文档库 最新最全的文档下载
当前位置:文档库 › ANSYS谐响应分析

ANSYS谐响应分析

ANSYS谐响应分析
ANSYS谐响应分析

八、谐响应分析

8.1问题描述

单自由度系统如图所示,质量m=1kg,弹簧刚度k=10000N/m,阻尼系数c=63,作用在系统上的激振力N t t f F F 2000,sin )(00==ω,ω为激振频率。

单自由度系统

8.2求解步骤

1、建立工作文件名和工作标题

2、定义单元类型及实常数

1)定义单元类型:Main Menu→Preprocessor→Element Type→Add/Edit /Delete。弹出对话框,单击“Add”按钮;弹出对话框,在左侧列表中选“Structural Mass”,在右侧列表中选“3D mass 21”,单击“Apply”按钮;再在左侧列表中选“Combination”,在右侧列表中选“Spring-damper14”,单击“Ok”按钮;单击对话框的“Close”按钮。

2)定义实常数:Main Menu→Preprocessor→Real Constants→Add/Edit /Delete。单击“Add”按钮,弹出对话框,在列表中选择“Type 1MASS21”,单击“OK”按钮,弹出对话框,在“MASSX”文本框中输入1,单击“OK”按钮;返回对话框,单击“Add”按钮,再次弹出对话框,在列表中选择“Type 2COMBIN14”,单击“OK”按钮,弹出图所示的对话框,在“K”文本框中输入10000,在“CV1”文本框中输入63,单击“OK”按钮;返回,单击“Close”按钮。

3、生成几何模型,划分网格

1)创建节点:Main Menu→Preprocessor→Modeling→Create→Nodes→In ActiveCS。弹出对话框,在“NODE”文本框中输入1,在“X,Y,Z”文本框中分别输入0,0,0,单击“Apply”按钮;在“NODE”文本框中输入2,在“X,Y,Z”文本框中分别输入1,0,0,单击“OK”按钮。

2)设置要创建单元的属性:Main Menu→Preprocessor→Modeling→Create →Elements→Elem Attributes。弹出对话框,选择“TYPE”为2COMBIN14,选择“REAL”为2,单击“OK”按钮。

3)创建弹簧阻尼单元:Main Menu→Preprocessor→Modeling→Create→Elements→Auto Numbered→Thru Nodes。弹出拾取窗口,拾取节点1和2,单击“OK”按钮。设置要创建单元的属性:拾取菜单Main Menu→Pre processor →Modeling→Create→Elements→Elem Attributes。弹出对话框,选择“TYPE”为1MASS21,选择“REAL”为1,单击“OK”按钮。

4)创建质量单元:Main Menu→Preprocessor→Modeling→Create→Elements

→Auto Numbered→Thru Nodes。弹出拾取窗口,拾取节点2,单击“OK”按钮。

5)施加约束:Main Menu→Solution→Define Loads→Apply→Structural→Displacement→On Nodes。弹出拾取窗口,拾取节点1,单击“OK”按钮,弹出对话框,在“Lab2”列表中选择“All DOF”,单击“Apply”按钮;再次弹出拾取窗口,拾取节点2,单击“OK”按钮,再次弹出对话框,在“Lab2”列表中选择“UY”、“UZ”、“ROTX”、“ROTY”、“ROTZ”,单击“OK”按钮。

3、加载求解

1)指定分析类型:Main Menu→Solution→Analysis Type→New Analysis。弹出对话框,选择“Type of Analysis”为“Harmonic”,单击“OK”按钮。

2)指定激振频率范围:Main Menu→Solution→Load Step Opts→Time/Frequenc→Freq and Substps。弹出对话框,在“HARFRQ”文本框中输入0和50(在ANSYS中,频率单位为Hz),在“NSUBST”文本框中输入25,选择“KBC”

为“Stepped”,单击“Ok”按钮。于是,指定了从0到50Hz范围内均匀分布的25个频率点作为激振频率。

3)施加载荷:Main Menu→Solution→Define Loads→Apply→Structural→Force/Moment→On Nodes。弹出拾取窗口,拾取节点2,单击“OK”按钮,弹出对话框,选择“Lab”为“FX”,在“VALUE”文本框中输入2000,单击“OK”按钮。

4)求解:Main Menu→Solution→Solve→Current LS。单击“Solve Current Load Step”对话框的“Ok”按钮。出现“Solutionis done!”提示时,求解结束。

4、进入一般后处理,查看结果

1)定义变量:Main Menu→TimeHist Postpro→Define Variables。弹出对话框,单击“Add”按钮,弹出对话框,选择“Type of Variable”为“Nodal DOF result”,单击“OK”按钮,弹出拾取窗口,拾取节点2,单击“OK”按钮,弹出对话框,在“Name”文本框中输入Dispx,单击“OK”按钮,返回到对话框,单击“Close”按钮。

2)用曲线图显示变量的幅值:Main Menu→TimeHist Postpro→Graph Variables。弹出对话框,在“NVAR1”文本框中输入2,单击“OK”按钮,得到系统振动幅值与频率的关系曲线。

3)选择曲线图显示相位角:Main Menu→TimeHist Postpro→Settings→Graph。弹出对话框,选择“PLCPLX”为“Phaseangle”,单击“OK”按钮。用曲线图显示变量的相位角。

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模

ANSYS谐响应分析命令流

/FILNAME, Beam,1 !定义工作文件名。 /TITLE, Beam Analysis !定义工作标题。/PREP7 !定义单元。 ET,1,BEAM188 !定义材料属性。 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.1e5 MPDATA,PRXY,1,,0.3 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,DENS,1,,7.9e-6 ! 定义杆件截面■200。 SECTYPE, 1, BEAM, RECT, , 0 SECOFFSET, CENT SECDATA,10,10,0,0,0,0,0,0,0,0 !建立几何模型。 K,1, ,, , K,2,350,, , !生成立柱。 LSTR, 1, 2 !以上完成几何模型。 !以下进行网格划分。 FLST,5,1,4,ORDE,1 FITEM,5,1 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,50, , , , ,1 !定义单元大小。!分配、划分平板结构。 LMESH, 1 !分析类型施加载荷并求解。 ANTYPE,2 !定义分析类型及求解设置。MSAVE,0 !模态提取方法。MODOPT,LANB,40 EQSLV,SPAR

MXPAND,40, , ,0 !模态扩展设置。 LUMPM,0 PSTRES,0 MODOPT,LANB,40,0,0, ,OFF !施加约束。 FLST,2,2,3,ORDE,2 FITEM,2,1 FITEM,2,-2 /GO DK,P51X, , , ,0,ALL, , , , , , !求解。 FINISH /SOL /STA TUS,SOLU SOLVE !以下进入谐响应分析模式。 *AFUN,DEG !指定角度单位为度。FLST,2,1,1,ORDE,1 FITEM,2,81 /GO FINISH /SOL !重新进入ANSYS求解器。ANTYPE,3 !分析类型为谐响应分析。HROPT,FULL !求解方法为FULL法。HROUT,ON LUMPM,0 EQSLV,FRONT,0, PSTRES,1 !包含了预应力。 !施加载荷。 FLST,2,1,1,ORDE,1 FITEM,2,24 /GO F,P51X,FY,-400*cos(30),-400*sin(30) FLST,2,1,1,ORDE,1 FITEM,2,36 /GO F,P51X,FY,300*cos(5),300*sin(5)

《ANSYS谐响应分析在结构受迫振动中的应用》

2006年用户年会论文 ANSYS谐响应分析在结构受迫振动中的应用 [李亚楠俞新蔡绍元徐志刚] [中国五环化学工程公司,湖北武汉 430079] [ 摘要 ] 建筑结构上的设备振动所引起的楼层振幅不仅给结构安全带来隐患,而且影响其他设备的正常运转。常规的结构设计软件不能考虑设备振动所产生的周期载荷,给结构计算带来诸多不便, 而ANSYS的谐响应分析很好地解决了设备运转所产生的结构受迫振动问题。本文通过 ANSYS 有限元软件计算分析,采取合理措施,有效地限制了结构受迫振动所引起的楼层振幅。 [ 关键词]ANSYS;谐响应;受迫振动;楼层振幅 Application of harmonic response analysis of ANSYS in the forced vibrations of structures [Li Yanan Yu Xin Cai Shaoyuan Xu Zhigang] [China Wuhuan Chemical Engineering Corp. , Wuhan Hubei 430079 China] [ Abstract ] The vibration of equipments on the architectural structure brings the floor amplitude, it not only brings the hidden trouble for the structural safety, but also affects the natural work of the other equipments. The usual structure design software can not consider periodic loads that are brought as a result of the vibration of equipments, it brings a lot of trouble to structural calculation, however, the harmonic response analysis of ANSYS commendably solves the matters of forced vibrations that are brought as a result of the operation of equipments. In this paper, with the calculation and analysis of ANSYS, reasonable measures are taken, it is solved how to effectively restrict the floor amplitude that is brought as a result of forced vibrations. [ Keyword ] ANSYS; harmonic response; forced vibrations; floor amplitude 1前言 目前,在石油、化工、电力等工业领域,振动设备在厂房结构中是相当普遍的,而设备振动所产生的周期荷载将在结构系统中产生持续的周期谐响应,由此所引起的楼层振幅不仅给结构安全带来隐患,而且影响其他设备的正常运转。常规的结构设计软件无法模拟周期载荷的幅值、相位及频率,给结构计算带来诸多不便,而ANSYS的谐响应分析很好地解决了设备运转所产生的结构受迫振动问题,既保证了计算精度,又解决了实际问题。

利用ANSYS谐响应分析结果导入LMS-Virtual-lab中进行声学分析步骤

1.前期用ANSYS对模型进行动力学分析,然后保存结果文件.rst格式的,然后导入到Vritual lab12中进行声学分析,可能步骤有些长,大家尽量慢慢看,如果有不明白的,或者我的步骤有错误的,大家可以指正,还有我的VL版本是12的,12的版本和以前的微有不同,在后边大家会发现的。我的Q1728993717. 2.进入声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 3.导入Ansys分析结果文件.rst格式:文件—Import—默认即可,看好单位,与模型统一; 4.更改文件名称,便于后续操作:在特征树中点开Nodes and Elements—右键点其子选项 (就是带有齿轮标志那个)—属性—特征属性—更改名称—StructuresMesh. 5.提取声学面网格:开始—Structures—Cavity Meshing—插入—Pre/Acoustics Meshers— Pre/Acoustics Meshers—Skin Meshers,出现一下图框, 在Grid to Skin 区域选择结构网格即:StructuresMesh,其余都默认不用改,之后点击应用,Close。 6.在次回到声学模块:开始—Acoustics—Acoustics Harmonic BEM ; 7.命名声学网格:点开特征树中的Nodes and Elements—右键Skin Meshpar1.—属性—特征 属性—改名称—AcousticsMesh;到这步之后为了方便起见,可以将结构网格StructuresMesh隐藏:右键StructuresMesh—Hide/Show; 8.设定分析类型:工具—Edit the Model Type Definitions—点击“是”出现对话框如下:

ansys谐响应分析

问题描述 本实例是对如下图所示的有预应力的吉他弦进行谐响应分析。形状均匀的吉他弦直径为d ,长为l 。在施加上拉伸力F1后紧绷在两个刚性支点间,用于调出C 音阶的E 音符。在弦的四分之一长度处以力F2弹击此弦,要求计算弦的一阶固有频率f1,并验证仅当弹击力的频率为弦的奇数阶固有频率时才会产生谐响应。 几何尺寸:l =710mm c =165mm d =0.254mm 材料特性:杨氏模量EX =1.9E5 Mpa ,泊松比PRXY =0.3,密度DENS =7.92E-9Tn/mm 3 。 载荷为:F1=84N F2=1N 取弹击力的频率范围为从0到2000Hz ,并求解频率间隔为2000/8=250Hz 的所有解,以便观察在弦的前几阶固有频率处的响应,并用POST26时间-历程后处理器绘制出位移响应与频率的关系曲线。 一.选取菜单路径Utility Menu | File | Change Jobname ,将弹出Change Jobname (修改文件名)对话框,如图13.2所示。在Enter new jobname (输入新文件名)文本框中输入文字“CH13”,然后单击对话框中的ok 按钮,完成对本实例数据库文件名的修改。 选取菜单路径Main Menu | Preference ,将弹出Preference of GUI Filtering (菜单过滤参数选择)对话框,单击Structural(结构)选项使之被选中,以将菜单设置为与结构分析相关的选项。单击按钮,完成分析范畴的指定。 二.定义单元类型 1.选取菜单路径Main Menu | Preprocessor | Element Type | Add/Edit/Delete ,将弹出Element Types (单元类型定义)对话框。单击对话框中的按钮,将会弹出Library of Element Types (单元类型库)对话框 2.在图13.4所示的对话框左边的滚动框中单击“Structural Link ”,选择结构连接单元类型。接着在右边的滚动框中单击“2D Spar 1”,使其高亮度显示,选择2维弹性单元。单击对话框中的按钮,关闭单元类型库(Library of Element Types)对话框。 3.在Element Types (单元类型定义)对话框中的已定义单元类型列表框中将会列出定义的单元类型为:“Type 1 LINK1”。单击对话框中的按钮,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 三.定义材料性能和实常数 选取菜单路径Main Menu | Preprocessor | Material Props | Material Models ,2.依次双击Structural , Linear ,Elastic 和Isotropic ,将弹出1号材料的弹性模量EX 和泊松比PRXY 的定义对话框。在EX 文本框中输入1.9E5,PRXY 文本框中输入0.3。定义材料的弹性模量为1.9E5Mpa ,泊松比为0.3。单击对话框中的ok 按钮,关闭对话框。接着双击Density , 在DENS 文本框中输入7.92E-9,设定1号材料密度为7.92E-9Tn/mm 3 。单击ok 按钮,完成

范例 - 谐响应分析理论求解与ANSYS求解

虽然在ANSYS中进行谐响应分析是一个很简单的过程,只需要几行代码就可以实现。很多朋友根据书上或者网上已有的分析代码稍作修改就可以进行分析了。但是其中很多概念是否理解了呢,得到的结果有什么实际意义呢。下面通过介绍一个单自由度的弹簧振子的谐响应分析理论求解,然后在ANSYS中求解。通过两种结果的对比,以解释一些概念。这个例子是Help手册中的VM86,很多振动学的教材中都会有这样的例子。 1.问题描述 如上图是一个典型的单自由度弹簧振子系统。假设此系统承受谐激励载荷 。其中为激励载荷的幅值,为载荷的周期。 2.理论基础 此系统的动力方程为: (1) 这个方程的求解方法很多,下面介绍一种最常用的求解方式:方程两边同除以,得到

(2) 如果令, 则上式可以写成: (3) 这个方程的解分为两部分,一部分为齐次方程的解,就是阻尼系统的自由振动响应,自由振动响应随时间衰减,最后消失,所以自由振动响应也叫瞬态响应。另一部分是特解,也就是强迫振动响应。不会随时间衰减,所以称为稳态响应。 由于系统是线性系统,瞬态响应和稳态响应可分别求解,然后合成为系统的总响应。下面介绍如何求解系统的稳态响应,即方程(3)的特解。 由于激振力为简谐力,可以证明系统的稳态响应也是简谐的,并且与激振力有同样的频率。设系统的稳态响应有如下形式: (4) 其中,和分别是系统响应的幅值和相位。将式(4)代入方程式(3),可得 (5) 利用三角函数关系 故有,

(6) 求解上式可得到 (7) 这样就得到了系统稳态响应的幅值和相位角 对于方程(3)的齐次方程的解,也就是瞬态解这里只是给出求解结果,以后有机会再写详细的求解过程。 有阻尼系统的自由振动方程为: (8) 工程中阻尼一般比较小,此方程的解可以表示为: 于是振动微分方程的(1)的解为: 画出此响应曲线如下图:

使用Ansys Workbench进行谐响应分析的基本流程 坐倚北风

使用Ansys Workbench进行谐响应分析的基本流程坐倚 北风 谐响应分析(Harmonic Response Analysis)是用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对应频率的曲线。从这些曲线上可以找到“峰值”响应,并进一步考察频率对应的应力。如下图所示则为本文示例中最终求解出的轴承支撑座座的von-Mises米歇尔应力图。图1 轴承支撑座von-Mises米歇尔应力图谐响应分析技术只计算结构的稳态受迫振动。发生在激励开始时的瞬态振动不在谐响应分析中考虑。谐响应分析是一种线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体―结构相互作用问题,谐响应分析同样也可以分析有预应力的结构,如小提琴的弦(假定简谱应力比预加的拉伸应力小得多)。谐响应分析通常用于如下结构的设计与分析:(1)旋转设备(如压缩机.发动机、泵、涡轮机械等)的支座固定装置和部件等;(2)受涡流影响的结构,包括涡轮叶片、飞机机翼、桥和塔等。进行谐响应分析的目的是确保一个给定的结构能经受住不同频率的各种正弦

载荷(例如以不同速度运行的发动机);探测共振响应,必要时可避免其发生(例如借助于阻尼器来避免共振等)。 下面以一个轴承支座的谐响应分析为例,介绍在Ansys Workbench中进行谐响应分析的基本步骤。(在Ansys Mechanical APDL中进行谐响应分析的方法可参考本站文 章《Ansys谐响应分析的步骤及单自由度系统求解实例》)进入Workbench后,首先新建一个Harmonic Response谐响应分析工程,如下图所示。图2 Harmonic Response 谐响应分析工程1、前处理前处理和其它有限元分析一样,进行模型处理、材料设置、网格划分,这里不再赘述。2、边界条件(1)如下图所示,本例中固定支撑座下端的4个螺栓孔,并在上端轴承孔中施加一个向下的大小为100N的力载荷。图3 轴承支撑座模型(2)如下图所示,在Analysis Settings中设置频率范围和步长,本例中设置频率范围为50-1000Hz,步长为50Hz。3、求解(1)设置求解选项如下图所示,点击Solution,并在Frequency Response下拉菜单中选择添加求解选项。可添加的求解选项有Stress、Strain、Deformation和Acceleration。通过添加求解选项,可以求解相应几何元素的对应结果。(2)求解添加完求解选项后,即可点击Solve按钮进行求解。求解结束后,点击相应的选项即可查看求解结果。如下图所示,为求解的支撑座轴承支撑端

ansys谐响应分析步骤

谐响应分析步骤 full(完全法)允许定义各种类型的荷载;预应力选项不可用;reduced(缩减法)可以考虑预应力;只能施加单元荷载(压力,温度等) mode superpos'n(模态叠加法)通过对模态分析的道德振型(特征向量)乘以因子并求和来计算出结果的响应,可以包含预应力,可以考虑振型阻尼,不能施加非零位移 1 Full法步骤 第1步: 载入模型Plot>Volumes 第2步: 指定分析标题并设置分析范畴 1设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2选取菜单途径MainMenu>Preference ,单击Structure,单击OK第3步: 定义单元类型 MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现Element Types 对话框,单击Add出现Library of Element Types对话框,选择StructuralSolid,再右滚动栏选择Brick20node95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步: 指定材料性能 选取菜单途径MainMenu>Preprocessor>MaterialProps>Material

Models。出现DefineMaterialModelBehavior对话框,在右侧 Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步: 划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool 对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现MeshVolumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步: 进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Harmonic单击OK。 设定分析选项: MainMenu>Solution>AnalysisType>AnalysisOptions,出现谐响应分析选项设置对话框,设定“Solution method”为Full,设定“DOF printout format”为 Amplitud+phase,单击OK,出现完全法谐响应分析设置对话框,在其中可以设定求解器等,一般采用默认设置。 设定输出控制选项: MainMenu>Solution>LoadStepOpts>OutputCtrls>Soluprintout,设定打印频率为“Last substep”。 设置求解选项:

ANSYS谐响应分析实例-振动电机轴分析

AnsysWorkBench11.0振动电机轴谐响应分析 最小网站长:kingstudio 最小网Ansys 教程频道为您打造最 IN 的教程 https://www.wendangku.net/doc/f67246958.html,/ 1.谐响应分析简介 任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。谐响应分析是 用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。 分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲 线。从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。 该技术只 计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。(见图1)。谐响应分析 使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共 振、疲劳,及其它受迫振动引起的有害效果。 谐响应分析是一种线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题。谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。谐响应分析的定义与应用介绍: https://www.wendangku.net/doc/f67246958.html,/ArticleContent.asp?ID=785 2. 工程背景 在长距离振动输送机、概率振动筛等变载荷振动机械中,由于载荷的变化幅度较大,且多为冲击或交变载荷, 使得作为动力源与振动源的振动电机寿命大为缩短, 其中振动电机阶梯轴的弹塑性变形又会中速振动电机的失效, 故研究振动电机轴的谐响应, 进而合理设计 其尺寸与结构,是角决振动电机在此类场合过早失效的主要途径之一。 现以某型振动电机阶梯轴为分对象,振动电机属于将动帮源与振动源合为一体的电动施转式激振源,在振动电机轴两端分别装有两个偏心块,工作时电机轴还动两偏心块作顺转 无能无力产生周期性激振力 t sin F F 1ω=,其中为施加载荷,由些电机轴受到偏心块施加 的变载荷冲击,极易产生变形和疲劳损坏, 更严重者,当激振力的频率与阶梯轴的固有频率 相等时,就会发生共振,造成电机严重破坏,故对电机进行谐应力分析很必要。 1F 3.分析关键 1.谐响应分析的载荷描述方式 概据定义,谐响应分析假定所施加的所有载荷随时间简谐(正弦)规律变化。指定一个完整的简谐载荷需要输入 3条信息:amplitude (幅值),phase angle (相位角)和 forcing frequency range (强制频率范围)。 Amplitude (幅值)指载荷的最大值。 phase angle (相位角)指载荷滞后(或领先)于 参考时间的量度。在复平面上,相位角是以实轴为起始的角度, 当同是要定义多个相互间存

ANSYS中的模态分析与谐响应分析

模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为

ANSYS模态分析报告实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-158:59:49模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071!指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5,!指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载

NSUBST,100,!指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t)!式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把

ansys_谐响应分析

ANSYS的谐响应分析 §2.1谐响应分析的定义与应用 任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。(见图1)。谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起的有害效果。 图1(a)典型谐响应系统。F0及ω已知,u0和Φ未知。 (b)结构的瞬态和稳态动力学响应。 谐响应分析是一种线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题(参见<>的第5章)。谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。

§2.2谐响应分析中用到的命令 建模过程与执行谐响应分析可以使用其它类型分析相同的命令。同样,无论进行何种类型的分析,均可以从用户图形界面(GUI)中选择等效的选项来建模和求解。 在后面的“谐响应分析实例(命令或批处理方式)”中,将会给出进行一个谐响应分析需要执行的命令(GUI方式或者批处理方式运行ANSYS时用到的)。而“谐响应分析实例(GUI方式)”则描述了如何用ANSYS用户图形界面的菜单执行同样实例分析的过程。(要了解如何用命令和用户图形界面进行建模,请参阅《ANSYS建模与网格指南》)。 《ANSYS命令参考手册》中有更为详细的ANSYS命令说明,它们是按字母顺序进行组织的。 §2.3三种求解方法 谐响应分析可采用三种方法:完全法(Full)、缩减法(Reduced)、模态叠加法(Mode Superposition)。(第四种方法,也是一种开销相对较大的方法,是将简谐载荷指定为有时间历程的载荷函数,进行相应的瞬态动力学分析,参见第三部分瞬态动力学分析中的叙述。)ANSYS/Linear Plus中只允许采用模态叠加法。在研究每种方法的实现细节前,让我们先比较一下各种方法的优缺点。 §2.3.1完全法 完全法是三种方法中最易使用的方法。它采用完整的系统矩阵计算谐响应(没有矩阵缩减)。矩阵可以是对称的或非对称的。完全法的优点是: ·容易使用,因为不必关心如何选取主自由度或振型;

Ansys中谐响应分析理论概述

* 谐响应分析的概述 * 1谐响应分析的概念 谐响应分析(Harmonic Response Analysis)用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下得响应值(通常是位移)对频率的曲线,从这些曲线上可以找到“峰值”响应,并进一步考虑频率对应的应力。从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。 谐响应分析技术只计算结构的稳态受迫振动。发生在激励开始时的瞬态振动不在谐响应分析中考虑。谐响应分析是一种线性分析。任何非线性特性,如塑性和接触单元,即使定义了也被忽略,但在分析中可以包含非对称系统矩阵。谐响应分析同样也可分析有预应力的结构。 * 2谐响应分析的理论基础 谐响应分析的基本运动方程为: (4-1) 通用运动方程为: (4-2) 简谐运动的分析方程为: (4-3) (4-4) 其中:—激振力矩阵 —刚度矩阵 —质量矩阵 —位移矩阵 —载荷幅值 —实部载荷 —虚部载荷 —载荷函数的相位角 —位移幅值 这里假设刚度矩阵、质量矩阵是定值,要求材料是线弹性的、使用最小位移理论(不包括非线性)、阻尼为、激振力(简谐载荷)为。 谐响应分析的输入条件包括: (1)已知幅值和频率的简谐载荷(力、压力和强迫位移) (2)简谐载荷可以是具有多种频率的多种载荷,力和位移可以相同或者不相同,但是压力分布载荷只能指定零相位角。 谐响应分析的输出结果分析包括: (1)每个自由度的谐响应位移,通常情况下谐响应位移和施加的载荷是不相同的。 (2)应力和应变等其它导出值。 * 3谐响应分析的求解基本方法 (1)完整法(full) —为缺省方法,是最容易的方法; —使用完整的结构矩阵,且允许非对称矩阵(例如:声学矩阵)。

ANSYS谐响应分析步骤

ANSYS模态分析步骤 第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes 第2步:指定分析标题/工作名/工作路径,并设置分析范畴 1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory 2 设置分析范畴Main Menu>Preference,单击Structure,OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。第5步:划分网格 Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。当内存不足时,取消SmartSize 第6步:进入求解器并指定分析类型和选项 Main Menu>Solution>Analysis Type>New Analysis,出现New Analysis对话框,选择Modal,OK。Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis对话框,选中Subspace 模态提取法,在No. of modes to extract处输入相应的值(一般为5或10),单击OK,出现Subspace Model Analysis对话框,输入Start Freq值,即频率的起始值,其他保持不变(也可输入End Frequency,即输入频率范围;此时扩展模态仅在此范围内取值),单击OK。 第7步:施加边界条件 Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply(多次选择)或OK即可。 第8步:指定要扩展的模态数 Main Menu>Solution>Load Step Opts>ExpansionPass>Single Expand>Expand Modes,出现Expand Modes对话框,在No. of modes to expand 处输入第6步相应的数字,单击OK即可。 注意:在第6步NMODE No. of modes to expand输入扩展模态数后,第8步可省略。 第9步:进行求解计算 Main Menu>Solution>Solve>Current LS。浏览在/STAT命令对话框中出现的信息,然后使用File>Close 关闭该对话框,单击OK。在出现警告(不一定有)“A check of your model data produced 1 Warning。Should the SOLV command be executed?”时单击Yes,求解过程结束后单击close。 第10步:列出固有频率 Main Menu>General Postproc>Results Summary。 第11步:动画显示模态形状 查看某阶模态的变形,先读入求解结果。执行Main Menu>General Postproc>Read results>first Set,然后执行1.Main Menu>General Postproc>Plot Results>Deformed Shape,在弹出对话框中选择“Def+undefe edge”或执行 2.PlotCtrls>Animate>mode shape,出现对话框,左边滚动栏不变,在右边滚动栏选择“Def+undefe edge”,单击OK,可查看动画效果。如果需要看其他阶模态,执行Main Menu>General Postproc>Read results>Next Set,重复执行上述步骤即可。 第12步:结束分析SA VE_DB; Main Menu>Finish

ANSYS谐响应分析

八、谐响应分析 8.1问题描述 单自由度系统如图所示,质量m=1kg,弹簧刚度k=10000N/m,阻尼系数c=63,作用在系统上的激振力N t t f F F 2000,sin )(00==ω,ω为激振频率。 单自由度系统 8.2求解步骤 1、建立工作文件名和工作标题 2、定义单元类型及实常数 1)定义单元类型:Main Menu→Preprocessor→Element Type→Add/Edit /Delete。弹出对话框,单击“Add”按钮;弹出对话框,在左侧列表中选“Structural Mass”,在右侧列表中选“3D mass 21”,单击“Apply”按钮;再在左侧列表中选“Combination”,在右侧列表中选“Spring-damper14”,单击“Ok”按钮;单击对话框的“Close”按钮。 2)定义实常数:Main Menu→Preprocessor→Real Constants→Add/Edit /Delete。单击“Add”按钮,弹出对话框,在列表中选择“Type 1MASS21”,单击“OK”按钮,弹出对话框,在“MASSX”文本框中输入1,单击“OK”按钮;返回对话框,单击“Add”按钮,再次弹出对话框,在列表中选择“Type 2COMBIN14”,单击“OK”按钮,弹出图所示的对话框,在“K”文本框中输入10000,在“CV1”文本框中输入63,单击“OK”按钮;返回,单击“Close”按钮。

3、生成几何模型,划分网格 1)创建节点:Main Menu→Preprocessor→Modeling→Create→Nodes→In ActiveCS。弹出对话框,在“NODE”文本框中输入1,在“X,Y,Z”文本框中分别输入0,0,0,单击“Apply”按钮;在“NODE”文本框中输入2,在“X,Y,Z”文本框中分别输入1,0,0,单击“OK”按钮。 2)设置要创建单元的属性:Main Menu→Preprocessor→Modeling→Create →Elements→Elem Attributes。弹出对话框,选择“TYPE”为2COMBIN14,选择“REAL”为2,单击“OK”按钮。 3)创建弹簧阻尼单元:Main Menu→Preprocessor→Modeling→Create→Elements→Auto Numbered→Thru Nodes。弹出拾取窗口,拾取节点1和2,单击“OK”按钮。设置要创建单元的属性:拾取菜单Main Menu→Pre processor →Modeling→Create→Elements→Elem Attributes。弹出对话框,选择“TYPE”为1MASS21,选择“REAL”为1,单击“OK”按钮。 4)创建质量单元:Main Menu→Preprocessor→Modeling→Create→Elements

相关文档