒,这样可以极大的提高原料利用率从而降低了成本,同时合成了链珠状的SiC纳米线,特殊的链珠状结构使其在复合材料、场致发射体、光催化剂、储氢及疏水表面具有更大的应用潜力。链珠状纳米线的生成同时伴有超长超直的SiC纳米线的生成。产品结构均匀。本技术属于纳米线的制备领域。 权利要求书 1.碳化硅纳米线的合成方法,其特征在于所述碳化硅纳米线的合成方法按照以下步骤进行: 一、称取硅树脂和金属催化剂,将硅树脂放入坩埚内; 二、将金属催化剂用无水乙醇溶解,催化剂浓度为0.01-0.2mol/L,得到金属盐溶液; 三、生长基底用蒸馏水、乙醇分别清洗,真空烘干,烘干的生长基底放于金属盐溶液中,在20℃真空的条件下浸渍30min-2h,然后将浸渍后的生长基底在60℃-80℃真空的条件下烘

干; 四、将经过步骤三处理的生长基底放于坩埚内硅树脂的上方,将坩埚放于真空高温炉中在升温速率为1-10℃/min、氩气保护的条件下,升温至1300-1700℃,保温1-5h,降温,降温速率设置两小时降到1000℃,之后自然冷却至室温,即得碳化硅纳米线。 2.根据权利要求1所述碳化硅纳米线的合成方法,其特征在于步骤一所述硅树脂为聚甲基硅倍半氧烷、甲基苯基硅树脂、甲基硅树脂、低苯基甲基硅树脂、自干型有机硅树脂、高温型有机硅树脂、环氧改性有机硅树脂、有机硅聚酯改性树脂、自干型环保有机硅树脂、环保型有机硅树脂、不粘涂MQ料有机硅树脂、高光有机硅树脂、苯甲基透明硅树脂、甲基透明有机硅树脂、云母粘接硅树脂、聚甲基硅树脂、氨基硅树脂、氟硅树脂、有机硅-环氧树脂、有机硅聚酯树脂、耐溶剂型有机硅树脂、有机硅树脂胶粘剂、耐高温甲基硅树脂、甲基MQ 硅树脂或乙烯基MQ硅树脂。 3.根据权利要求1所述碳化硅纳米线的合成方法,其特征在于步骤一所述金属催化剂为 Fe(CO)5、Fe2(CO)9、Fe(C5H5)、Fe3O4、FeCl2、FeCl2·6H2O、FeCl3、FeCl3·6H2O、 Fe(NO)2、Fe(NO)3、Fe2O3、NiCl2、NiBr2、NiI2、NiO、Ni(OH)2、(C2H5)2Ni、Ni(CO)4、Ni(NO3)2、CuCl2、Cu(NO3)2、C22H14CuO4、Cu2O、Mn(NO3)2、(C17H35COO)2Mn、PdCl2、Y2O3、DyCl3、CoC2O4、CoCO3、CoO、CoCl2、Co(OH)2、Co(NH3)6、 Co(CN)6、Co(SCN)4、Co(CO)4、Co(NO3)2。 4.根据权利要求1所述碳化硅纳米线的合成方法,其特征在于步骤一所述坩埚为刚玉坩埚、石墨坩埚、石英坩埚、铂金坩埚、氧化铝坩埚、铂坩埚、钼坩埚或碳化硅坩埚; 步骤三所述生长基底为石墨毡、碳纤维、碳布、SiC纤维布、SiC单晶片、石墨片、SiO2纤维、硅酸铝纤维、玻璃纤维、莫来石片、氧化铝纤维、氧化锆纤维、聚酰亚胺纤维、芳纶纤维、Si纳米线或Al2O3。 5.根据权利要求1所述碳化硅纳米线的合成方法,其特征在于步骤四中将坩埚放于真空高温炉中,在氩气流速为0.2ml/min的条件下升温,其中达到600℃以前升温速率为3℃/min,达到600℃之后以5℃/min升到1400℃,然后再以1℃/min的升温速率升到1550℃,在1550℃保温

纳米线的制备方法

纳米线的制备方法 与零维量子点相比,纳米线具有阵列结构因此有更大的表面或体积比,尤其是他们所具有的直线电子传输特性,十分有利于光能的吸收和光生载流子的快速转移,由此使得这类准一维纳米结构更适宜制作高效率太阳电池(Si纳米线太阳电池)。《TiO2纳米线和ZnO纳米线则主要用于染料敏化太阳电池的光阳极制作》。 Si纳米线的生长方法: 迄今为止,已采用各种方法制备了具有不同直径、长度和形状的高质量的Si纳米线,利用各种表征技术对其结构特征进行了检测分析,就制备方法而言,目前主要有热化学气相沉积、低压化学气相沉积、等离子体化学气相沉积、激光烧浊沉积、热蒸发、电子束蒸发(EBE)、溶液法和水热法等;就生长机制而言,则主要有气—液—固(VLS)法、气—固(VS)法、气—固—固(VSS)法、固—液—固(SLS)法等,就纳米线类型而言,又有本证Si纳米线和掺杂Si 纳米线之分。研究指出,Si纳米线的生长于Si纳米晶粒和量子点的形成不同,后者只需衬底表面具有合适密度与尺寸的成核位置,而前者除了具备上述条件外,还需要同时满足线状结构的生长规律与特点,因此工艺技术要求更加严格。研究者从实验中发现,如果能够利用某一催化剂进行诱导,使纳米点或团簇在催化剂的方向趋使作用下按一定去向生长,预计可以形成纳米线及其阵列结构。大量的研究报道指出,以不同的金属作为Si纳米线合成的催化剂,利用VLS机制

可以实现在Si晶体表面上Si纳米线的成功生长。 目前,作为制备Si纳米线的主流工艺应首推采用金属催化的VLS 生长技术,这种方法的主要工艺步骤是:首先在Si衬底表面上利用溅射或蒸发等工艺沉积一薄层具有催化作用的金属(Au、Fe、Ni、Ga、Al),然后进行升温加热,利用金属与Si衬底的共晶作用形成合金液滴,该液滴的直径和分布于金属的自身性质、衬底温度和金属层厚度直接相关。此后,通过含Si的源气体(SiH4、Si2H6、SiCl4)的气相输运或固体靶的热蒸发,使参与Si纳米线生长的原子在液滴处凝聚成核,当这些原子数量超过液相中的平衡浓度以后,结晶便会在合金液滴的下部分析出并最终生长成纳米线,而合金则留在其顶部,也就是说,须状的结晶是从衬底表面延伸,按一定的方向形成具有一定形状、直径和长度Si纳米线的。 除了VLS机制外,SLS机制也可以用于Si纳米线的可控生长,在这种情况下,预先在Si衬底表面沉积一层约厚10nm的金属薄膜(Au、Ni、Fe),然后再N2保护下进行热处理,随着温度的升高,金属催化粒子开始向Si衬底中扩散在界面形成Au-Si合金,当温度达到二者的共熔点时,合金开始融化并形成合金液滴,此时将有更多的Si原子扩散到这些合金液滴中去,当氮气通入反应室中时,液滴便面温度会迅速降低,这将导致Si原子从合金的表面分离和析出,其后,在退火温度为1000°C和氮气流量为1.5L/min的条件下,便可以实现可控Si纳米线的生长。在这,SLS与VLS生长机制的主要不同是:前者是以Si晶片衬底作为参与Si纳米线生长的Si原子的原

水热法制备纳米线阵列

水热法制备锥状ZnO纳米线阵列及其光电性研究水热法制备锥状ZnO纳米线阵列及其光电性研究 摘要 ZnO是一种在光电领域中具有重要地位的半导体材料。采用聚乙二醇(PEG(2000))辅助的水热合成法制备出了粒径较为均匀的锥状氧化锌纳团线阵列, 并用SEM、XRD对其进行了表征。实验结果表明,表面活性剂(PEG22000)和氨水的加入量对ZnO纳米线阵列的形貌有直接的影响;分析出了不同体系中的化学反应过程及生长行为,研究了衬底状态、生长溶液浓度、生长时间、pH值等工艺参数对薄膜生长的影响,并对薄膜柱晶等特殊形貌晶体的生长机理进行了探讨。研究表明:薄膜的晶粒成核方式主要为异质成核,柱晶的生长方式为层-层生长。生长的ZnO柱晶的尺寸和尺寸分布与晶种层ZnO晶粒有着相同的变化趋势。随着生长液浓度的增加,ZnO棒晶的平均直径明显增大。生长体系长时间放置,会导致二次生长,形成板状晶粒。NH3·H2O生长系统,可以调节pH值来控制薄膜的生长。对于碱性溶液体系,ZnO合适的生长温度为70~90℃,通过调节温度,可以改变纳米棒的生长速率。 关键词:ZnO薄膜,低温,水热法,薄膜生长

HYDROTHERMAL SYNTHESIS OF ZnO NANOWIRE ARRAYSCONE AND OPTOELECTRONIC RESEARCH ABSTRACT ZnO is an important area in the status of photovoltaic semiconductor material.Polyethylene glycol (PEG (2000)) assisted hydrothermal synthesis were prepared by a more uniform particle size of zinc oxide nano cone line array group and use SEM, XRD characterization was carried out. The results show that surfactant (PEG22000) and ammonia addition on the morphology of ZnO nanowire arrays have a direct impact; analyze the different systems of chemical reactions and growth behavior of the state of the substrate, growth concentration, growth time, pH, and other process parameters on film growth, and morphology of thin film transistors and other special column crystal growth mechanism was discussed. The results show that: the film grain nucleation is mainly heterogeneous nucleation, crystal growth patterns column for the layer - layer growth. The growth of ZnO crystal size and column size distribution of ZnO grain and seed layer have the same trend. With the increase in the growth of concentration, ZnO rods significantly increased the average diameter of crystal.Growth system extended period of time will lead to secondary growth, the formation of tabular grains. NH3 ? H2O growth system, you can adjust the pH value to control the film growth. The alkaline solution system, ZnO is a suitable growth temperature 70 ~ 90 ℃, by adjusting the temperature, can change the growth rate of nanorods. Key words:ZnO films, low temperature, hydrothermal method, thin film growth

纳米线的制备综述

现代材料制备技术 期末报告 姓名:翁小康 学号:12016001388 专业:材料工程 教师:朱进

2017年6月24日

Si纳米线的制备方法总结及其应用 摘要:Si纳米线是一种新型的一维纳米半导体材料,具有独特的电子输运特性、场发射特性和光学特性等。此外,硅纳米线在宽波段、宽入射角范围内有着优异的减反射性能以及在光电领域的巨大应用前景。传统器件已不满足更快更小的要求,因此纳米线器件成为研究的热点。关于硅纳米线阵列的制备方法,本文主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法等方法。最后介绍了Si纳米线在场效应晶体管、太阳能电池、传感器、锂电池负极材料等方面相关应用。 关键词:Si纳米线;阵列;制备方法;器件应用 0 引言 近年来,Si纳米线及其阵列的制备方法、结构表征、光电性质及其新型器件应用的研究,已成为Si基纳米材料科学与技术领域中一个新的热点课题。人们之所以对Si纳米线的研究广泛关注,是由于这种准一维纳米结构具有许多显著不同于其他低维半导体材料的电学、光学、磁学以及力学等新颖物理性质,从而使其在场发射器件、单电子存储器件、高效率激光器、纳米传感器以及高转换效率太阳电池等光电子器件中具有重要的实际应用[1]。 硅纳米线阵列( silicon nanowires arrays,简称SiNWs阵列) 是由众多的一维硅纳米线垂直于基底排列而成的,SiNWs阵列与硅纳米线之间的关系如同整片森林与单棵树木一样,它除了具有硅纳米线的特性外,还表现出集合体的优异性能:SiNWs阵列独特的“森林式”结构,使其具有优异的减反射特性,在宽波段、宽入射角范围都能保持很高的光吸收率,显著高于目前普遍使用的硅薄膜。例如,对于波长300—800 nm的光,在正入射的情况下,硅薄膜的平均光吸收率为65% ,而SiNWs阵列的平均光吸收率在80% 以上;在光入射角为60°时,硅薄膜的平均光吸收率为45%,而SiNWs阵列的平均光吸收率达70%[2]。这对于硅材料在太阳能高效利用方面,具有十分重要的意义。本文将对国内外关于硅纳米线阵列的制备及其在光电领域应用的研究进展进行系统阐述。 1 Si纳米线阵列的制备方法 近年来,为制备有序的SiNWs阵列,研究者先后开发出多种制备方法,这些方法大体上可分为两类:“自下而上( bottom-up )”和“自上而下( topdown)”。前者是从原子或分子出发控制组装成SiNWs阵列;而后者则是从体硅(硅片)出

铜纳米线制备

Supplementary Information Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air Su Ding, a, b Jinting Jiu, *b Yanhong Tian, *a Tohru Sugahara, b Shijo Nagao, b Katsuaki Suganuma b a State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China. E-mail: tianyh@https://www.wendangku.net/doc/fc6854577.html, b The Institute of Scientifi c an d Industrial Research (ISIR), Osaka University, Osaka, Japan. E- mail: jiu@eco.sanken.osaka-u.ac.jp Electronic Supplementary Material (ESI)for Physical Chemistry Chemical Physics.This journal is ?the Owner Societies 2015

The home-made spray device is shown in Fig. S1. It includes air compressor (APC-001, AIRTEX) to generate airflow, a digital controlled dispenser (ML-606GX, MUSASHI) which is used to adjust the intensity of the airflow and a commercial sprayer with a nozzle of 0.3 mm. The CuNWs solution was sprayed on the surface of glass by the airflow. The glass substrates were fixed on a hot plate at 60°C. Fig. S1 Spray devices used in our experiment

新型高性能半导体纳米线电子器件和量子器件

项目名称:新型高性能半导体纳米线电子器件和量 子器件 首席科学家:徐洪起北京大学 起止年限:2012.1至2016.8 依托部门:教育部中国科学院

一、关键科学问题及研究内容 国际半导体技术路线图(ITRS)中明确指出研制可控生长半导体纳米线及其高性能器件是当代半导体工业及其在纳米CMOS和后CMOS时代的一个具有挑战性的科学任务。本项目将针对这一科学挑战着力解决如下关键科学问题:(1)与当代CMOS工艺兼容、用于新型高性能可集成的纳电子器件的半导体纳米线阵列的生长机制和可控制备;(2)可集成的超高速半导体纳米线电子器件的工作原理、结构设计及器件中的表面和界面的调控;(3)新型高性能半导体纳米线量子电子器件的工作模式、功能设计和模拟、载流子的基本运动规律。 根据这些关键科学问题,本项目包括如下主要研究内容: (一)新型半导体纳米线及其阵列的可控生长和结构性能表征 在本项目中我们将采用可控生长的方法来生长制备高品质的InAs、InSb 和GaSb纳米线及其异质结纳米线和这些纳米线的阵列。 生长纳米线的一个重要环节是选取衬底,我们将研究在InAs衬底上生长高品质的InAs纳米线,特别是要研究在大晶格失配的Si衬底上生长InAs纳米线的技术。采用Si衬底将大大降低生长成本并为与当代CMOS工艺的兼容、集成创造条件。关于InSb和GaSb纳米线的制备,人们还没有找到可直接生长高品质InSb和GaSb纳米线的衬底。我们将研究以InAs纳米线为InSb和GaSb纳米线生长凝结核的两阶段和多阶段换源生长工艺,探索建立生长高品质InSb和GaSb纳米线及其InAs、InSb和GaSb异质结纳米线的工艺技术。本项目推荐首席徐洪起教授领导的小组采用MOCVD 技术已初步证明这种技术路线可行。我们将进一步发展、优化InSb和GaSb纳米线的MOCVD生长工艺技术,并努力探索出用CVD和MBE生长InSb和GaSb纳米线的生长技术。CVD是一种低成本、灵活性高的纳米线生长技术,可用来探索生长大量、多样的InSb、InAs和GaSb纳米线及其异质结,可为项目前期的纳米器件制作技术的发展提供丰富的

材料化学 课程报告

北京科技大学 课程报告 题目:GaN纳米材料研究进展 课程名称:材料化学基础 学院: 专业: 班级: 学生姓名: 学生学号: 日期:

前言: 随着光电产业的不断发展,对半导体材料的要求也越来越高。进入20世纪90年代以后,由于一些关键技术获得突破以及材料生长和器件工艺水平的不断提高,使GaN薄膜研究空前活跃,GaN基器件发展十分迅速。氮化镓(GaN) =3.39eV)、发光效率高、电子属III-V族宽直接带隙半导体,具有带隙宽(E g 漂移饱和速度高、热导率高、硬度大、介电常数小、化学性质稳定、抗辐射、耐高温等优点。由于以上优越的性能,GaN具有着巨大的应用潜力和广阔的市场前景,如高亮度蓝光发光二极管(LED)、紫外—蓝光激光二极管(LD)、异质结场效应晶体管(HFETs)、紫外探测器等光电子器件、抗辐射、高频、高温、高压等电子器件。[1]GaN也因此被誉为继第一代锗、磷化铟化合物半导体材料之后的第三代主导半导体材料,成为目前全球半导体研究者们关注的焦点。[2]第三代半导体也被誉为高温半导体,且其具有更宽的禁带宽度,因此可以广泛用于导弹防御、相控阵雷达、通信、电子对抗以及智能武器等军事装备,也可用于半导体照明以及光存储与处理,是推动信息技术在新世纪继续发展的关键技术。[3]日本和欧美都非常重视开展对宽禁带半导体技术的研究,分别制定和实施了各自的宽禁带半导体技术发展计划。日本于2001年就出台了“下一代半导体材料和工艺技术开发”计划,将GaN晶体管视为未来民用通信系统的核心,希望“GaN基HEMT”能替代目前在无线基站中起放大信号作用的硅和砷化镓芯片,并还可应用于汽车雷达等领域。而欧美则将宽禁带半导体技术视为下一代军事系统与装备的关键。2002年美国国防先进研究计划局实施了WBGSTI(宽禁带半导体技术)计划,成为加速改进SiC、GaN以及AlN等宽禁带半导体材料特性的重要“催化剂”。欧洲也于2005年制定并实施KORRIGAN(GaN集成电路

探索半导体纳米线的奇特物理性质及可能应用

探索半导体纳米线的奇特物理性质及可能应用 报告人:俞大鹏教授 俞大鹏,男,1959年3月生。1993 年在法国南巴黎大学固体物理实验室 (Orsay)获博士学位。2000年获得 国家杰出青年科学基金,2002年获得 教育部长江学者特聘教授,是教育部长 江学者与创新计划“新型低维功能结构 与物理” 创新团队学术带头人。俞大鹏 教授的主要研究方向为准一维半导体纳 米结构与物理性质研究,是国际纳米线研究的创始人之一,在纳米线的制备、物理性质和器件效应研究方面做出的主要学术贡献包括: 发展了催化诱导与气相输运新方法、新技术规模制备硅纳米线,基本解决自下而上可控制备纳米线的核心难题;开拓了氧化物纳米线材料新领域;深入、系统地研究了纳米线的奇特物理性质和应用基础。俞大鹏教授共在国际核心专业刊物上发表360多篇论文,含国际顶级专业刊物论文Physical Review B/Letters(14)、 Applied Physics Letters/JAP(75)、Advanced Materials(11)、Nano Letters(7)等160余篇。相关论文被国内外其他同行累计引用超过10000次,H因子为54。以第一完成人获得了2004年度教育部提名自然科学一等奖、2007年获国家自然科学二等奖。担任Nano Research、《科学通讯》等国内外学术刊物编委,被邀请担任美国物理研究所(AIP)10 Year Review Committee Member (全球6名科学家)。

Exploring the Peculiar Physical Properties and Possible Applications of Semiconductor Nanowires YU Dapeng Nanowires have been a top-five focused research topics in physics, and stimulated intensive interests world-wide. This lecture composes of two major parts. Figure 1: (a). Mass-production of silicon nanowires from the bottom; (b). Strain modulation of the emission energy and electronic structures of semiconductor nanowires; (c). High field emission current density destined for planar display; (d). Flexible nanowire solar cells. In the first part, I will give a brief summary of our pioneer and leading contributions to the world-wide nanowire research. (1). We are the pioneers to synthesize silicon nanowires from the bottom via a catalytic-directed growth of semiconductor nanowires, and enable the controllability in size, orientation, and superlattice/coreshell heterostructures of semiconductor nanowires. (2). We extended the concept of nanowire synthesis to a wide variety of metal oxide nanowires, leading to a world-wide following up of the breakthrough. (3). It is further demonstrated that the physical properties of the semiconductor nanowires can be modified/ via chemical doping, tuned by magnetic and strain fields, resulting in the nanowire p-n heterojunctions, diluted magnetic semiconductors, and strain sensors. (4).We are the first to provide the experimental evidence of quantum confinement effect in silicon nanowires. It is showed that the spin current of a single magnetite nanowire can be tuned via magnetic field (spin filter), and the thermal spin transfer torque effect was

2019年半导体材料现状研究及发展趋势共17页

中国半导体材料行业现状调研分析及市场前景预测报告(2016年版) 报告编号:1687281

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网Cir基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国半导体材料行业现状调研分析及市场前景预测报告(2016年版) 报告编号:1687281←咨询时,请说明此编号。 优惠价:¥6750 元可开具增值税专用发票 网上阅读:http://cir/R_JiXieDianZi/81/BanDaoTiCaiLiaoDeXianZhuangHeFaZhanQuSh i.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 半导体材料是一类具有半导体性能、是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料,支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。 2019年,全球半导体材料市场规模同比增长3%;收入达到443亿美元,同比增长1 0%,这是自2019年以来,全球半导体材料市场首次实现同比增长。台湾由于其庞大的代工和先进的封装基地,连续五年成为半导体材料的最大客户。 2019年中国半导体材料市场规模同比增长3%,收入达到了58.3亿美元。其中,2 019年我国多晶硅产量仍达到13.2万吨,同比增长57%.硅片产能达到38GW,同比增长28%.硅片产量达到近88亿片,约占全球76%. 中国产业调研网发布的中国半导体材料行业现状调研分析及市场前景预测报告(20 19年版)认为,近几年,由于市场需求的不断扩大、投资环境的日益改善、优惠政策的吸引及全球半导体产业向中国转移等等原因,我国集成电路产业每年都保持30%的增长率。集成电路制造过程中需要的主要关键原材料有几十种,材料的质量和供应直接影响着集成电路的质量和竞争力,因此支撑关键材料业是集成电路产业链中最上游也是最重要的一环。随着信息产业的快速发展,特别是光伏产业的迅速发展,进一步刺激了多晶硅、单晶硅等基础材料需求量的不断增长。 随着世界半导体行业巨头纷纷到国内投资,整个半导体行业快速发展,这也要求材料业要跟上半导体行业发展的步伐。可以说,市场发展为半导体支撑材料业带来前所未有的发展机遇。

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

纳米线的制备综述

纳米线的制备综述

现代材料制备技术 期末报告 姓名:翁小康 学号: 12016001388 专业:材料工程 教师:朱进

Si纳米线的制备方法总结及其应用 摘要:Si纳米线是一种新型的一维纳米半导体材料,具有独特的电子输运特性、场发射特性和光学特性等。此外,硅纳米线在宽波段、宽入射角范围内有着优异的减反射性能以及在光电领域的巨大应用前景。传统器件已不满足更快更小的要求,因此纳米线器件成为研究的热点。关于硅纳米线阵列的制备方法,本文主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法等方法。最后介绍了Si纳米线在场效应晶体管、太阳能电池、传感器、锂电池负极材料等方面相关应用。 关键词:Si纳米线;阵列;制备方法;器件应用 0 引言 近年来,Si纳米线及其阵列的制备方法、结构表征、光电性质及其新型器件应用的研究,已成为Si基纳米材料科学与技术领域中一个新的热点课题。人们之所以对Si纳米线的研究广泛关注,是由于这种准一维纳米结构具有许多显著不同于其他低维半导体材料的电学、光学、磁学以及力学等新颖物理性质,从而使其在场发射器件、单电子存储器件、高效率激光器、纳米传感器以及高转换效率太阳电池等光电子器件中具有重要的实际应用[1]。 硅纳米线阵列( silicon nanowires arrays,简称SiNWs阵列) 是由众多的一维硅纳米线垂直于基底排列而成的,SiNWs阵列与硅纳米线之间的关系如同整片森林与单棵树木一样,它除了具有硅纳米线的特性外,还表现出集合体的优异性能:SiNWs阵列独特的“森林式”结构,使其具有优异的减反射特性,在宽波段、宽入射角范围都能保持很高的光吸收率,显著高于目前普遍使用的硅薄膜。例如,对于波长300—800 nm的光,在正入射的情况下,硅薄膜的平均光吸收率为65% ,而SiNWs阵列的平均光吸收率在80% 以上;在光入射角为60°时,硅薄膜的平均光吸收率为45%,而SiNWs阵列的平均光吸收率达70%[2]。这对于硅材料在太阳能高效利用方面,具有十分重要的意义。本文将对国内外关于硅纳米线阵列的制备及其在光电领域应用的研究进展进行系统阐述。 1 Si纳米线阵列的制备方法 近年来,为制备有序的SiNWs阵列,研究者先后开发出多种制备方法,这些方法大体上可分为两类:“自下而上( bottom-up )”和“自上而下( topdown)”。

III-V族半导体材料

III-V族半导体 III-V族化合物是化学元素周期表中的IIIA族元素硼、铝、镓、铟、铊和VA族元素氮、磷、砷、锑、铋组成的化合物。通常所说的III-V半导体是由上述IIIA族和VA族元素组成的两元化合物,它们的成分化学比都是1:1。 砷化镉 砷化镉是一种灰黑色的半导体材料,分子式为Cd3As2。它的能隙有0.14eV,与其他半导体相比较窄。 砷化铝 砷化铝(Aluminium arsenide)是一种半导体材料,它的晶格常数跟砷化镓类似。砷化铝的晶系为等轴晶系,熔点是1740 °C,密度是3.76 g/cm?,而且它很容易潮解。它的CAS 编号为22831-42-1。 碲化铋 碲化铋是一种灰色的粉末,分子式为Bi2Te3。碲化铋是个半导体材料,具有较好的导电性,但导热性较差。虽然碲化铋的危险性低,但是如果大量的摄取也有致命的危险。 碳化硅 碳化硅(SiC)为由硅与碳相键结而成的陶瓷状化合物,碳化硅在大自然也存在罕见的矿物,莫桑石。制造由于天然含量甚少,碳化硅主要多为人造。最简单的方法是将氧化硅砂与碳置入艾其逊电弧炉中,以1600至2500°C高温加热。发现Top 爱德华·古德里希·艾其逊在1893年制造出此化合物,并发展了生产碳化硅用之艾其逊电弧炉,至今此技术仍为众人使用中。性质Top 碳化硅。 性质 碳化硅至少有70种结晶型态。α-碳化硅为最常见的一种同质异晶物,在高于2000°C高温下形成,具有六角晶系结晶构造(似纤维锌矿)。β-碳化硅,立方晶系结构,与钻石相似,则在低于2000 °C生成,结构如页面附图所示。虽然在异相触媒担体的应用上,因其具有比α型态更高之单位表面积而引人注目,但直至今日,此型态尚未有商业上之应用。 因其3.2的比重及高的升华温度(约2700 °C),碳化硅很适合做为轴承或高温炉之原料物件。在任何已能达到的压力下,它都不会熔化,且具有相当低的化学活性。由于其高热导性、高崩溃电场强度及高最大电流密度,近来在半导体高功率元件的应用上,不少人试着用它来取代硅[1]。此外,它与微波辐射有很强的偶合作用,并其所有之高升华点,使其可实际应用于加热金属。 纯碳化硅为无色,而工业生产之棕至黑色系由于含铁之不纯物。晶体上彩虹般的光泽则是因为其表面产生之二氧化硅保护层所致。 用途 半导体、避雷针、电路元件、高温应用、紫外光侦检器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、触媒担体等领域。 砷化镓 砷化镓的优点·硅的优点·砷化镓的异质结构·安全砷化镓(英文名称为Gallium arsenide,化学式为GaAs)是镓和砷两种元素所合成的化合物。也是很重要的半导体材料,被用来制作像微波集成电路(例如单晶微波集成电路( MMIC))、红外线发光二极管、雷射二极管和太阳电池等元件。砷化镓的优点Top GaAs拥有一些比Si还要好的电子特性,如高的饱和电子速率及高的电子移动率。 砷化镓的优点 GaAs拥有一些比Si还要好的电子特性,如高的饱和电子速率及高的电子移动率,使得GaAs可以用在高于250 GHz的场合。如果等效的GaAs和Si元件同时都操作在高频时,GaAs会拥有较少的噪声。也因为GaAs有较高的崩溃电压,所以GaAs比同样的Si元件更适合操作在高功率的场合。因为这些特性,GaAs

相关文档