文档库 最新最全的文档下载
当前位置:文档库 › 洛必达公式+泰勒公式+柯西中值定理+罗尔

洛必达公式+泰勒公式+柯西中值定理+罗尔

洛必达公式+泰勒公式+柯西中值定理+罗尔
洛必达公式+泰勒公式+柯西中值定理+罗尔

洛必达公式+泰勒公式+柯西中值定理+罗尔定理

洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。

(1)当x→a时,函数f(x)及F(x)都趋于零;

(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;

(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么

x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。

再设

(1)当x→∞时,函数f(x)及F(x)都趋于零;

(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;

(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么

x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:

①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。

②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula)

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:

f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn

其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。

(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)

证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:

P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n

来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足

P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);

P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……

P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:

P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n.

接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有

Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……

=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))

/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里

ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ

1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续

使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x

之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项

Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的

需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,

可以展开为一个关于x多项式和一个余项的和:

f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……

+f(n)(0)/n!?x^n+Rn

其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。

证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表

示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单

的形式即当x.=0时的特殊形式:

f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……

+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1)

由于ξ在0到x之间,故可写作θx,0<θ<1。麦克劳林展开式的应用:

1、展开三角函数y=sinx和y=cosx。

解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx ,

f'''(x)=-cosx , f(4)(x)=sinx……

于是得出了周期规律。分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0……

最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷

级数的形式了。)

类似地,可以展开y=cosx。

2、计算近似值e=lim x→∞ (1+1/x)^x。

解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:

e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!

当x=1时,e≈1+1+1/2!+1/3!+……+1/n!

取n=10,即可算出近似值e≈2.7182818。

3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)

证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确

切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数

函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土

i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。

泰勒展开式原理e的发现始于微分,当 h 逐渐接近零时,计算之值,其结果

无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数

学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.

计算对数函数的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e

为底的对数,这叫作自然对数.

若将指数函数 ex 作泰勒展开,则得

以 x=1 代入上式得

此级数收敛迅速,e 近似到小数点后 40 位的数值是

将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由

透过这个级数的计算,可得

由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,

另方面,

所以,

我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.

甲)差分.

考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们

就把这个函数书成或 (un).数列 u 的差分还是一个数列,它在 n 所取的值以定义为

以后我们干脆就把简记为

(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...

注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.

差分算子的性质

(i) [合称线性]

(ii) (常数) [差分方程根本定理]

(iii)

其中 ,而 (n(k) 叫做排列数列.

(iv) 叫做自然等比数列.

(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分

给一个数列 (un).和分的问题就是要算和 . 怎么算呢我们有下面重要的

结果:

定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则

和分也具有线性的性质:

甲)微分

给一个函数 f,若牛顿商(或差分商) 的极限存在,则我们就称此极限值为

f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即

若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称为 f 的导函数,而叫做微分算子.

微分算子的性质:

(i) [合称线性]

(ii) (常数) [差分方程根本定理]

(iii) Dxn=nxn-1

(iv) Dex=ex

(iv)' 一般的指数数列 ax 之导函数为

(乙)积分.

设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割:

;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限(让每一小段的长度都趋近于 0).

若这个极限值存在,我们就记为的几何意义就是阴影的面积.

(事实上,连续性也「差不多」是积分存在的必要条件.)

积分算子也具有线性的性质:

定理2 若 f 为一连续函数,则存在.(事实上,连续性也「差不多」是积分存在的必要条件.)

定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分如果我们可以找到另一个函数 g,使得 g'=f,则

注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!

上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.

我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满

足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.

甲)Taylor展开公式

这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清

两个问题:即如何选取简单函数及逼近的尺度.

(一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有

n 阶的「切近」,即 ,答案就是

此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.

g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个Taylor 级数就等于 f 自身.

值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)

+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.

利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.

事实上,我们可以用逼近的想法将微积分「一以贯之」.

复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.

当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.

(二) 对于离散的情形,Taylor 展开就是:

给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:

答案是此式就是离散情形的 Maclaurin 公式.

乙)分部积分公式与Abel分部和分公式的类推

(一) 分部积分公式:

设 u(x),v(x) 在 [a,b] 上连续,则

(二) Abel分部和分公式:

设(un),(v)为两个数列,令 sn=u1+......+un,则

上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.

(丁)复利与连续复利 (这也分别是离散与连续之间的类推)

(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r)

根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.

(二) 若考虑每年复利 m 次,则 t 年后的本利和应为

令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert

换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.

由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.

(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)

(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作

和(反过来亦然).亦即我们有

(二)Fubini 重积分定理:设 f(x,y) 为定义在上之可积分函数,则

当然,变数再多几个也都一样.

(己)Lebesgue 积分的概念

(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每

一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.

(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到

b 所围出来的面积.

Lebesgue 的想法是对 f 的影域作分割:

函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相

应分割成 ,取样本点 ,作近似和

让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上

的 Lebesgue 积分. 余项泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! +

f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n 阶导数]

泰勒余项可以写成以下几种不同的形式:

1.佩亚诺(Peano)余项:

Rn(x) = o((x-a)^n)

2.施勒米尔希-罗什(Schlomilch-Roche)余项:

Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p)

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

3.拉格朗日(Lagrange)余项:

Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)!

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

4.柯西(Cauchy)余项:

Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n!

[f(n+1)是f的n+1阶导数,θ∈(0,1)]

5.积分余项:

Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n!

[f(n+1)是f的n+1阶导数]

也叫Cauchy中值定理。

设函数f(x),g(x)满足是在[a,b]连续,(a、b)可导,g'(x)≠0(x∈(a,b)) 则至少存在一点,ξ∈(a,b),使f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]

成立

几何意义若令u=f(x),v=g(x),这个形式可理解为参数方程,而

[f(a)-f(b)]/[g(a)-g(b)]则是连接参数曲线的端点斜率,f'(ξ)/g'(ξ)表示曲线上某点处的切线斜率,在定理的条件下,可理解如下:用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦,这一点Lagrange也具有,但是Cauchy中值定理除了适用y=f(x)表示的曲线,还适用于参数方程表示的曲线。

当柯西中值定理中的g(x)=x时,柯西中值定理就是拉格朗日中值定理。

证明令F(x)=f(x)-[f(a)-f(b)]g(x)/[g(a)-g(b)]

∵F(a)=F(b)=[f(a)g(b)-f(b)g(a)]/[g(b)-g(a)]

由罗尔定理知:存在ξ∈(a,b),使得F'(ξ)=0.

又知F'(x)=f'(x)-[f(a)-f(b)]g'(x)/[g(a)-g(b)]

故f'(ξ)-[f(a)-f(b)]g'(ξ)/[g(a)-g(b)]=0

即f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]

命题得证。

罗尔定理罗尔定理说明图片

如果函数f(x)满足:

在闭区间[a,b]上连续;

在开区间(a,b)内可导;

其中a不等于b;

在区间端点处的函数值相等,即f(a)=f(b),

那么在区间(a,b)内至少存在一点ξ(a<ξ

罗尔定理的三个已知条件的直观意义是:f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;f(a)=f(b)表明曲线的割线(直线AB)平行于x轴.罗尔定理的结论的直观意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,也就平行于x轴.

洛必达法则泰勒公式

洛必达法则泰勒公式 一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1) 当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故

定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1) 在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10?(2) 例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2) 当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

柯西不等式的变形公式的妙用

柯西不等式的变形公式的妙用 柯西不等式晌丝形公式的她用 湖北省襄阳市第一中学王勇龚俊峰441000 柯西不等式具有对称和谐的结构,应用的关键在 于抓住问题的结构特征,找准解题的正确方向,合理 地变形,巧妙地构造.作为新课程的选修内容,柯西不 等式(简记为"方和积不小于积和方")在数学的多个 领域都有着广泛的应用.课堂教学中,笔者与学生共 同探究了柯西不等式的一个变形公式的应用,方便快 捷,妙不可言,达到了化难为易,化繁为简,化陌生为 熟悉的目的. 柯西不等式的变形公式:设a,n,…,a为实 数,b,bz,…,为正数,则等+薏十…+筹≥ b1+62+…+ 等号. , 当且仅当一薏一?一时取 址明:田tⅡJ四个寺瓦,侍 ((22十~t2+…+等)(64.b24.…+) ()+(老)+..?+(老).][c,z +()4-…+()!] ≥(.+老'+...+老.) 一(口l十以2+…+甜). . . .bl,b2,…~b为正数,...bl4"b24-…+>O, .

? . 鲁+譬+…+譬≥. 当且仅当一-...一卿一… 时取等号. 下面分类例析,旨在探索题型规律,揭示解题方法. 1在代数中的妙用 例1设n,b,C均为正数,且不全相等,求证: ++>. 证明:由柯西不等式的变形公式,得 ++一:一 04.b6+f.f+n2(a+6).2(bq-一c) l2 .2(c+a) ,(2+2+2)0 2(n+6)+2(64-c)+2(f+0) 4(a+6+f) 一 —— a4"b4"c' 当且仅当一一,即6 —6+f:f+n,亦即a~b=c时,上述不等式取等号. 因题设a,b,c不全相等,于是9l_+赢9+?) >? ._..I◆ 点评:将十+变形为+

洛必达法则泰勒公式

第三章微分中值定理与导数的应用 第二讲洛必达法则泰勒公式 目的1.使学生掌握用洛必达法则求各种类型未定式极限的方法: 2.理解泰勒中值泄理的涵: 3.了解汽沏&c。畀血("力,(1 +汙等函数的麦克劳林公式; 4.学会泰勒中值定理的一些简单应用. 重点1.运用洛必达法则求各种类型未泄式极限的方法: 2.使学生理解泰勒中值定理的涵. 难点使学生深刻理解泰勒中值左理的精髓. 一、洛必达法则 在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无 穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷 大之比的极限称为未定式,并分别简记为0和8 ? 由于在讨论上述未圮式的极限时,不能应用商的极限运算法则,这或多或少地都会给未立式极限的讨论带来一是的困难?今天在这里我们应用导数的理论推出一种既简便又重要的未定 式极限的汁算方法,并着重讨论当2CI时,0型未左式极限的计算,关于这种情形有以下立理. 定理1设 (1)当时,函数了⑴及列对都若于零; ⑵在点金的某去心邻域,/⑴及^⑴都存在,且那⑴吐°;

也就是说,当zR⑴存在时,2。去⑴也存在,且等于M 也是无穷大.这种在一左条件下,通过分子分母分别求导,再求极限来 确圧未左式极限的方法称为洛必达(L‘ Hospita 1)法则. 下而我们给出定理1的严格证明: 分析由于上述泄理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值立理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理. 于是由条件⑴和⑵知,/⑴及应⑴在点虫的某一邻域是连续的.设兀是这邻域一点,则在以兀及 山为端点的区间上,函数/〔X)和F&)满足柯西中值龙理的条件,因此在兀和a之间至少存在一点密,使得等式 儿)川)-畑「心) 应G)吩)-吒)应?(站兀与么之间) 成立. 对上式两端求兀To时的极限,注意到XTQ时匸则 穷大时, 证因为求极限 与了⑷及用⑷的取值无关, 所以可以假左 lim 又因为极限 F'G)存在(或为无穷大),所以 故沱理1成立. lim 注若z m 0 ,, 戸倉)仍为6型未左式,且此时了抵)和用,⑴能满足泄理1中/⑴和用⑴ 5F〔X) 所要满足的条件,则可以继续使用洛必达法则先确立从而确总

柯西中值定理

§2 柯西中值定理和不等式极限 一柯西中值定理 定理(6.5) 设、满足 (i) 在区间上连续, (ii) 在内可导 (iii) 不同时为零; (iv) 则至少存在一点使得 柯西中值定理的几何意义 曲线由参数方程 给出,除端点外处处有不垂直于轴的切线, 则上存在一点 P处的切线平行于割线.。 注意曲线 AB在点处的切线的斜率为

, 而弦的斜率为 . 受此启发,可以得出柯西中值定理的证明如下: 由于, 类似于拉格朗日中值定理的证明,作一辅助函数 容易验证满足罗尔定理的条件且 根据罗尔定理,至少有一点使得,即

由此得 注2:在柯西中值定理中,取,则公式(3)可写成 这正是拉格朗日中值公式,而在拉格朗日中值定理中令,则 . 这恰恰是罗尔定理. 注3:设在区间I上连续,则在区间I上为常数,. 三、利用拉格朗日中值定理研究函数的某些特性 1、利用其几何意义 要点:由拉格朗日中值定理知:满足定理条件的曲线上任意两点的弦,必与两点间某点的切线平行。 可以用这种几何解释进行思考解题: 例1:设在(a ,b)可导,且在 [a,b] 上严格递增,若,则对一切 有。 证明:记A(),,对任意的x,记C(),作弦线AB,BC,应用拉格 朗日中值定理,使得分别等于AC,BC弦的斜率,但因严格递增,所以

<,从而 < 注意到,移项即得<, 2、利用其有限增量公式 要点:借助于不同的辅助函数,可由有限增量公式 进行思考解题: 例2:设上连续,在(a,b)内有二阶导数,试证存在使得 证:上式左端 作辅助函数 则上式 =, =

,其中 3、作为函数的变形 要点:若在[a,b]上连续,(a,b)内可微,则在[a,b]上 (介于与 之间) 此可视为函数的一种变形,它给出了函数与导数的一种关系,我们可以用它来研究函数的性质。 例3 设在上可导,,并设有实数A>0,使得 ≤在上 成立,试证 证明:在[0,]上连续,故存在] 使得 ==M 于是 M=≤A≤≤ 。 故 M=0,在[0,] 上恒为0。用数学归纳法,可证在一切[]( i=1,2,…)上恒有 =0, 所以=0, 。

洛必达公式+泰勒公式+柯西中值定理+罗尔定理

洛必达公式+泰勒公式+柯西中值定理+罗尔定理 洛必达法则洛必达[/url]法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 设 (1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当x→∞时,函数f(x)及F(x)都趋于零; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。 ②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。 ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.) /n!*(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足 P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.); P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得 Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))

柯西中值定理的证明及应用

柯西中值定理的证明及应用 马玉莲 (西北师范大学数学与信息科学学院,甘肃,兰州,730070) 摘要:本文多角度介绍了柯西中值定理的证明方法和应用, 其中证明方法有: 构造辅助函数利用罗尔定理证明,利用反函数及拉格朗日中值定理证明, 利用闭区间套定理证明, 利用达布定理证明, 利用坐标变换证明. 其应用方面有:求极限、证明不等式、证明等式、证明单调性、证明函数有界、证明一致连续性、研究定点问题、作为函数与导数的关系、推导中值公式. 关键词:柯西中值定理; 证明; 应用

1.引言 微分中值定理是微分学中的重要定理,它包括罗尔定理、拉格朗日定理、柯西中值定理,而柯西中值定理较前两者更具有一般性、代表性,其叙述如下: 柯西中值定理:设函数f(x),g(x)满足 (1) 在[,]a b 上都连续; (2) 在(,)a b 内都可导; (3) '()f x 和'()g x 不同时为零; (4) ()()g a g b ≠, 则存在(,)a b ξ∈,使得 ()()() ()()() f f b f a g g b g a ξξ''-=- . (1) 本文从不同思路出发,展现了该定理的多种证明方法及若干应用,以便其更好的被认识、运用. 2.柯西中值定理的证明 2.1构造辅助函数利用罗尔定理证明柯西中值定理 罗尔定理 设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 上可导,且 ()()f a f b =则至少存在一点,(,)a b ξ∈ , 使得 因为()0g ξ'≠(若()g ξ'为0则()f ξ'同时为0, 不符条件)故可将(2)式改写为(1)式. 便得所证.

(汇总)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =u r ,(,)n c d =r ,则22||m a b =+u r 22||n c d +r . ∵ m n ac bd ?=+u r r ,且||||cos ,m n m n m n =<>u r r u r r u r r g g g ,则||||||m n m n ≤u r r u r r g g . ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 2222||a b c d ac bd +++g 或 2222||||a b c d ac bd +++g 2222a b c d ac bd ++≥+g . ④ 提出定理2:设,αβu r u r 是两个向量,则||||||αβαβ≤u r u r u r u r g . 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(βu r 是零向量,或者,αβu r u r 共线) ⑤ 练习:已知a 、b 、c 、d 222222()()a b c d a c b d ++≥-+- 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈22222211221212()()x y x y x x y y ++≥-+-分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+22222211221212()()x y x y x x y y ++≥-+- 3. 如何利用二维柯西不等式求函数12y x x =--? 要点:利用变式2222||ac bd a b c d +++g . 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数31102y x x =-- 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:31102y x x =-- → 推广:,(,,,,,)y bx c e fx a b c d e f R +=+-∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()[()()][()]22x y x y x y x y x y +=++=++≥…

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

泰勒公式

泰勒公式 一 带有佩亚诺型余项的泰勒公式 由微分概念知:f 在点0x 可导,则有 ).())(()()(0000x x x x x f x f x f -+-'+=ο. 即在点0x 附近,用一次多项式))(()(000x x x f x f -'+逼近函数)(x f 时,其误差为(0x x -)的高阶无穷小量.然而在很多场合,取一次多项式逼近是不够的,往往需要用二次或高于二 次的多项式去逼近,并要求误差为n x x ))((0-ο,其中n 为多项式的次数.为此,我们考察 任一n 次多项式 .)()()()(0202010n n n x x a x x a x x a a x p -++-+-+= (1) 逐次求它在点0x 处的各阶导数,得到 00)(a x p n =,20!2)(a x p n =",n n n a n x p !)(,0) (= , 即 .! ) (,! 2)(,! 1)(),(0) (020100n x p a x p a x p a x p a n n n n n n = " = ' = = 由此可见,多项式)(x p n 的各项系数由其在点0x 的各阶导数值所唯一确定. 对于一般函数f ,设它在点0x 存在直到n 阶的导数.由这些导数构造一个n 次多项式

, )(! ) ()(! 2)()(! 1)()()(00) (2 00000n n n x x n x f x x x f x x x f x f x T -+ +-''+ -'+ = (2) 称为函数f 在点0x 处的泰勒(Taylor)多项式,)(x T n 的各项系数 =k k x f k (! ) (0) (1, 2,…,n )称为泰勒系数.由上面对多项式系数的讨论,易知)(x f 与其泰勒多项式)(x T n 在点0x 有相同的函数值和相同的直至n 阶导数值,即.,,2,1,0),()(0) (0) (n k x T x f k n k == (3)下面 将要证明))(()()(0n n x x x T x f -=-ο,即以(2)式所示的泰勒多项式逼近)(x f 时,其误差为关于n x x )(0-的高阶无穷小量. 定理6.8 若函数f 在点0x 存在直至n 阶导数,则有+=)()(x T x f n 即),)((0n x x -ο ). )(()(! ) ()(! 2)())(()()(000) (2 00000n n n x x x x n x f x x x f x x x f x f x f -+-+-''+-'+=ο (4) 证 设 n R (,)()(),()()0n n n x x x Q x T x f x -=-= 现在只要证 .0) ()(lim =→x Q x R n n x x 由关系式(3)可知, 0)()()(0) (0'0===x R x R x R n n n n 并易知 !.)(,0)()()(0) (0)1(0'0n x Q x Q x Q x Q n n n n n n =====- 因为)(0) (x f n 存在,所以在点0x 的某邻域U(0x )内f 存在n —1阶导函数)(x f .于是,当 )(0x U x ∈且0x x →时,允许接连使用洛必达法则,n —1次,得到 . 0)] () ()([ lim !1 ) (2)1() )(()()(lim ) ()(lim ) ()(lim )()(lim 0) (0 0) 1() 1(000) (0)1() 1() 1()1(' ' =---= -----====--→--→--→→→x f x x x f x f n x x n n x x x f x f x f x Q x R x Q x R x Q x R n n n x x n n n x x n n n n x x n n x x n x x 定理所证的(4)式称为函数f 在点0x 处的泰勒公式,)()()(x T x f x R n n -=称为泰勒公

利用洛必达法则和麦克劳林公式求极限之比较

利用洛必达法则和麦克劳林公式求极限之比较 关于洛必达法则和含x 的幂展开的带有佩亚诺型余项的泰勒公式(也就是麦克劳林公式),以及利用它们求函数极限所必须满足的条件,这里均不赘述.本文意图通过实例说明,利用洛必达法则和麦克劳林公式求极限,各有各的优势,同时如果糅合代数式的恒等变形、无穷小替换、变量代换和把极限存在的函数分离出来等等方法,有可能大大简化求极限的计算过程.当然,利用上述两种方法求函数极限也有其局限性,本文将就具体例子对利用这两种方法求函数极限作一比较. 例1 当0→x 时,函数x x x f 3sin sin 3)(-=与k cx 是等价无穷小,求k c ,. 解法一 利用洛必达法则. 由等价无穷小的定义知0()lim 1k x f x cx →=,这里0,0>≠k c .记0() lim k x f x I cx →=.第一次利用 洛必达法则,有1 03cos 3cos3lim k x x x I ckx -→-=;注意到上式分子趋于零,因而分母必趋于零, 且当1>k 时可再次利用洛必达法则,即有2 03sin 9sin 3lim (1)k x x x I ck k x -→-+=-;同样上式分子趋于 零,因此要求分母趋于零,则当2>k 时,可第三次利用洛必达法则,即 303c o s 27c o s 3 l i m (1)(2) k x x x I ck k k x -→-+=--.此时可见分子当0→x 时趋于24,因而不满足洛必达法则的条件.要使得当1=I 时,则必有24)2)(1(,03=--=-k k ck k .故解得4,3==c k . 解法二 利用麦克劳林公式展开. )(4)]()3(! 31 3[)](!333[3sin sin 3)(333333x o x x o x x x o x x x x x f +=+--+- =-= 则当4,3==c k 有3304() lim 1k x x o x I cx →+==.或注意到)(4)(33x o x x f +=,即34~)(x x f ,故有4,3==c k . 比较上两种方法,方法二似乎简单一些,但以笔者多年来的教学经验看,初学者(大 一新生)会有把x sin 和x 3sin 展开到多少阶为合适的问题.比如,把x sin 3和x 3sin 分别展开为)(3sin 3x o x x +=和)(33sin x o x x +=,则)()(x o x f =.这样的展开不仅对求解该题无任何帮助,反而会得出错误结果.若将两者展开到比方法二更高阶,即四阶及四阶以上,则必出现冗余.因此方法一对初学者而言不失为一种较为稳妥的方法,尽管步骤看起来多一些. 例2 已知2 tan (1cos )lim 2ln(12)(1) x x a x b x I c x d e -→+-==-+-,则下列四个结论正确的是( ). (A )d b 4=;(B )d b 4-=;(C )c a 4=;(D )c a 4-=.

高中数学-公式-柯西不等式

第一课时 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+ ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. } ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈ ? 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y = 要点:利用变式222||ac bd c d ++. 二、讲授新课: % 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形 → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式 (注意对比 → 构造)

中值定理、洛必达、函数单调性、极值、最值,凹凸性的应用

第三章中值定理及导数的应用 一.验证罗尔中值定理、拉格朗日中值定理的条件及结论是否成立 要牢记三个中值定理成立的条件及其结论。 例1.验证:在上满足拉氏定理的条件,并求出定理 结论中的点. 解:(一)1.由,知在处连续,从而在上连续; 2.按左、右导数的定义不难求出从而在 内 可导,且 因此,在上满足拉氏定理的条件. (二)由拉氏定理的结论:,使 .不难算得:或. 注意:中值定理中结论只保证中间值的存在性,至于是否唯一,不唯一时有几个,如何求?定理本身并未指出. 二.利用拉格朗日中值定理证明不等式(尤其是双向不等式) 利用拉格朗日中值定理证明不等式的一般方法是;先根据所要证明的不等式的特点作一辅助函数,并恰当选择相应的闭区间;然后利用拉格朗日中值定理,得到一个含中值的等式,最后适当放大或缩小不等式即可. 例2.证明:对. 证明:设,则.在上由拉氏定理知,

即:.() 例3.证明:对. 例4.证明:对. 大家自己证明,这两个结论要记住. 三.利用中值定理证明等式成立(或方程有无根) 例5.设在上连续,在内可导,且证明:使 证明:(分析寻找合适的辅助函数应用罗尔中值定理,采用倒推的方法分析。 命题只须证,使 ,或者. 故令。显然,且在上连续,在内可导,从而由罗尔定理知,,使 例6.设,证明方程有三个实根,并且它们分别位于区间(见书第105页) 例7.证明方程只有一个正根.(反证). 拉氏定理有两个重要的的推论,也要会记会用. 推论1:若对任意,则 例8.证明:. 证明:设, 则,, 所以,由推论1, 推论2:若对于,则. 四.洛必达法则

我们在第一章曾注意到,考试时考察得最多的求极限问题要么是型,要么是。对付这种问题,我们根据具体情形曾给出了因式分解约零因子、根式有理化约零因子、等价无穷小替换、凑重要极限等方法。现在有一个著名的法则——洛必达法则,可用一招统一解决大部分的或的极限问题。 现在先回顾一下洛必大达法则的条件及结论: 第一种:型的洛必达法则 设函数满足: (1); (2)在的某个去心邻域内,都存在 ; (3)存在(或为). 则,存在(或为). 第二种.型的洛必达法则 设函数满足: (1); (2)在的某个去心邻域内,都存在, ; (3)存在(或为).

中值定理证明

中值定理 首先我们来看看几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

柯西不等式常见题型解法例说

上海中学数学2014年第3期 柯西不等式常见题型解法例说315500浙江省奉化中学陈晴应向明 柯西不等式≥:d;≥:研≥f≥]ni.6。1‘是基本 百鬲、百7 而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.三维的柯西不等式(盘;+丑;+口;)(躇+6;+鹾)≥(n。6,+口:6:+a。63)2揭示了任意两组数组即(n。,n。,n。)、(6,,6。,63)的平方和之积与实数积之和的平方的大小关系.应用时要解决的核心问题就是如何通过变换不等式,向柯西不等式“逼近”,构造出不等式所需要的两组数组(乜,,乜。,以。)、(6。,6:,6。),这也是运用柯西不等式解题的基本策略. 1一次与二次 例1(2013湖南高考)已知口、6、c∈R,盘+26 +3c一6,则n2+462+9c2的最小值为——.解:n+26+3c一6,由柯西不等式得(n2+462 +9c2)(12+12+12)≥(n+26+3c)2, 可知n。+462+9c。≥婺一12,即最小值为12. 例2设.r,y,z∈R,且满足T2+y2+z2—5,则Lr+2y+3z之最大值为——. 解:(.f r+2y+32)2≤(L z’2+y2+z2)(12+22+ 32)一70,.‘.Ir+2y+3z最大值为√而. 例3如啪2∈R且与≯+≮型+竖j翌一1,求T+y+z的最大值、最小值.解:与竽+≮型+半一,,由柯西不等式得 [4z+渺+22]『c孚)2+c警)2+c字,2]≥…孚)惭(害)+z.(字)]2 号25×1≥b+y+z一2)2≥5≥l L r+y+z一2 ≥一5≤z+y+z一2≤5. .‘.一3≤T+y+z≤7. 故T+y+z之最大值为7,最小值为一3. 评注:这类题型的最大特征就是条件与结论中分别出现了一次式与两次式,而要实现一次与两次不等关系的关键就是根据柯西不等式的形态进行构造,让其中一个数组为常数组,这样问题往往可以奏效. 2整式与分式 2.1两组数组对应的数分别为倒数型 例4(2012福建高考)已知函数厂(T)一m—z一2I,m∈R且,(z+2)≥o的解集为[一1,1]. (1)求m的值; (2)若口,6,c∈R,且丢+去+去一m,求证:n+26+3c≥9. 解:(1)厂(.r+2)一m—f.r},/(T+2)≥o等价于I T l≤m, 由I T l≤m有解,得m≥O,且其解集为{丁l —m≤z≤m1), 又,(z+2)≥o的解集为[一1,1],故m一1. (2)由(1)知丢+去+去一1,又&,6,c∈R, 由柯西不等式得 Ⅱ+26+3c一(n+26+3c)f丢+去+去)≥F‘去+何‘去+厄’去)2姐 评注:这类题型从结构来讲,两组数组分别是整式类型(口,,n z,n。)与分式类型(署,昙,去)(其中夕,q,,一为常数),其实属于对勾函数的范畴,运用均值不等式也能完成,但不如柯西不等式简洁、方便.2.2分式中分子的次数高于分母型 例5(2009浙江高考)已知正数T,y,2,z+y 忙1.掘彘+毫+彘≥专. V十Z Z z十Z.r.r十二V0证法1:利用柯西不等式 (惫+矗+南)№他川z+ 2.十r)+(z+2v)]≥(.r+v+z)2.

相关文档
相关文档 最新文档