文档库 最新最全的文档下载
当前位置:文档库 › 等腰直角三角形中的常用模型

等腰直角三角形中的常用模型

等腰直角三角形中的常用模型
等腰直角三角形中的常用模型

等腰直角三角形中的常用模型

模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶

(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三

角形:

例1.如图:Rt ΔABC 中,∠BAC =90o,AB =AC ,点D 是BC 上任意一点,过B 作

BE ⊥AD 于点E ,过C 作CF ⊥AD 于点F 。 (1)求证:BE-CF=EF ;

(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,

请写出新的结论并证明。

1.如图1,等腰Rt △ABC 中,AB=CB ,∠ABC =90o,点P 在线段BC 上(不与B 、C 重合),以AP 为腰长作等腰直角△P AQ ,QE ⊥AB 于E ,连CQ 交AB 于M 。 (1)求证:M 为BE 的中点

(2)若PC=2PB ,求

MB

PC

的值

(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角

三角形:

3、如图:Rt ΔABC 中,∠BAC =90o,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,交AC 于点G ,过C 作CF ⊥AC 交AD 的延长线与于点F 。 (1)求证:BG=AF ;

(2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。

变式1:如图,在R t △ABC 中,∠ACB =45o,∠BAC =90o,AB=AC ,点D 是AB 的

中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE .

G G B A

C

D E F (2)(1)F

E D C B A

(2)F

E

D

C A A B C D

E F

(1)(3)(1)

变式2:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,点D 是AC 的中点,AF ⊥BD

于点E ,交BC 于点F ,连接DF ,求证:∠1=∠2。

变式3:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,点D 、E 是AC 上两点且AD=CE ,AF ⊥BD 于点G ,交BC 于点F 连接DF ,求证:∠1=∠2。

模型二:等腰直角三角形与另一个直角三角形共斜边

等腰直角三角形与另一个直角三角形有公共斜边,一定可以以两腰为对应边构造全等三角形

例1:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,E 是AC 上一点,过C 作CD ⊥BE

于D ,连接AD ,求证:∠ADB =45°。

变式1:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,E 是AC 上一点,点D 为BE

延长线上一点,且∠ADC =135°求证:BD ⊥DC 。

变式2:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,BE 平分∠ABC 交AC 于E ,过C 作CD ⊥BE 于D ,DM ⊥AB 交BA 的延长线于点M ,

(1)求BC AB BM +的值;(2)求AB BC AM

-的值。

模型三:两个等腰直角三角形共一个顶点

(1)两个等腰直角三角形共直角顶点

例1、如图1,△ABC 、△BEF 都是等腰直角三角形,∠ABC =∠BEF =90o,连接

AF 、CF ,M 是AF 的中点,连ME

,将△BEF 绕点B

旋转。猜想CF 与EM 的数量关系并证明;

E

B

(1)(2)

(3)C (2)

(1)

B

(2)两个等腰直角三角形共锐角顶点且直角开口方向相反,必定可利用平移构造含一对全等三角形:

如图,

△ABC 和△EBD 都是等腰直角三角形,∠BAC =∠BED =90o。把DE 平移到CF ,使E 与C 重合,连接AE 、AF ,则△AEB 与△AFC 全等(关键是利用平行证明∠ABE =∠ACF )

例.如图:两个直角三角形ABC 、ADE 的顶点A 重合,P 是线段BD 的中点,连PC 、

PE 。

(1)如图1,若∠BAC =∠DAE =45°,当A 、C 、D 在同一直线上时,线段PC 、PE 的关系是 ;

(2)如图2、3,将⊿BAC 绕A 旋转α度,(1)中的结论是否仍然成立?任意选择一个证明你的结论。

三【巩固练习】

1.已知:Rt ⊿ABC 中,AB=AC ,∠BAC =90°,若O 是BC 的中点,以O 为顶点作∠

MON ,交AB 、AC 于点M 、N 。

(1)若∠MON =90°(如图1),求证:OM=ON ; (2)若∠MON =45°(如图2),求证:①AM+MN =CN ;

2、如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4)。 (1)若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°,连OD ,求∠AOD 的度数;

(2)过A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,等式

1=-OF

FM

AM 是否成立?若成立,请证明;若不成立,说明理由。

图2N

M

O

C B

A

图1N

M

C B A

A B

C

D

E

P

图3A B C D E P 图2

图1

P E D C

B

A (3)(1)

3.在△ABC 和△DCE 中,AB =AC ,DC =DE ,∠BAC =∠EDC =90°,点E 在AB 上,连AD ,DF ⊥AC 于点F 。试探索AE 、AF 、AC 的数量关系;并求出∠DAC 的度数。

4.如图:等腰Rt △ABC 和等腰Rt △EDB ,AC=BC ,DE=BD ,∠ACB =∠EDB =90°,E 为AB 是一点,P 为AE 的中点。

⑴连接PC ,PD ;则PC ,PD 的位置关系是 ;数量关系是 ;并证明你的结论。

⑵当E 在线段AB 上变化时,其它条件不变,作EF ⊥BC 于F ,连接PF ,试判断△PCF 的形状;在点E 运动过程中,△PCF 是否可为等边三角形?若可以,试求△ACB 与△EDB 的两直角边之比。

6.已知两个共一个顶点的等腰Rt △ABC ,Rt △CEF ,∠ABC=∠CEF=90°,连接AF ,M 是AF 的中点,连接MB 、ME .

(1)如图1,当CB 与CE 在同一直线上时,求证:MB ∥CF ;(2)如图1,若CB=a ,CE=2a ,求BM ,ME 的长;

(3)如图2,当∠BCE=45°时,求证:BM=ME .

7、如图,在平面直角坐标系中,A (4,0),B (0,4)。点N 为OA 上一点,OM ⊥BN 于M ,且∠ONB=45°+∠MON 。 (1)求证:BN 平分∠OBA ; (2)求

BN

MN

OM 的值;

(3)若点P 为第四象限内一动点,且∠APO =135°,问AP 与BP 是否存在某种确定的位置关系?请证明你的结论。

F A D

B C E

(2)

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

《等腰直角三角形中的常用模型》

1 / 6 等腰直角三角形中的常用模型 一【知识精析】 1、等腰直角三角形的特征: ①边、角方面的特征:两直角边相等,两锐角相等(都是45o) ②边之间的关系:已知任意一边长,可得到其它两边长。 2、等腰直角三角形与全等三角形: 以等腰直角三角形为背景的几何问题中,常常包含全等三角形,发现并证明其中的全等三角形往往是解题的关键突破口。熟悉以下基本模型,对解决等腰直角三角形问题很有好处。 模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点 (1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一 对全等的直角三角形: 例1.如图:Rt ΔABC 中,∠BAC =90o,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,过C 作CF ⊥AD 于点F 。 (1)求证:BE-CF=EF ; (2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立 吗?若不成立,请写出新的结论并证明。 如图1,等腰Rt △ABC 中,AB=CB ,∠ABC =90o,点P 在线段BC 上(不与B 、C 重合),以AP 为腰长作等腰直角△PAQ ,QE ⊥AB 于E ,连CQ 交AB 于M 。 (1)求证:M 为BE 的中点 (2)若PC=2PB ,求MB PC 的值 (2) (3) (1)D D E E C E C A B B A A B (2)F E D C B A A B C D E F (1)

2 / 6 (2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形: 3、如图:Rt ΔABC 中,∠BAC =90o,AB =AC ,点D 是BC 上任意一点,过B 作BE ⊥AD 于点E ,交AC 于点G ,过C 作CF ⊥AC 交AD 的延长线与于点F 。 (1)求证:BG=AF ; (2)若D 在BC 的延长线上(如图(2)),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。 变式1:如图,在R t △ABC 中,∠ACB =45o,∠BAC =90o,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE . 变式2:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,点D 是AC 的中点,AF ⊥BD 于点E ,交BC 于点F ,连接DF ,求证:∠1=∠2。 变式3:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,点D 、E 是 AC 上两点且AD=CE ,AF ⊥BD 于点G ,交BC 于点F 连接DF , 求证:∠1=∠2。 模型二:等腰直角三角形与另一个直角三角形共斜边 等腰直角三角形与另一个直角三角形有公共斜边,一定可以以两腰为对应边构造全等三角形 例1:等腰Rt △ABC 中,AC=AB ,∠BAC =90°,E 是AC 上一 D E F F E D (2) (1) C C A B B A A B C D E F (2) (1) F E D C B A G G B A C D E F (2)(1) F E D C B A

相似三角形常用模型及应用

相似三角形模型及应用 相似证明中的基本模型 A 字形 图①A 字型,结论: AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DE AC AB BC == 图③双A 字型,结论: DF BG EF GC =,图④内含正方形A 字形,结论AH a a AH BC -=(a 为正方形边长) I H G F E D C B A G F E D C B A E D C B A E D C B A 图① 图② 图③ 图④ 8字型 图①8字型,结论: AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD ==、四点共圆 图③双8字型,结论:AE DF BE CF =,图④A 8字型,结论:111 AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ?=?△△△△ E F D C B A F E D C B A O D C B A O D C B A G F E D C B A 图① 图② 图③ 图④ 图⑤ 一线三等角型 结论:出现两个相似三角形

H E D C B A E D C B A E D C B A C 60°F E D C B A F E D C B A 图① 图② 图③ 图④ 角分线定理与射影定理 图①内角分线型,结论: AB BD AC DC =,图②外角分线型,结论:AB BD AC CD = 图③斜射影定理型,结论:2AB BD BC =?, 图④射影定理型,结论:1、2AC AD AB =?,2、2CD AD BD =?,3、2BC BD BA =? D C B D B A C A E D C B A D C B A 梅涅劳斯型常用辅助线 G F E D C B A G F E D C B A G F E D C B A D E F C B A 考点一 相似三角形 【例1】 如图,D 、E 是ABC ?的边AC 、AB 上的点,且AD AC ?=AE AB ?,求证:ADE B ∠=∠. E D C B A 中考满分必做题

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

初三解直角三角形基本模型复习学习资料

初三解直角三角形基本模型复习

课题解直角三角形模型 教学目标 1. 熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角 度; 2. 学会解决常考的解直角三角形题型。 重难点学会解决常考的解直角三角形题型 导案学案 教学流程 一、进门考(建议不超过10分钟) 1.(2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学 楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离 AB=30m. (1)求∠BCD的度数. (2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32) 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名0°30°45°60°90° sinα0 1 cosα 1 0 tanα0 无穷大 cotα无穷大 1 0 1.解直角三角形的定义:

在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。 2.解直角三角形的常用关系: 在Rt △ABC 中,∠C=90°,则: ①三边关系:a 2+b 2= c 2 ; ②两锐角关系:∠A +∠B= 90°; ③边与角关系:sin A=cos B= a c ,cos A=sin B=b c ,tan A=a b ; ④平方关系:1cos sin 2 2=+A A ⑥倒数关系:tan A ?tan(90°—A)=1 ⑦弦切关系:tan A= A A cos sin 3.解直角三角形的两种基本类型————①已知两边长; ②已知一锐角和一边。 注意:已知两锐角不能解直角三角形。 4.解非直角三角形的方法: 对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是: ①作垂线构成直角三角形; ②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 5.常见的几种图形辅助线: 三、重难点例题启发与方法总结 类型一 背靠背 例1.(2017?恩施州)如图,小明家在学校O 的北偏东60°方向,距离学校80米的A 处,小华家在学校O 的南偏东45°方向的B 处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45) 例2(2017?海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE 的坡度i=1:1(即DB :EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC . (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

解直角三角形的应用教案

解直角三角形的应用教案

解直角三角形的应用教案 ―-俯角仰角问题教学目标: 1、了解仰角、俯角的概念。 2、能根据直角三角形的知识解决与仰角、俯角有关的实际 问题。 3、能够借助辅助线解决实际问题,掌握数形结合的思想方 法。 教学重点: 解直角三角形在实际中的应用。 教学难点: 将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,从而解决问题。 教学方法:三疑三探 教学过程: 一、复习引入新课 如图:在△ABC中,∠C=90°, ∠A、∠B、∠C的对边分别为 a,b,c. 则三边之间关系为; 锐角之间关系为;边角之间关系(以锐角A为例)为。 看来大家对基础知识掌握得还是比较牢固的。下面我们来看这样一个问题: 问题:小玲家对面新造 了一幢图书大厦,小玲心想: “站在地面上可以利用解直角 三角形测得图书大厦的高,站 在自家窗口能利用解直角三角 形测出大厦的高吗?他望着大厦顶端和大厦底部,可测出视线与水平线之间的夹角各一个,但这两个角如何命名呢? ο 46A B C Cο 29 A

AE =DE ×tan a =BC ×tan a =22.7×tan 22° ≈9.17 AB =BE +AE =AE +CD =9.17+1.20 ≈10.4(米) 答:旗杆的高度约为10.4米. 2、解:在ΔABC 中,∠ACB =90° ∵ ∠CAB =46° AC=32m tan ∠CAB= ∴BC=AC ·tan46° ≈33.1 在ΔADC 中,∠ACD=90° ∵ ∠CAD=29° AC=32m tan ∠CAD= ∴DC=AC ·tan29° ≈17.7 ∴BD=BC+CD=33.1+17.7=50.8≈51 答:大厦高BD 约为51m. 二、 质疑再探 在本节课的探究和学习过程中你还有那些疑惑或问题?请大胆提出来,大家共同解决。 三、 运用拓展 1、 生自编题 2、 师补充题 1、一架飞机以300角俯冲400米,则飞机的高度变化情况是( c ) C ο29D A BC AC DC AC ο46A B C

相似三角形模型分析大全

. 第一部分相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

. (五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型

旋转型:由A 字型旋转得到。 8字 型 拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形 第二部分 相似三角形典型例题讲解 母子型相似三角形 例1、已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠.

例2、已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于 E 、 F . 求证:EG EF BE ?=2 . 点评:本题考查了等腰三角形的性质、等腰三角形三线合一定理、平行线的性质、相似三角形的判定和性质.关键是能根据所证连接CE 相关练习: 1、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .

求证:OE OA OC ?=2 . 2、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 3、已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

人教版九年级数学下册-解直角三角形及其应用--知识讲解(包含典型例题讲解)

解直角三角形及其应用—知识讲解(包含典型例题讲解) 【学习目标】 1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形; 2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题. 【要点梳理】 要点一、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: , ,,

, ,. ④,h为斜边上的高. 要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知值.

(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法

要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边. 要点三、解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

解直角三角形的基本类型及其解法公式

解直角三角形的基本类型及其解法公式(总结) 1、解直角三角形的类型与解法 已知、解法 三角 类型 已 知 条 件 解 法 步 骤 Rt △ABC B c a A b C 两 边 两直角边(如a ,b ) 由tan A =a b ,求∠A ;∠B =90°-A , c = 2 2b a + 斜边,一直角边(如c ,a ) 由Sin A =a c ,求∠A ;∠B =90°-A ,b =22a -c 一 边 一 角 一角边 和 一锐角 锐角,邻边 (如∠A ,b ) ∠B =90°-A ,a =b ·Sin A ,c =b cosA cosA 锐角,对边 (如∠A ,a ) ∠B =90°-A ,b =a tanA ,c =a sinA 斜边,锐角(如c ,∠A ) ∠B =90°-A ,a =c ·Sin A , b =c ·cos A 2、测量物体的高度的常见模型 1)利用水平距离测量物体高度 数学模型 所用工具 应测数据 数量关系 根据 原理 侧倾器 皮尺 α、β、 水平距离a tan α=1 x ι ,tan β=2x ι ι=a ·tan α·tan βtan α+tan β 直角 三角 形的 边角 关系 tan α= x a +ι tan β= x ι ι=a ·tan α·tan β tan β-tan α 2)测量底部可以到达的物体的高度 数学模型 所用工具 应测数据 数量关系 根据 原理 皮尺 镜子 目高a 1 水平距离a 2 3a h =2 1a a ,h =231a a a 反射 定律 β α a x 1 x 2 ι α β x a ι 镜子 1a 2a 3a h

初三数学:相似三角形常见模型

相似三角形常见模型一 【知识清单】 【典例剖析】 知识点一:A 字型的相似三角形 A 字型、反A 字型(斜A 字型) B (平行) B (不平行) (1)如图,若BC DE ∥,则ABC ADE ∽△△

(2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连 接 DE ,可得?=∠+∠180C BDE ,线段BC DE 21= ,AE AD 3 2 =,求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, ::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 F E D C B A C B D E M 1F 1E 1M E F A B C M N A B C D E F

知识点二:8字型相似三角形 B C C (蝴蝶型) (平行)(不平行) (1)如图,若CD AB∥,则DOC AOB∽△ △ (2)如图,若C A∠ = ∠,则CDJ ABJ∽△ △ 1、已知,P为平行四边形ABCD对角线,AC上一点,过点P的直线与AD,BC,CD的延长线,AB的延长线分别相交于点E,F,G,H 求证: PE PH PF PG = 2、如图,设 AB BC CA AD DE EA ==,求证:12 ∠=∠ 变式练习: 1、(2010?威海)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1. P H G F E D C B A E

(完整word版)初三解直角三角形基本模型复习

课题解直角三角形模型 教学目标 1. 熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度; 2. 学会解决常考的解直角三角形题型。 重难点学会解决常考的解直角三角形题型 导案学案 教学流程 一、进门考(建议不超过10分钟) 1.(2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼 顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m. (1)求∠BCD的度数. (2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32) 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名0°30°45°60°90° sinα0 1 cosα 1 0 tanα0 无穷大 cotα无穷大 1 0

1.解直角三角形的定义: 在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。 2.解直角三角形的常用关系: 在Rt △ABC 中,∠C=90°,则: ①三边关系:a 2+b 2= c 2 ; ②两锐角关系:∠A +∠B= 90°; ③边与角关系:sin A=cos B= a c ,cos A=sin B= b c ,tan A=a b ; ④平方关系:1cos sin 2 2 =+A A ⑥倒数关系:tan A ?tan(90°—A)=1 ⑦弦切关系:tan A= A A cos sin 3.解直角三角形的两种基本类型————①已知两边长; ②已知一锐角和一边。 注意:已知两锐角不能解直角三角形。 4.解非直角三角形的方法: 对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是: ①作垂线构成直角三角形; ②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 5.常见的几种图形辅助线: 三、重难点例题启发与方法总结 类型一 背靠背 例1.(2017?恩施州)如图,小明家在学校O 的北偏东60°方向,距离学校80米的A 处,小华家在学校O 的南偏东45°方向的B 处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)

解直角三角形的几种模型

坡度、坡角在实际中的应用 1、如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号 ). 2、学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB 长为12米。为方便学生行走,决定开挖小山坡,使斜坡BD 的坡比是1:3(即为CD 与BC 的长度之比).A ,D 两点处于同一铅垂线上,求开挖后小山坡下降的高度 AD. 3、如图,小山岗的斜坡AC 的坡度是34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB(结果取整数) 参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6° =0.50). 4、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固。经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF 的坡比 i=1:2. (1)求加固后坝底增加的宽度AF 的长; (2)求完成这项工程需要土石多少立方米?

专题:解直角三角形的几种模型 类型一:“背靠背”型 5、如图,A、B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B 城市的北偏西45°方向上。已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内。请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么? 类型二:“叠合”型 6、如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B. A在一条直线上。请你帮李明同学计算出信号塔CD的高度(结果保留 整数,3≈1.7,2≈1.4 ) 类型三:“母抱子”型 7、如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值。测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B. C. A. P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈ 0.75) 类型四:“斜截”型 8、某片绿地的形状如图所示,其中∠A=60°,AB⊥BC,AD⊥CD,AB=200m,CD=100m,求AD、BC的长.(精确到1m,3√≈ 1.732)

相似三角形常见模型与型例题讲解

第一部分 相似三角形模型分析 一、相似三角形判定的基本模型认识 (一)A 字型、反A 字型(斜A 字型) B C D E (平行) C B D E (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G B E F

一线三等角的变形一线三直角的变形

第二部分 相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2) DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB 3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。 求证:EB ·DF=AE ·DB 4.在?ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G , 使DG=EF ,M 是AH 的中点。 求证:∠=?GBM 90 5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各 5分) 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为 y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积. 双垂型 1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED 2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3, A C D E B D E A B C A B P D E (第25题图) G M F E H D C B A

相似三角形几种基本模型

相似三角形基本模型 经典模型 “平行旋转型” 图形梳理: AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ F'C B B C AEF 旋转到 AE‘F’ A B C AEF 旋转到AE‘F’ 特殊情况:B 、'E 、'F 共线

AEF 旋转到AE‘F’C B A A B C E F E' F'AEF 旋转到AE‘F’ C ,'E ,'F 共线 AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ C B A 母子型 已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 相似三角形常见的图形 1、下面我们来看一看相似三角形的几种基本图形: (1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图) (2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。(有“反A 共角型”、 “反A 共角共边型”、 “蝶型”) A E A D E 4 1 B (3) D B (2) D

(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”“三垂直型”) (4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。 (5)母子型 已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD. 2、几种基本图形的具体应用: (1)若DE∥BC(A型和X型)则△ADE∽△ABC (2)射影定理若CD为Rt△ABC斜边上的高(双直角图形) 则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB ; (3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB. (4)当AD AE AC 或AD·AB=AC·AE时,△ ADE∽△ACB. B E A C D 1 2 B B C(D )

完整word版初三解直角三角形基本模型复习.docx

课题解直角三角形模型 教学目标 1.熟悉特殊的三角函数,理解三角函数表示的意义,学会利用三角函数求线段长度和角度; 2.学会解决常考的解直角三角形题型。 重难点学会解决常考的解直角三角形题型 导案学案 教学流程 一、进门考(建议不超过10 分钟) 1. ( 2017?绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 C 测得教学楼 顶部 D的仰角为18°,教学楼底部B的俯角为 20°,量得实验楼与教学楼之间的距离AB=30m. ( 1)求∠ BCD的度数. ( 2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20 °≈ 0.36 , tan18 °≈ 0.32 ) 二、基础知识网络总结与巩固 知识回顾:三角函数中常用的特殊函数值。 函数名0°30°45°60°90° sin α01 cos α10 tan α0无穷大 cot α无穷大10

1.解直角三角形的定义: 在直角三角形中,除直角外,共有 5 个元素,即 3 条边和 2 个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形。 2.解直角三角形的常用关系: 在 Rt △ ABC中,∠ C=90°,则:① 三边关系: a2+ b2= c 2;②两锐角关 系:∠ A+∠ B= 90 °; ③边与角关系: sin A=cos B=a , cos A=sin B= b , tan A=a ; c c b ④平方关系: sin 2 A cos2 A1 ⑥倒数关系: tan A? tan(90°—A)=1 ⑦弦切关系: tan A=sin A cos A 3. 解直角三角形的两种基本类型————①已知两边长;②已知一锐角和一边。 注意:已知两锐角不能解直角三角形。 4.解非直角三角形的方法: 对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是: ①作垂线构成直角三角形; ②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。 5.常见的几种图形辅助线: 三、重难点例题启发与方法总结 类型一背靠背 例 1. ( 2017?恩施州)如图,小明家在学校 O的北偏东 60°方向,距离学校 80 米的 A 处,小华家在学校 O的南偏东 45°方向的 B 处,小华家在小明家的正南方向,求小华家到学校的距 离.(结果精确到 1 米,参考数据:≈ 1.41,≈ 1.73,≈ 2.45)

相关文档
相关文档 最新文档