文档库 最新最全的文档下载
当前位置:文档库 › 第四章简支梁设计计算

第四章简支梁设计计算

第四章简支梁设计计算
第四章简支梁设计计算

第四章 简支梁(板)桥设计计算

第一节 简支梁(板)桥主梁内力计算

对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。

对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为:

)(42

max

x l x l

M M x -=

(4-1) 式中:x M —主梁距离支点x 处的截面弯矩值;

m ax M —主梁跨中最大设计弯矩值;

l —主梁的计算跨径。

对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。

一 永久作用效应计算

钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的

永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。

在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。

对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。

对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。

得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。

下面通过一个计算实例来说明永久作用效应的计算方法。

例4-1:计算图4-1 所示标准跨径为20m 、由5片主梁组成的装配式钢筋混凝土简支梁桥主梁的永久作用效应,已知每侧的栏杆及人行道构件的永久作用为m kN /5。

160

纵剖面

横剖面

160160160

图4-1 装配式钢筋混凝土简支梁桥一般构造图(单位:cm )

解:(1) 永久作用集度

主梁:m kN g /76.90.25)]18.060.1)(2

14

.008.0(30.118.0[=?-++?= 横隔梁:

边主梁:m

kN g /63.050.19/}0.2552

16

.015.0)218.060.1()]214.008.0(

00.1{[2=??+?

-?+-= 中主梁:m kN g /26.1061.021

2=?=

桥面铺装层:m

kN g /67.35/]0.2400

.7)12.006.0(2

1

0.2300.702.0[3=??++??= 栏杆和人行道:m kN g /00.25/20.54=?= 作用于边主梁的全部永久作用集度为:

∑=+++==m kN g g i /06.1600.267.363.076.9

作用于中主梁的全部永久作用集度为:

m kN g /69.1600.267.326.176.9=+++='

(2)永久作用效应

边主梁弯矩和剪力的力学计算模型如图4-2(a) 和( b) 所示,则:

)(222x l gx x gx x gl M x -=?-?=

)2(2

2x l g

gx gl Q x -=-=

各计算截面的剪力和弯矩值列于表4-1。

边主梁永久作用效应 表4-1

(a)

g

=2

x

(b)

图4-2 永久作用效应力学计算模型

二 可变作用效应计算

公路桥梁的可变作用包括汽车荷载、人群荷载等几部分,求得可变作用的荷载横向分布系数(本章后叙)后,就可以具体确定作用在一根主梁上的可变作用,然后用工程力学方法计算主梁的可变作用效应。截面可变作用效应计算的一般计算公式为:

)()1(21Ω+??+=k k k q m y P m S ξμ汽 (4-2) Ω=人人q m S 2 (4-3)

式中:S —所求截面的弯矩或剪力;

)1(μ+—汽车荷载的冲击系数,按《公桥通规》规定取值;

ξ—多车道桥涵的汽车荷载横向折减系数,按《公桥通规》规定取用;

1m —沿桥跨纵向与车道集中荷载k P 位置对应的荷载横向分布系数;

2m —沿桥跨纵向与车道均布荷载k q 所布置的影响线面积中心位置对应的荷载横向分布系数,一般可

取跨中荷载横向分布系数c m ;

k P —车道集中荷载标准值; k

q —车道均布荷载标准值;

r q —纵向每延米人群荷载标准值;

k y —沿桥跨纵向与k P 位置对应的内力影响线最大坐标值;

Ω—弯矩、剪力影响线面积。

利用式(4-2)和式(4-3)计算支点截面处的剪力或靠近支点截面的剪力时,尚须计入由于荷载横向分布系数在梁端区段内发生变化所产生的影响,以支点截面为例,其计算公式为:

A A A Q Q Q ?+='

(4-4)

式中:'

A Q —由式(4-2)或式(4-3)按不变的c m 计算的内力值,即由均布荷载k c q m 计算的内力值;

A Q ?—计及靠近支点处荷载横向分布系数变化而引起的内力增(或减)值。 A Q ?的计算(见图4-3):

对于车道均布荷载情况,在荷载横向分布系数变化区段内所产生的三角形荷载对内力的影响,可用式(4-5)计算:

y q m m a

Q k c A ??-??+=?)(2

)1(0ξμ (4-5)

对于人群均布荷载情况,在荷载横向分布系数变化区段内所产生的三角形荷载对内力的影响,可用式(4-6)计算:

y q m m a

Q r c A ??-=

?)(2

0 (4-6) 式中:a —荷载横向分布系数m 过渡段长度;

q r —侧人行道顺桥向每延米的人群荷载标准值;

y —m 变化区段附加三角形荷载重心位置对应的内力影响线坐标值;

其余符号意义同前。

图4-3 支点剪力力学计算模型

下面通过一个计算实例来说明可变作用效应的计算方法。

例4-2:以例4-1所示的标准跨径为20m 的5梁式装配式钢筋混凝土简支梁桥为实例,计算边主梁在公路-II 级和人群荷载2

/0.3m kN q r =作用下的跨中截面最大弯矩、最大剪力以及支点截面的最大剪力。荷载横向分布系数可按表4-2中的备注栏参阅有关例题。

解:(1)荷载横向分布系数汇总

荷载横向分布系数 表4-2

(2)计算跨中截面车辆荷载引起的最大弯矩 按式(4-2)计算,其中简支梁桥基频计算公式为c

c

m EI l f 2

=

,对于单根主梁: 混凝土弹性模量E 取2

10/103m N ?,主梁跨中截面的截面惯性矩4066146.0m I c =,主梁跨中处的单位长度质量m kg m c /10995.03

?=,

831.510995.0066146

.01035.19214.323

1022

=?????==

c c m EI l f π

(Hz ), 根据表1-17,冲击系数296.00157.0ln 1767.0=-=f μ,

296.1)1(=+μ,

双车道不折减,1=ξ, 计算弯矩时,kN P k 5.178)]55.19(5

50180

360180[75.0=---+

?=,

m kN q k /875.7=,

按跨中弯矩影响线,计算得出弯矩影响线面积为: 22253.475.198

1

81m l =?==

Ω,

沿桥跨纵向与k P 位置对应的内力影响线最大坐标值875.44

==l

y k , 故得:

m

kN q m y P m M k c k k q l

?=??+????=Ω??+??+=72.867)53.47875.7538.0875.45.178538.0(1296.1)

()1(12

ξμ,

(3)计算跨中截面人群荷载引起的最大弯矩 m kN q m M r cr r l

?=???=Ω??=15.7353.47)75.00.3(684.02

(4)计算跨中截面车辆荷载引起的最大剪力

鉴于跨中剪力影响线的较大坐标位于跨中部分(见图4-4),可采用全跨统一的荷载横向分布系数c m 进行计算。

计算剪力时,kN P k 2.2145.1782.1=?= 影响线的面积m 438.25.05.192

1

21=???=Ω 故得:

kN Q q l

07.88)438.2875.7538.05.02.214538.0(1296.1

=??+????=,

区段的长度:m a 9.485.45.192

1

=-?=

影响线

公路-II 级

图4-5 支点剪力力学计算模型

对应于支点剪力影响线的最不利车道荷载布置如图4-5a 所示,荷载的横向分布系数图如图4-5b 所示。m 变化区段内附加三角形荷载重心处的剪力影响线坐标为:916.05.19/)9.43

15.19(1=?-?=y ,影响线面积为m 75.915.192

1

=?=

Ω。因此,按式(4-2) 计算,则得: kN

q m y P m Q k c k k q 13.175)75.9875.7538.00.12.214438.0(1296.1)()1(10

=??+????=Ω+??+='ξμ

附加剪力由式(4-5)计算:

kN

y q m m a

Q k c q 29.2916.0875.7)538.0438.0(1296.1)(2

)1(00

-=??-??=??-??+='?ξμ 由式(4-4),公路-II 级作用下,边主梁支点的最大剪力为:

kN Q Q Q q q q 84.17229.213.1750'

00=-=?+=

(7)计算支点截面人群荷载引起的最大剪力

由式(4-3)和式(4-6)可得人群荷载引起的支点剪力为:

916

.0)75.00.3()684.0422.1(9.42

1

75.9)75.00.3(684.0)(2

00???-??+???=?-+

Ω??=y q m m a

q m Q r c r c r

kN 73.18=

三 主梁内力组合和包络图

为了按各种极限状态来设计钢筋混凝土或预应力混凝土梁(板)桥,需要确定主梁沿桥跨方向关键截面的作用效应组合设计值(或称为计算内力值),可将各类荷载引起的最不利作用效应分别乘以相应的荷载分项系数,按《公桥通规》规定的作用效应组合而得到计算内力值。

例4-3:已知例4-1所示的标准跨径为20m 的5梁式装配式钢筋混凝土简支梁桥中1号边主梁的内力值最大,利用例4-1和例4-2的计算结果确定控制设计的计算内力值。

解:(1)内力计算结果汇总

内力计算结果 表4-3

(2)作用效应组合 结构重要性系数10=γ 1)作用效应基本组合时:

跨中弯矩:)4.18.04.12.1(0r cq cg c M M M M ??++=γ

m kN ?=??+?+??=78.2212)15.734.18.072.8674.14.7632.1(0.1

梁端剪力:)4.18.04.12.1(00000r q g Q Q Q Q ??++=γ

kN 82.450)73.184.18.084.1724.16.1562.1(0.1=??+?+??=

2)作用短期效应组合时,车辆荷载不计冲击力:

跨中弯矩:r cq cg c M M M M 0.17.0++=

m kN ?=?+?+=23.130515.730.154.6697.04.763

梁端剪力:r cq cg c Q Q Q Q 0.17.0++=

kN 68.26873.180.136.1337.06.156=?+?+=

3)作用长期效应组合时,车辆荷载不计冲击力: 跨中弯矩:r cq cg c M M M M 4.04.0++=

m kN ?=?+?+=48.106015.734.054.6694.04.763

梁端剪力:r cq cg c Q Q Q Q 4.04.0++=

kN 44.21773.184.036.1334.06.156=?+?+=

如果在梁轴线上的各个截面处,将所采用控制设计的各效应组合设计值按适当的比例尺绘成纵坐标,连接这些坐标点而绘成的曲线,称为效应组合设计值(或称为内力组合设计值)的包络图,如图4-6所示。一个效应组合设计值包络图仅反映一个量值(M 或V )在一种荷载组合情况下结构各截面的最大(最小)内力值,若有n 个需要计算的量值、m 种荷载组合,就有n ×m 个效应组合设计值包络图。在结构设计中,按所需验算的截面,依据效应组合设计值包络图得到该截面相应的量值,根据《公桥通规》规定进行相应的验算。对于小跨径梁(如跨径在10m 以下),如仅计算M L/2 以及 Q 0,则弯矩包络图可绘成二次抛物线,剪力包络图绘成直线形。

确定效应组合设计值包络图之后,就可按钢筋混凝土或预应力混凝土结构设计原理的方法设计梁内纵向主筋、斜筋和箍筋,并进行各种验算。

弯矩包络图

剪力包络图

图4-6 内力包络图

第二节 荷载横向分布计算

一 荷载横向分布计算原理

荷载横向分布计算所针对的荷载主要是活载,因此又叫做活载横向分布(distribution of live load )计算。下面先以单梁内力计算为例来说明梁式桥可变作用效应计算的特点。

如图4-7a 所示的单梁,用()x 1η表示梁上某一截面的内力影响线,可方便计算出该截面的内力值

()x P S 1η?=。这里()x 1η是一个单值函数,梁在XOZ 平面内受力和变形,它是一种简单的平面问题。对

于一座梁式板桥或者由多片主梁通过桥面板和横隔梁连接组成的梁桥,如图4-7b 所示,当桥上作用荷载P 时,由于结构的横向刚性必然会使所有主梁不同程度地参与工作,荷载作用的纵、横向位置不同,各梁所分担的荷载及其内力、变形也不同。鉴于结构受力和变形的空间性,求解这种结构的内力属于空间计算理论问题。空间计算理论的特点是直接求解结构上任一点的内力或挠度,也可如单梁计算中应用影响线那样,借助影响面来计算某点的内力值,如果结构某点截面的内力影响面用双值函数()y x ,η来表示,则该截面的内力值可表示为()y x P S ,η?=。

但是,用影响面来求解桥梁最不利的内力值,由于力学计算模型复杂,计算工作量大,因此空间计算方法目前在实际上应用较少。目前桥梁设计中广泛使用的方法是将复杂的空间问题合理转化成图4-7(a )所示简单的平面问题:首先从横桥向确定出某根主梁所分担的荷载,然后再沿桥纵向确定该梁某一截面的内力。这种方法的实质是将前述的影响面()y x ,η分离成两个单值函数的乘积,即()()y x 21ηη?,因此,对于某根主梁某一截面的内力值就可表示为

()()()x y P y x P S 12,ηηη??≈?= (4-7)

式中:()x 1

η是单梁其一截面的内力影响线(见图4-7(a) 。

如果将()x 2

η看作是单位荷载沿横向作用在不同位置时对某梁所分配的荷载比值变化曲线,也称为对

于某梁的荷载横向分布影响线,则()x P 2

η?就是当P 作用于a (x ,y )点时沿横向分布给某梁的荷载(图

4-7(b ),暂以P '表示,即()y P P 2

η?'=,这样,就可像图4-7(a )所示平面问题一样,求出某梁上

某截面的内力值,这就是利用荷载横向分布来计算内力的基本原理。

(a) 在单梁上 (b) 在梁式桥上

图4-7 荷载作用下的内力计算

在桥梁设计中,横向按照最不利位置布载,就可求得桥梁所受的最大荷载m

ax P ',定义P m P ?='max ,P 为轴重,则m 就称为活载横向分布系数(live-load distribution factor ),它表示某根主梁所承担的最大荷载是各个轴重的倍数(通常小于1)。

注意,上述将空间计算问题转化成平面问题的做法只是一种近似的处理方法,因为实际上荷载沿横向通过桥面板和多根横隔梁向相邻主梁传递时情况是很复杂的,原来的集中荷载传至相邻梁时就不再是同一纵向位置的集中荷载了。但是,理论和试验研究指出,对于直线梁桥,当通过沿横向的挠度关系来确定荷载横向分布规律时,由此而引起的误差是很小的。如果考虑到实际作用在桥上的荷载并非只是一个集中荷载,而是分布在桥跨不同位置的多个车轮荷载,那末此种误差就会更小。关于这个问题,将在下面的 “铰接板(梁)”中再作详细说明。

显然,同一座桥梁内各根梁的荷载横向分布系数m 是不相同的,不同类型的荷载(如车辆荷载、人群荷载)其m 值也各异,而且荷载在梁上沿纵向的位置对m 也有影响。这些问题将在本节以后内容中加以阐明。现在来分析桥梁结构具有不同横向连结刚度时,对荷载横向分布的影响。

图4-8表示由5根主梁所组成的梁桥的跨中横截面,承受的荷载为P 。图4-8a 表示主梁与主梁间没有任何联系的结构,此时如果中梁的跨中作用有集中力P ,则全桥中只有直接承载的中梁受力,该梁的荷载横向分布系数m =1。显然这种结构形式整体性差,很不经济。

中梁承受荷载P(m=1)

中梁承受荷载mp

中梁承受荷载

(a) 横向无联系 ( b) 0>>∞H EI (c) ∞→H EI

图4-8 不同横向刚度时主梁的变形和受力情况

如果将各主梁相互间借横隔梁和桥面刚性连结起来,并且设想横隔梁的刚度接近无穷大(如图4-8c ),则在同样的荷载P 作用下,由于横隔梁无弯曲变形,因此5根主梁将共同参与受力。此时5根主梁的挠度均相等,荷载P 由5根梁均匀分担,每梁只承受P /5,各粱的荷载横向分布系数m =0.2。

一般混凝土梁桥实际构造情况是:各根主梁通过横向结构联成整体,但是横向结构的刚度并非无穷大。因此,在相同的荷载P 作用下,各根主梁按照某种复杂的规律变形(如图4-8b ),此时中梁的挠度b w 必然要小于a w 而大于c w ,设中梁所受的荷载为mP ,则其荷载横向分布系数m 也必然小于1而大于0.2。

由此可见,桥上荷载横向分布规律与结构的横向连结刚度有着密切关系,横向连结刚度愈大,荷载横向分布作用愈显著,各主梁的分担的荷载也愈趋均匀。

在实际桥梁工程中,由于桥梁施工和构造的不同,混凝土梁式桥上可能采用不同类型的横向结构。因此,为使荷载横向分布的计算能更好地适应各种类型的结构特性,就需要按不同的横向结构采用相应的简化计算模型。目前常用的荷载横向分布计算方法有:

(1) 杠杆原理法——把横向结构(桥面板和横隔梁)视作在主梁上断开而简支在其上的简支梁; (2) 刚性横梁法——把横隔梁视作刚性极大的梁,也称偏心压力法。当计及主梁抗扭刚度影响时,此法又称为修正刚性横梁法(修正偏心压力法);

(3) 铰接板(梁)法——把相邻板(梁)之间视为铰接,只传递剪力; (4) 刚接梁法——把相邻主梁之间视为刚性连接,即传递剪力和弯短;

(5) 比拟正交异性板法——将主梁和横隔梁的刚度换算成两向刚度不同的比拟弹性平板来求解,并

由实用的曲线图表进行荷载横向分布计算。

上列各种实用的计算方法所具有的共同特点是:从分析荷载在桥上的横向分布出发,求得各梁的荷载横向分布影响线,通过横向最不利布载来计算荷载横向分布系数m 。有了作用于单梁上的最大荷载,就能按结构力学的方法求得主梁的可变作用效应值。

由于钢筋混凝土和预应力混凝土梁桥的永久作用一般比较大,即使在计算可变作用效应中会带来一些误差,但对于主梁总的设计内力来说,这种误差的影响一般是不太大的。

下面分别介绍各种荷载横向分布系数计算方法的基本原理并举例说明各自的计算过程。

二 杠杆原理法

(1)计算原理和适用场合

按杠杆原理法进行荷载横向分布计算的基本假定是忽略主梁之间横向结构的联系,即假设桥面板在主梁上断开,而当作沿横向支承在主梁上的简支梁或悬臂梁。

图4-9a 表示桥面板直接搁在工字形主梁上的装配式桥梁。当桥上有车辆荷载作用时,作用在左边悬臂板上的轮重P 1 /2只传递至1号和2号梁,作用在中部简支板上者只传给2号和3号梁(图4-9b ),板上的轮重P 1 /2各按简支梁反力的方式分配给左右两根主梁,而反力R i 的大小只要利用简支板的静力平衡条件即可求出,这就是通常所谓作用力平衡的“杠杆原理”。如果主梁所支承的相邻两块板上都有荷载,则该梁所受的荷载是两个支承反力之和,如图4-9b 中2号梁所受的荷载为'

'2'

22R R R +=。

(a)

b 2p 1p 1a (a+b)

R R 2

+(a+b)2R R 1==R 2=(b)

P 图4-9 按杠杆原理受力图式 图4-10 按杠杆原理计算横向分布系数

为了求主梁所受的最大荷载,通常可利用反力影响线来进行,此时,它也就是计算荷载横向分布影响线,如图4-10所示。有了各根主梁的荷载横向影响线,就可根据车辆和人群的最不利荷载位置求得相应的横向分布系数m oq 和m or ,如图4-10中所示。这里m ,表示按杠杆原理法计算的荷载横向分布系数,拼音字母的脚标q 和r 相应表示车辆荷载和人群荷载。

采用杠杆原理法计算时,应当计算几根主梁的横向分布系数,以便得到受载最大主梁的最大内力作为设计的依据。

对于一般多梁式桥,不论跨度内有无中间横隔梁,当桥上荷载作用在靠近支点处时,例如当计算支点剪力时,荷载的绝大部分通过相邻的主梁直接传至墩台。再从集中荷载直接作用在端横隔梁上的情形来看,虽然端横隔梁是连续于几根主梁之间的,但由于不考虑支座的弹性压缩和主梁本身的微小压缩变形,显然荷载将主要传至两个相邻主梁支座,即连续端横隔梁的支点反力与多跨简支梁的反力相差不多。因此,在实践中人们习惯偏于安全地用杠杆原理法来计算荷载位于靠近主梁支点时的荷载横向分布系数。

杠杆原理法也可近似地应用于横向联系很弱的无中间横隔梁的桥梁。但是这样计算得到的荷载横向分布系数,通常对于中间主梁会偏大些.而对于边梁则会偏小。对于无横隔梁的装配式箱形梁桥的初步设计,在绘制主梁荷载横向影响线时可以假设箱形截面是不变形的,故箱梁内的竖标值为等于l 的常数,如图4-11所示。

图4-11 无横隔梁装配式箱梁桥的主梁横向影响线

(2)计算举例

例4-4:图4-12a 为一桥面净空为净—7+2×0.75m 人行道的钢筋混凝土T 梁桥,共设5根主梁。试求荷载位于支点处时1号梁和2号梁相应于车辆荷载和人群荷载的横向分布系数。

当荷载位于支点处时,应按杠杆原理法计算荷载横向分布系数。

首先绘制1号梁和2号梁的荷载横向影响线,如图4-12b 和c 所示。再根据《公桥通规》规定,在横向影响线上确定荷载沿横向最不利的布置位置,求出相应于荷载位置的影响线竖标值后,就可得到横向所有荷载分布给1号梁的最大荷载值为:

车辆荷载 q q q q

q q q P P P P A 438.02875

.02

2

max 1=?=

?=

?=∑∑

η

η

人群荷载

or

r r r p P A 422.175.0m ax 1=??=η

()2号梁横向影响线

图4-12 杠杆原理法计算荷载横向分布系数(单位:cm )

式中:q

P 和or

p 相应为汽车车轮轴重和每延米跨长的人群荷载集度;q

η和r

η为对应于汽车车轮和人群荷载

集度的影响线竖标。由此可得1号梁在车辆荷载和人群荷载作用下的最不利荷载横向分布系数分别为

422.1438.0==or

oq

m m 和。

同理从图4-12c ,计算可得2号梁的最不利荷载横向分布系数为5.0=oq m 和0=or m 。这里,在人行道上没有布载,这是因为人行道荷载引起负反力,在考虑荷载组合时反而会减小2号梁的受力。

各根主梁的横向分配系数可能不一样,通常就取0m 最大的这根梁按常规方法来计算截面内力。 对横向分布影响线加载时必须注意:车辆的横向布置必须符合规范要求,如车间距、车辆至边距离等;车辆的q m 中已含车道数n ;当某轮位于影响线外时,取ηi = 0。

三 刚性横梁法

在钢筋混凝土或预应力混凝土梁桥上,通常除在桥的两端设置横隔梁外,还设置中间横隔梁,这样可以显著增加桥梁的整体性,并加大横向结构的刚度。根据试验观测结果和理论分析,在具有可靠横向联结的桥上,且在桥的宽跨比B/L 小于或接近于0.5(一般称为窄桥)的情况时,车辆荷载作用下中间横隔梁的弹性挠曲变形同主梁的弹性挠曲变形相比较小,中间横隔梁像一根刚度无穷大的刚性梁一样保持直线的形状,如图4-13所示,图中w 表示梁跨中央的竖向挠度。鉴于横隔梁无限刚性的假定,此法称“刚性横梁法”,从桥上受荷载后各主梁的变形规律来看,它完全类似于一般材料力学中杆件偏心受压的情况,也

从图4-13中可见,在偏心荷载P 作用下,由于各根梁的挠曲变形,刚性的中间横隔梁将从原来的c -d 位置变位至c '-d ',呈一根倾斜的直线;靠近P 的1号边梁的跨中挠度1w 最大,远离P 的5号边梁的5w 最小(也可能出现负值),其它任意梁的跨中挠度均按c '-d '线呈直线规律分布。根据在弹性范围内,某根主梁所受到的荷载R i 与该荷载所产生的弹 性挠度i w 成正比的原则,由此可以得出结论:在中间横隔梁刚度相当大的窄桥上,在沿横向偏心布置的荷载作用下,总是靠近荷载一侧的边梁受载最大。

为了计算1号边梁所受的荷载,考察图4-14所示在跨中有单位荷载P=1作用在左边1号梁轴上(偏心距为e )时的荷载分布情况。假定各主梁的惯性矩I i 是不相等的(实践中往往有边梁大于中间主梁的情况)。显然,对于具有近似刚性中间横隔梁的结构,图4-14a 的荷载可以用作用于桥轴线的中心荷载P=1和偏心力矩M =1·e 来替代,如图4-14b 所示。因此,只要分别求出在上述两种荷载下(图4-14c 和d )对各主梁的作用力,并将它们相应地叠加,便可得到偏心荷载P =1对各根主梁的荷载横向分布。

1)中心荷载P =1的作用

由于假定中间横隔梁是刚性的,且横截面对称于桥中线,在中心荷载的作用下,各根主梁就产生同样的挠度(图4-14c),即:

==''

21w w ·i n w w '='=

根据材料力学,不计主梁抗剪刚度,作用于简支梁跨中的荷载(即主梁所分担的荷载)与挠度的关系为:

i

i i

EI l R w 483''=

或 '

'=i i i w I R α (4-8) 式中:3

48l E

α=常数(E 为主梁材料的弹性模量)。 由静力平衡条件并代入式(4-8),可得

11

1

=∑∑==n j j

i

n

j j I

w R ''

=α

∑=n

j j

i I

w 1

1

'α

将上式代入式(4-8),得中心荷载P=1在各主梁间的荷载分布为

∑==

n

j j

i

i I

I R 1

' (4-9)

例如,对于1号梁

∑==

n

j j

I

I R 1

1

1'

式中:1I —1号梁(边梁)的抗弯惯性矩;

∑=n

j j

I

1

—桥梁横截面内所有主梁抗弯惯性矩的总和,对于已经确定的桥梁横截面,它是常数;

n —主梁根数。

如果各主梁的截面均相同,则得:

=''=21R R ·n

R n 1=='

图4-14 偏心荷载P=1对各主梁的荷载分布图

2)偏心力矩e M ·

1=的作用 在偏心力矩e M · 1=作用下,会使桥的横截面产生绕中心点O 转角?(图4-14d ),因此各根主梁产

生的竖向挠度i w ''可表示为

?tg a w i i ='' (4-10)

由式(4-8),主梁所受荷载与挠度的关系为:

''''i i i w I R α=

将式(4-10)代入上式得

i i i i i I a I a tg R β?α=='' )(?αβtg = (4-11)

从图4-14d 中可知,当不计主梁抗扭作用时,

'

'i R 对桥的截面中心点o 所形成的反力矩之和应与外力

矩e M ·

1=平衡,故据此平衡条件并利用式(4-11)可得 e I a a R j n

j j j

n

j j ?==∑∑==1·

1

21'

则 ∑=n

j j

j

I a

e

1

2

β (4-1

2)

式中:

++=∑=2221211

2I a I a I a

j n

j j

·n n I a 2

+,对于已经确定的桥梁截面,它是常数。

将式(4-12)代入式(4-11),得偏心力矩e M ·

1=作用下各主梁所分配的荷载为: ∑=''n

j j

j

i

i i I a

I ea R 1

2

(4-13)

3)偏心荷载P =1对各主梁的总作用

将式(4-9)和式(4-13)相叠加,并设荷载位于k 号梁轴上(k

a e =),就可写出任意i 号主梁荷载

分布的一般公式为

∑∑==+

=

n

j j j i

k i n

j j

i

ik I a I a a I I R 12

1

(4-14)

式中:ik R 的第2个脚标表示荷载作用位置,第1个脚标则表示由于该荷载引起反力的梁号;

注意,上式中的荷载位置k a 和梁位i a 位于同一侧时两者的乘积取正号,反之应取负号。

C++ 科学计算器-课程设计报告

DONGFANG COLLEGE,FUJIAN AGRICULTURE AND FORESTRY UNIVERSITY 课程名称:堆栈计算器 系别:计算机 年级专业:11级计算机科学与技术 学号:1150303040 姓名:蔡新云 任课教师:林励成绩: 2013 年 6 月13 日

引言 堆栈计算器 简介: 计算带括号的数学算式,可以判断优先级,错误判断等功能。友好的操作界面,美观的视觉效果。 截图 界面: 计算演示: 结果:

错误判断: 数据结构:应用了栈,做数值缓存,应用了递归处理括号内算式。其他知识:mfc界面设计;c++类的封装(.h与.cpp分离)。 编译环境:使用了vs2012,通过修改vs2010也可以打开。

程序简单流程图: (注:eval 的代码在下面。。。) 功能实现原理与代码: //栈的实现 //初始化 stack::stack(int len) { lengh=len; date=new double[len]; date[0]=0; top=0; } stack::stack() { date=new double[100]; MFC 文本框 按钮事件 = 事件 Cal.eval() 调用函数eval(),返回结果到文本框 当 =事件 发生 从文本框取出表达式到eval ()函数

date[0]=0; top=0; } //判断为空 bool stack::is_empty() { if(top==0) { return true; } return false; } //进栈 void stack::push(double number) { date[top++]=number; } //出栈 double stack::pop() { if(!is_empty()) return date[--top]; } //calculator类(核心代码) 初始化 calculator::calculator() { error="null"; } 是否为数字 bool calculator::is_num(char num) { if(num<='9' && num>='0'||num=='.') { return true; }

第四章混凝土简支梁桥的计算

第四章混凝土简支梁桥的计算 习题 一、填空题: 1、设置横隔梁的作用:。 2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:。 3、偏压法计算横隔梁内力的力学模型是:。 二、名词解释: 1、荷载横向分布影响线 2、板的有效分布宽度 3、预拱度 4、单向板 三、简答题: 1、偏心压力法计算荷载横向分布系数的基本假定和适用条件。 2、杠杆原理法计算荷载横向分布系数的基本假定和适用条件。 3、试述荷载横向分布计算的铰接板法的基本假定和适用条件。 4、设计桥梁时,为什么要设置预拱度,如何设置? 四、计算题: 1、如图所示T梁翼缘板之间为铰接连接。试求该行车道板在公路—Ⅰ级荷载作用下的计算内力,已知铺装层的平均厚度12cm,容重22.8kN/m3,T梁翼缘板的容重为25kN/m3。(依《桥规》,车辆荷载的前轮着地尺寸a1=0.2m,b1=0.3m,中、后轮着地尺寸a1=0.2m,b1=0.6m) 2、某五梁式简支梁桥,标准跨径25.0m,计算跨径为24.20m,两车道,设有六道横隔梁(尺寸如图所示),设计荷载为公路—Ⅱ级荷载,已求得2#主梁的跨中及支点截面的横向分布系数分别为m cq=0.542、m oq=0.734,。试求: 1)画图说明2#梁的横向分布系数沿跨径的一般变化规律。 2)在公路—Ⅱ级荷载作用下,2#梁的跨中最大弯矩及支点最大剪力。 答案 一、填空题: 1、设置横隔梁的作用:保证各根主梁相互连接成整体,共同受力。 2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:全部恒载和一半静活载所产生的竖向挠度值。 3、偏压法计算横隔梁内力的力学模型是:将桥梁的中横隔梁近似的视做竖向支承在多根弹性主梁的多跨弹性支承连续梁。

预应力混凝土简支梁桥毕业设计

目录 第一章 1.1 选题背景.................................................... - 3 - 1.2 工程概况................................................... - 3 - 1.2.1 概况.................................................. - 3 - 1.2.2 自然条件情况.......................................... - 3 - 1.3 技术指标和技术依据.......................................... - 4 - 1.3.1 技术指标.............................................. - 4 - 1.3.2 技术依据............................................... - 4 - 本设计主要依据为现行技术规范和标准:......................... - 4 - 1.4 结构形式.................................................... - 4 - 1.5主要材料..................................................... - 5 - 第 2 章上部结构设计................................................ - 6 - 2.1设计资料..................................................... - 7 - 2.2构造形式及尺寸选定........................................... - 7 - 2.3空心板毛截面几何特性计算..................................... - 7 - 2.3.1 毛截面面积A ........................................... - 7 - 2.3.2 毛截面重心位置......................................... - 9 - 2.3.3 空心板毛截面对其重心轴的惯性矩I....................... - 9 - 2.4作用效应计算................................................ - 10 - 2.4.1 永久作用效应计算...................................... - 10 - 2.4.2 可变作用效应计算.......................... 错误!未定义书签。 2.5 作用效应组合............................................... - 12 - 2.6 预应力钢束的估算及布置..................................... - 23 - 2.6.1 预应力钢筋数量的估算.................................. - 23 - 2.6.2 预应力钢筋的布置...................................... - 23 - 2.7 普通钢筋数量的估算及布置................................... - 26 - 2.8 主梁几何特性计算........................................... - 26 - ............................ - 30 - 2.9.1 预应力钢筋张拉控制应力 con 2.9.2 钢束应力损失......................................... - 30 - 2.10 承载能力(强度)极限状态的验算........................... - 30 - 2.10.1 跨中截面正截面抗剪承载力计算........................ - 36 - 2.10.2 斜截面抗剪承载力计算.................... 错误!未定义书签。 2.10.3 斜截面抗弯承载力.................................... - 36 - 2.11 正常使用极限状态验算..................................... - 40 - 2.11.1 抗裂性验算........................................... - 40 - 2.12 主梁变形验算............................................. - 41 - 2.12.1 荷载短期效应作用下主梁挠度验算...................... - 43 - 2.12.3 预拱度的设置............................ 错误!未定义书签。 2.13 持久状况应力验算......................................... - 44 - 2.1 3.1 短暂状况的正应力验算................................ - 45 - 2.1 3.2 持久状况的正应力验算................................ - 45 - 2.1 3.3 持久状况下混凝土主应力验算.............. 错误!未定义书签。

科学计算器壳套模具设计

二、注射机的选择 塑件:科学计算器壳套 重量: 材料:ABS 材料密度:~cm3,取密度为cm3。 体积:V=M/ρ==。 ABS 注塑模工艺条件 注射机类型:螺杆式注射机。 干燥处理:吸湿性较大,成型前应干燥处理,湿度应小于%,建议干燥条件为80~85℃, 2~3小时。 熔化温度:230~300℃。 模具温度:50~80℃。 注射压力:70~100MPa 。 注射速度:中等注射速度,将摩擦热降至最低。 型腔数的选择 按生产进度算: 型腔数n= 其中 ——故障系数; ——成型周期 N ——一副模具的订货量; ——所在厂每月工作时间(h); ——订货至交货 期(月); ——模具制造时间(月)。 由于计算器壳套的体积较大,需要的注射量较大,所以模具选用一模两腔。 注射机的选择 最大注射量 根据生产经验总结,在设计模具以容量计算时 ——注射机最大注射量,cm3; 0*1.053600() c h m N t t t t ?-c t h t 0t max V 0.8V ≤塑

——塑件与浇注系统体积总和,cm3。 ——塑件成型时所需要的注射量,cm3或g ; n ——型腔个数; ——每个塑件的质量或体积,cm3或g ; ——浇注系统的质量或体积,cm3或g 。 浇注系统凝料体积初步计算,按塑件体积倍计算。 代入产品体积,浇注系统体积,型腔数为4个。 则 3345.8830.882.13(4cm cm G =+?=)塑 3max 56.1108.045.888.0cm G G =÷=÷=塑 公称注射容量 注射机多以公称注射容量来表示 c ——料筒温度下塑料的体积膨胀率的矫正系数,对于结晶形塑料,c=;对于非结晶形 塑料,c=; ——所用塑料在常温下的密度; G ——注射机的公称注射容量。 代入 3/05.1cm g =ρ, 取c=; 则 3max 96.107)05.193.0/(56.110/cm c G G =?==ρ。 锁模力 模具从分型面涨开的力必须小于注射机规定的锁模力 T ——注射机的额定锁模力; F ——塑件与浇注系统在分型面上的总投影面积; K ——安全系数,通常取~; q ——熔融塑料在模腔内的压 力,. 代入数据, 22237.15855.34cm cm F =??=π 根据《塑料成形模具设计》表4-1,取q=300 G =n *M +M 塑塑浇 max G c G ρ=1000 T K F q ≥??2/kg cm 2 /kg cm

混凝土简支梁桥的计算

第四章混凝土简支梁桥的计算 一、填空题: 1、设置横隔梁的作用:。 2、为消除梁桥的恒载挠度而设置预拱度,其值通常取为:。 3、偏压法计算横隔梁内力的力学模型是:。 二、名词解释: 1、荷载横向分布影响线 2、板的有效分布宽度 3、预拱度 4、单向板 三、简答题: 1.行车道板的定义是什么?其作用是什么? 2.单向板的定义是什么?其结构受力计算要求是什么? 3.自由端悬臂板的定义是什么?其结构受力计算要求是什么? 4.铰接端悬臂板的定义是什么?其结构受力计算要求是什么? 5.行车道板上的车轮荷载作用面是由有哪三条假定进行分布的? 6.板的有效工作宽度的定义是什么? 7.试写出多跨连续单向板弯矩计算的步骤? 8.试写出铰接悬臂板悬臂根部最大弯矩计算的步骤? 9.主梁结构重力的内力计算有哪两点基本假定? 10.荷载横向分布系数的定义是什么? 11.杠杆原理法的基本假定是什么?该方法的适用范围如何? 12.试写出杠杆原理法计算荷载横向分布系数的步骤? 13.偏心压力法的基本假定是什么?该方法的适用范围如何? 14.试写出偏心压力法计算荷载横向分布系数的步骤? 15.修正偏心压力法的基本假定是什么? 16.两种偏心压力法对边梁或中梁计算的荷载横向分布系数值,在定性上有何异同? 17.荷载横向分布系数沿桥跨变化的条件与特征各是什么? 18.桥跨上恒载、活载产生的挠度各有何特性?何谓预拱度? 19.试述荷载横向分布计算的铰接板法的基本假定和适用条件? 20.设计桥梁时,为什么要设置预拱度,如何设置? 四、计算题: 1、如图所示T梁翼缘板之间为铰接连接。试求该行车道板在公路—Ⅰ级荷载作用下的计算内力,已知铺装层的平均厚度12cm,容重22.8kN/m3,T梁翼缘板的容重为25kN/m3。(依《桥规》,车辆荷载的前轮着地尺寸a1=0.2m,b1=0.3m,中、后轮着地尺寸a1=0.2m,b1=0.6m)

非标自动化设计

非标自动化设计 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

1、自动化非标设备机械结构设计、材料选用,标准部品选型、成本分析; 2、给电气工程师提供动作流程; 3、指导安装工程师进行设备的装配调试; 4、整理技术竣工资料。 职位要求: 1、机械专业、正规院校本科及以上学历,能阅读英文产品资料,年龄25-40。 2、具备独立设计能力,有3-5年非标设备、工装夹具设计经验,熟悉机械原理,熟练掌握气动、液压、伺服等传动系统设计,熟悉机械加工工艺,精通计算机辅助设计。 3、具备现场安装调试经验。 4、对所应聘的岗位有浓厚兴趣,工作认真负责,严谨细致,学习新技术能力强,有良好的创新精神和团队协作能力。 大专以上学历,自动化专业,熟练应用C++语言和PLC编程;三年以上相关工作经验. 机械工程及自动化的发展前景如何 答:我说几点你考虑一下: 1)机械工程及自动化是用机械化代替人的繁重劳动的一门专业;

2)中国的打工潮有人预测在二十年要消失,城市劳动力靠机械自动化解决; 3)中国机械工业自动化落后于发达国家三十年---五十年。 机械工程及自动化(M e chanical engineering and automation )机械工程的服务领域很广,凡使用机械、工具,以至能源和材料生产的部门,无不需要机械工程的服务。现代机械工程有5大服务领域:①研制和提供能量转换机械,包括将热能、化学能、原子能、电能、流体压力能和天然机械能转换为适合于应用的机械能的各种动力机械,以及将机械能转换为所需要的其他能量的能量变换机械。②研制和提供用以生产各种产品的机械,包括农、林、牧、渔业机械和矿山机械以及各种重工业机械和轻工业机械等。③研制和提供从事各种服务的机械,如,交通运输机械,医疗机械,办公机械,通风、采暖和空调设备以及除尘、净化、消声等环境保护设备等。④研制和提供家庭和个人生活用的机械,如洗衣机、电冰箱、钟表、照相机、运动器械和娱乐器械等。⑤研制和提供各种机械武器。 机械加工(包括铸造、锻压、焊接、热处理等技术及其设备以及切削加工技术和机床、刀具、量具等) 学科内容 机械工程的学科内容,按工作性质可分为以下方面:①建立和发展可实际和直接应用于机械工程的工程理论基础。如工程力学、流体力学、工程材料学、材料力学、燃烧学、传热学、热力学、摩擦学、机构学、机械原理、机械零件、金属工艺学和非金属工艺学等。②研究、设计和发展新机械产品,改进

简支梁桥毕业设计

第一章设计方案比选 1.1 设计资料 青岛高新区科技大道桥:规划河道宽度76m,河底标高-0.05m,设计洪水水位高程2.45m,河岸标高3.5m;设计洪水频率1/100,桥下不通航,不需考虑流冰;双向4车道,设计时速60km/h,设计荷载为公路I级;地震烈度为6度。 1.2 方案编制 初步确定装配式预应力混凝土简支T梁桥、钢筋混凝土拱桥、等截面预应力混凝土连续梁桥三种桥梁形式。 (1)装配式预应力混凝土简支T形梁桥 图1-1 预应力混凝土简支T形梁桥(尺寸单位:cm) 孔径布置:26m+26m+26m,桥长78米,桥宽2×12m(分离式)。桥面设有1.5%的横坡,不设纵坡,每跨之间留有4cm的伸缩缝。 结构构造:全桥采用等跨等截面预应力T形梁,主梁间距2.4m。预制T梁宽1.8m,现浇湿接缝0.6m,每跨共设10片T梁,全桥共计30片T梁。 下部构造:桥墩均采用双柱式桥墩,基础为钻孔灌注桩基础,桥台采用重力式U形桥台。 施工方法:主梁采用预制装配式施工方法。 (2)钢筋混凝土拱桥 图1-2 钢筋混凝土拱桥(尺寸单位:cm)

孔径布置:采用单跨钢筋混凝土拱桥,跨长78m。 结构构造:桥面行车道宽15m,两边各设1.5m的人行道,拱圈采用单箱多室闭合箱。 下部构造:桥台为重力式U形桥台。 (3)装配式预应力混凝土连续梁桥 图1-3 预应力混凝土连续梁桥(尺寸单位:cm) 孔跨布置:24m+30m+24m,桥长78m,桥面宽18m(整体式),设有2m的中间带,桥面设有1.5%的横坡,其中中间标高高于外侧标高。 主梁结构:上部结构为等截面板式梁。 下部结构:上、下行桥的桥墩基础是连成整体的,全桥基础均采用钻孔灌注摩擦桩,桥墩为圆端型形实体墩。 施工方案:全桥采用悬臂节段浇筑施工法。 1.3 方案比选 表1-1 方案比选表

计算机科学与技术专业课程设计

专业教育 ─我所认识的计算机专业 1.对专业的最初认识 1.1为什么选择计算机专业 计算机使当代社会的经济、政治、军事、科研、教育、服务等方面在概念和技术上发生了革命性的变化,对人类社会的进步已经并还将产生极为深刻的影响。目前,计算机是世界各发达国家激烈竞争的科学技术领域之一。 随着信息时代的到来,计算机逐渐成为技术及科学领域的核心。随着计算机的普及,其应用领域逐渐广泛,深刻影响着我们的学习,工作及生活。因而,计算机的学习与我们的生活息息相关。 1.2最初的认识 虽然对于这个专业刚开始的时候不了解它具体是干什么的,但是从小就对于计算机十分感兴趣,因此在高考完填报志愿时就报了这个专业。进入大学之后,看到培养计划发现这个专业应用还是挺多的,但是因此让自己更加的对以后的职业感到很迷茫,不知道究竟是该干什么了。但是既来之,则安之。相信在以后的学习过程中会慢慢地找到方向,并为之努力的。因此说对于计算机专业还是抱有很大的热情的。 2.学习的方法 2.1培养对专业的兴趣 俗话说兴趣是最好的老师,因此要想真正做好一件事情,学好自己的专业首先就要培养自己对本专业的兴趣。那么应该如何培养呢?可能阅读专业书籍对于刚刚步入大学的自己来说有点困难,也很枯燥,那么不妨先从科普书籍看起。科普书籍是了解理论、获得应用知识最好的途径。相信不少理工科的同学被量子物理和相对论搞得头昏脑胀过。究其原因,是我们的现实生活与抽象的数学模型之间存在思想意识上的鸿沟。然而要是读读斯蒂芬·霍金的《时间简史》,你就会被书中有趣的故事和例证所吸引,从而对抽象的理论有了感性的认识——即使仍然没有读懂,你也至少了解了这个学科研究的领域和目标是什么,也必然有所收获。 2.2认真学习专业课程,学好数学 大学计算机专业对数学的要求较高,其重要性不必多言。数学令不少同学头痛,除了其“繁”与“难”外,很大程度上是因为他们没有理解这些抽象理论的实际应用方向。与本科数学专业的课程设置相比,计算机专业的数

简支梁桥的设计计算

简支梁桥的设计计算 1.车轮荷载在板上是如何分布的? 答:作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,但为了便于计算,通常把接触面看错矩形,作用在桥面上的车轮荷载,与桥面的接触面近似于椭圆,为便于计算,把此接触面看作的矩形。车轮荷载在桥面铺装层中呈450角扩散到行车道板上。 2.梁桥横向力计算时,杠杆法的基本原理和使用条件是什么? 答:杠杆法基本原理是忽略了主梁之间横向结构的联系作用,即假设桥面班在主梁上断开,把桥面板看作沿横向支承在主梁上的简支梁获简支单悬臂梁。 杠杆法的适用条件:(1)双肋式梁桥;(2)多梁式桥支点截面 3.杠杆法计算荷载横向分布系数的步骤是什么? 答:(1)绘制主梁的荷载反力影响线; (2)确定荷载的横向最不利的布置; (3)内插计算对应于荷载位置的影响线纵标ηi ; (4)计算主梁在车道荷载和人群荷载作用下的横向分布系数; 4.多跨连续单向板的内力计算时,计算弯矩和剪力有哪些需要注意的地方? 答: 1.弯矩首先计算出跨度相同的简支板在恒载和活载作用下的跨中弯矩M0,再乘以相应的修正系数,得支点、跨中截面的设计弯矩,弯矩修正系数可根据板厚t和梁肋高度h的比值(即主梁的抗扭能力的大小)来选用。 2.剪力计算单向板支点剪力时,一般不考虑板和主梁的弹性固结作用,荷载应尽量靠近梁肋边缘布置。计算跨径取用梁肋间的净跨径。考虑相应的有效工作宽度沿桥梁跨径方向的变化,计算出荷载强度q和q',将每米板宽承受的分布荷载分为矩形部分A1 和三角形部分A2 。对于跨内只有一个车轮荷载的情况,由恒载及活载引起的支点剪力Qs为:如行车道板的跨径内不只一个车轮进入时,需计及其它车轮的影响。 5.桥梁支座必须满足那些方面的要求? 答:(1)首先具有足够的承载力(包括恒载和活载引起的竖向力和水平力),以保证安全可靠地传递支座反力;

预应力混凝土简支梁桥的毕业设计(25m跨径)

目录 《桥梁工程》课程设计任务书---------------------------------------------2 桥梁设计说明------------------------------------------------------------------3 计算书---------------------------------------------------------------------------4 参考文献------------------------------------------------------------------------24 桥梁总体布置图---------------------------------------------------------------25 主梁纵、横截面布置图-----------------------------------------------------26 桥面构造横截面图-----------------------------------------------------------27

《桥梁工程》课程设计任务书 一、课程设计题目(10人以下为一组) 1、钢筋混凝土简支梁桥上部结构设计(标准跨径为25米,计算跨径为24.5米,预制梁长 为24.96米,桥面净空:净—8.5+2×1.00米) 二、设计基本资料 1、设计荷载:公路—Ⅱ级,人群3.0KN/m2,每侧栏杆及人行道的重量按4.5 KN/m计 2、河床地面线为(从左到右):0/0,-3/5,-4/12,-3/17,-2/22, -2/27,0/35(分子为高程,分母为离第一点的距离,单位为米);地质假定为微风化花岗岩。 3、材料容重:水泥砼23 KN/m3,钢筋砼25 KN/m3,沥青砼21 KN/m3 4、桥梁纵坡为0.3%,桥梁中心处桥面设计高程为2.00米 三、设计内容 1、主梁的设计计算 2、行车道板的设计计算 3、横隔梁设计计算 4、桥面铺装设计 5、桥台设计 四、要求完成的设计图及计算书 1、桥梁总体布置图,主梁纵、横截面布置图(CAD出图) 2、桥面构造横截面图(CAD出图) 3、荷载横向分布系数计算书 4、主梁内力计算书 5、行车道板内力计算书 6、横隔梁内力计算书 五、参考文献 1、《桥梁工程》,姚玲森,2005,人民交通出版社. 2、《梁桥》(公路设计手册),2005,人民交通出版社. 3、《桥梁计算示例集》(砼简支梁(板)桥),2002,人民交通出版社. 4、中华人民共和国行业标准.公路工程技术标准(JTG B01-2003).北京:人民交通出版社,2004 5、中华人民共和国行业标准.公路桥涵设计通用规范(JTG D60-2004)含条文说明.北京:人民交通出版社,2004 6、中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)含条文说明 六、课程设计学时 2周

科学计算器课程设计报告C课程设计修订稿

科学计算器课程设计报告C课程设计 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

计算机科学与技术学部 C++课程设计 题目科学计算器 学部计算机科学与技术 班级计科1103 指导教师李军 姓名刘明 学号 2012年6月27日

摘要 计算器的产生和发展是建立在电子计算机基础之上的。硬件方面,自1946年第一台电子计算机诞生以来,计算机技术的发展可谓日新月异,从庞大的只能在实验室里供研究使用的计算机到如今能适应不同环境满足不同需求的各种各样的计算机;运算速度从每秒几千次到每秒几百亿次;处理器从焊有上百万个电子管的大的惊人的电子板到只有指甲大小的集成电路;现在计算机在硬件方面的发展已达到了每三个月更新换代一次的惊人速度。软件方面,也已从机器语言、汇编语言、高级语言发展到现如今的第四代语言——非结构化、面向对象、可视化的语言。 在这个计算器里面,我们实现了简单的四则运算以及更高功能的科学计算,它的外观简洁美观,使人们能快捷简单的操作。能准确的得到计算结果,大大减少了数字计算所需要的时间,为人们的生活带来便利。此系统在Windows 7环境下,使用VC++ 进行编写。 简单计算器包括双目运算和单目运算功能,双目运算符包含基本的四则运算及乘幂功能,单目运算符包含正余弦,对数,开方,阶乘,倒数,进制转换等运算。可对其输入任意操作数,包括小数和整数及正数和负数进行以上的所有运算并能连续运算。并且包含清除,退格功能等。我们所做的计算器其功能较Windows 7下的计算器还是很不够多,没有其菜单的实现功能项,没有其小巧的标准计算器。 关键词:计算器;运算;VC++等

简支梁桥设计

桥梁工程课设——简支梁桥设计 1. 基本设计资料 1) 跨度和桥面宽度 (一) 标准跨径:35m (墩中心距)。 (二) 计算跨径:34.5m (三) 主梁全长:34.96m (四) 桥面宽度:净14m (行车道)+2×1m (人行道) 2) 技术标准 设计荷载:公路—I 级,人群荷载为23m KN 。 设计安全等级:一级。 3) 主要材料 (一) 混凝土:混凝土简支T 形梁及横梁采用C40混凝土,容重为3 26m KN ; 桥面铺装为厚0.065~0.17m 的防水混凝土,容重为325m KN 。 (二) 钢材:采用R235钢筋、HRB400钢筋。 4) 构造形式及截面尺寸(见图1-1和1-2) 如图所示,全桥共由9片主梁组成,单片T 形梁高为2m ,宽为1.6m ,桥上 横坡为双向1.5%,坡度由混凝土桥面铺装控制;设有五根横梁。 图1-1 桥梁横断面图

图1-2 主梁纵断面图 2. 主梁的荷载横向分布系数计算 1) 跨中荷载横向分布系数计算 如前所述,本例桥跨内设有5道横隔梁,具有可靠横向连接,且承重结构的宽跨比为:5.0464.05.3416≤==l B ,故可以按照修正的刚性横梁法来绘制横向影响线和计算横向分布系数c m 。 (一) 计算主梁的抗弯和抗扭惯性矩I 和T I 计算主梁截面的重心位置x 翼缘板厚按平均厚度计算,其平均板厚为 cm h 13)1610(2 1 1=+?=

则,cm x 8.7020 20013)20160(10020200213 13)20160(=?+?-??+? ?-= 主梁抗弯惯性矩I 为 4 23238.24294296)8.70100(2002020020121)2138.70(13)20160(13)20160(121cm I =? ?? ???-??+??+-??-+?-?=对于T 形梁截面,抗扭惯性矩可近似按下式计算: i i m i i T t b c I ∑==1 式中 i b ,i t ——单个矩形截面的宽度和高度; i c ——矩形截面抗扭刚度系数,由表2-1可以查的 T I 的计算过程及结果见表2-2 既得4310825.5m I T -?= (二) 计算抗扭修正系数β 对于本例,主梁间距相同,将主梁近似看成等截面,则得 9682.06.153243.01210 825.5425.05.34911 12113 22 2=??????+=+ = -∑E E a EI GI nl i T β (三) 按修正偏心压力法计算横向影响线竖坐标值

简支梁桥设计计算

T 形简支梁桥 1.设计名称:天河简支梁设计 2.设计资料及构造布置 2.1.桥面跨径及桥宽 标准跨径:该桥为二级公路上的一座简支梁桥,根据桥下净空和方案的经济比较,确定主梁采用标准跨径为20m 的装配式钢筋混凝土简支梁桥。 计算跨径:根据梁式桥计算跨径的取值方法,计算跨径取相邻支座中心间距为19.5m. 桥面宽度:横向布置为 净-7(行车道)+2×0.75m (人行道)+2×0.25(栏杆) 桥下净空: 4m 混凝土:主梁采用C25 主梁高:取1.5m. 主梁梁肋宽:为保证主梁抗剪需要,梁肋受压时的稳定,以及混凝土的振捣质量,通常梁肋宽度为15cm -18cm ,鉴于本桥跨度16m 按较大取18cm 2.2.设计依据 (1)《公路桥涵设计通用规》 (JTGD60-2004) (2)《公路钢筋混凝土预应力混凝土桥涵设计规》(JTGD62-2004) (3)《桥梁工程》 (4)《桥梁工程设计方法及应用》 3荷载横向分布系数计算书 3.1主梁荷载横向分布系数计算 3.1.1①跨中荷载横向分布系数 a.计算主梁的抗弯及抗扭惯性矩I X 和I TX 利用G -M 法计算荷载横向分布系数,求主梁截面的形心位置a X 平均板厚为: h 1=2 1 (h 薄+h 厚)=0.5×(13+8)=10.5cm

则a X =[(180-15)×10.5×(10.5÷2)+15×150×(150÷2)]/[(180-15) ×10.5+15×150]=44.7cm I X = 121×(180-15) ×10.53+(180-15) ×10.5×(44.7-2 5.10)2+121 ×15×1503+15× 150×(44.7-2 150)2 =4.99×106 cm 4 T 形截面抗扭惯性矩I TX =1.15×3 1 ×[(1.8-0.15) ×0.1053+1.5×0.153]=2.67×10-3 m 4 则单位抗弯及抗扭惯性矩: J X =b I x =1801099.42-?= 2.77×10-4 m 4/cm J TX =b I TX =180102.67-3 ?=1.48×10-5 m 4/cm b.计算横梁的抗弯及抗扭惯性矩I y 和I Ty l=4b=4×180=720 cm c=2 1 ×(480-15)=232.5 cm h '=150×4 3 =112.5cm 取整110 cm b '=15 cm 由c/l=232.5/720=0.32查得λ/c=0.608 则λ=0.608×232.5=141.4 cm=1.41m 求横隔梁截面重心位置: a y =[141×10.52+(1÷2) ×15×1102 ]/[2×141×10.5+110×15]=23.1cm 横梁抗弯惯性矩: I y =121 ×2×141×10.53+2×141×10.5×(23.1-25.10)2+121 ×15×1103+15×110× (23.1-110/2)2 =4.31×106 cm 4 =4.31×10-2 m 4 I Ty =1.15×31 ×(2×141.4×103 +110×153)=2.6×105 cm 3 单位抗弯惯性矩和抗扭惯性矩为:b 1

16m空心板简支梁桥毕业设计

16m空心板简支梁桥毕业设计 内容简介16m空心板简支梁文件组成及目录正文(51 页)、CAD 图纸(3 张)目录如下:第1 部分上部结构1.1 设计标准及材料1.2 构造与尺寸1.3 设计依据与参考书2 上部结构的设计过程2.1 毛截面面积计算2.2 内力计算2.3 预应力钢筋的设计 2.4 ... 内容简介 16m空心板简支梁    

1部分  上部结构

1.1 设计标准及材料

1.2构造与尺寸

1.3 设计依据与参考书

2 上部结构的设计过程

2.6 预应力损失计算

2.7 跨中截面应力验算

1 设计资料

VB程序语言设计科学计算器

VB程序语言设计 课程大作业 题目名称:科学计算器设计 班级: 12020742 姓名: 学号: 课程教师:温海骏 学期:2014-2015学年第2学期 完成时间: 2015年5月

一、实验内容 《科学计算器》设计 本科学计算器是一种能实现加、减、乘、除、倒数、乘方、正玄、余玄、正切、In、n!函数、进制、弧度转换等运算功能,并带有存储器、统计框等,基本实现了Windows自带计算器的所有功能。要实现计算器的这些功能就用到我们所学的VB知识编写程序来实现运算功能并解决问题,也是我们实训要达到的目的。 二、实验目的 1、通过本实验,进一步理解Visual Basic的编程方法。 2、提高运用Visual Basic编程的能力。 3、培养对所学知识的综合运用能力。 4、用所学的VB知识编写程序来实现运算功能并解决问题,达到实训的目的 三、实验设备 计算机、VB软件 四、实验过程 1、课题的选材过程(设计思路) 由VB程序设计的科学计算器是一种能实现加、减、乘、除、倒数、乘方、正玄、余玄、正切、In、n!函数、进制、弧度转换等运算功能,并带有存储器、统计框等,基本实现了Windows自带计算器的所有功能。 思路:为实现上述功能,我的基本思路是在窗体上建立4个控件数组,第一个控件数组是标准型,实现简单的四则运算;第二个控件数组是科学型,用来进行正弦余弦、正切余切、正割余割、反正弦反余弦、对数和n!等函数功能;第三个控件数组为程序员,实现进制转换;另外一个按钮实现单位转换。 2、设计的将要达到的目标 实现加、减、乘、除、倒数、乘方、正玄、余玄、正切、In、n!函数、进制、弧度转换等运算功能,并带有存储器、统计框等,基本实现Windows自带计算器的所有功能。 3、总体设计结构与功能 (1)总体设计结构介绍(绘制:结构流程图) 结构流程图如下:

第四章 简支梁设计计算(1)

第四章 简支梁(板)桥设计计算 第一节 简支梁(板)桥主梁内力计算 对于简支梁桥的一片主梁,知道了永久作用和通过荷载横向分布系数求得的可变作用,就可按工程力学的方法计算主梁截面的内力(弯矩M 和剪力Q ),有了截面内力,就可按结构设计原理进行该主梁的设计和验算。 对于跨径在10m 以内的一般小跨径混凝土简支梁(板)桥,通常只需计算跨中截面的最大弯矩和支点截面及跨中截面的剪力,跨中与支点之间各截面的剪力可以近似地按直线规律变化,弯矩可假设按二次抛物线规律变化,以简支梁的一个支点为坐标原点,其弯矩变化规律即为: )(42 max x l x l M M x -= (4-1) 式中:x M —主梁距离支点x 处的截面弯矩值; m ax M —主梁跨中最大设计弯矩值; l —主梁的计算跨径。 对于较大跨径的简支梁,一般还应计算跨径四分之一截面处的弯矩和剪力。如果主梁沿桥轴方向截面有变化,例如梁肋宽度或梁高有变化,则还应计算截面变化处的主梁内力。 一 永久作用效应计算 钢筋混凝土或预应力混凝土公路桥梁的永久作用,往往占全部设计荷载很大的比重(通常占60~90%),桥梁的跨径愈大,永久作用所占的比重也愈大。因此,设计人员要准确地计算出作用于桥梁上的永久作用。如果在设计之初通过一些近似途径(经验曲线、相近的标准设计或已建桥梁的资料等)估算桥梁的永久作用,则应按试算后确定的结构尺寸重新计算桥梁的永久作用。 在计算永久作用效应时,为简化起见,习惯上往往将沿桥跨分点作用的横隔梁重力、沿桥横向不等分布的铺装层重力以及作用于两侧人行道和栏杆等重力均匀分摊给各主梁承受。因此,对于等截面梁桥的主梁,其永久作用可简单地按均布荷载进行计算。如果需要精确计算,可根据桥梁施工情况,将人行道、栏杆、灯柱和管道等重力像可变作用计算那样,按荷载横向分布的规律进行分配。 对于组合式梁桥,应按实际施工组合的情况,分阶段计算其永久作用效应。 对于预应力混凝土简支梁桥,在施加预应力阶段,往往要利用梁体自重,或称先期永久作用,来抵消强大钢丝束张拉力在梁体上翼缘产生的拉应力。在此情况下,也要将永久作用分成两个阶段(即先期永久作用和后期永久作用)来进行计算。在特殊情况下,永久作用可能还要分成更多的阶段来计算。 得到永久作用集度值g 之后,就可按材料力学公式计算出梁内各截面的弯矩M 和剪力Q 。当永久作用分阶段计算时,应按各阶段的永久作用集度值g i 来计算主梁内力,以便进行内力或应力组合。 下面通过一个计算实例来说明永久作用效应的计算方法。 例4-1:计算图4-1 所示标准跨径为20m 、由5片主梁组成的装配式钢筋混凝土简支梁桥主梁的永久作用效应,已知每侧的栏杆及人行道构件的永久作用为m kN /5。

铁路桥梁毕业设计铁路预应力混凝土简支梁桥设计

1 绪论 课题研究意义 桥梁是铁路或公路跨越河流,山谷及其它障碍物的建筑物。桥梁的建成使道路保持畅通,为我国国民经济建设发挥了巨大的作用。钢筋混凝土桥具有可塑性强,省钢,耐久性好,维修费用少,噪音少,美观等特点。而简支梁在我国桥梁建设中也应用的非常广泛,因为其具有不受地基条件限制,适用于跨度不大(一般跨径<60m)。制作,施工方便等优点,所以本铁路预应力混凝土简支梁桥的设计意义很大,同时也可作为我们桥梁专业学生大学毕业前的一次综合考察。 本设计顺序依次为主梁尺寸的拟定及验算,桥台的设计验算,桥墩的设计验算,最后是桩基的设计验算,整篇设计符合桥梁设计的规范,设计过程中,通过查阅一些桥梁设计的资料,使设计更加合理。 预应力混凝土简支梁桥,由于构造简单,预制和安装方便,采用高强钢材,具有很好的抗裂性和耐久性,梁体自重轻,跨越能力大,有利于运输和架设,在现代桥梁中起到越来越重要的作用。目前我国已建成最大跨径为60m的简支梁桥,而且简支梁应用的很广泛。

2 主梁设计 设计依据及设计资料: (1) 设计题目:铁路预应力混凝土简支梁桥设计 (2) 计算跨度:2242m 16?+?m (3) 线路情况:单线,平坡,梁位于直线上,Ⅰ级铁路 (4) 设计活载:某专用线上铁水罐车专用荷载 (5) 设计依据:《铁路桥规》 (6) 材料:24φ5mm 钢绞线 ,断面面积2g 4.717cm A =,公称抗拉直径 g y 1500MPa R =; 考虑到钢丝在钢绞强度有所降低,故抗拉极限i y 0915001350MPa R .=?= (7) 混凝土强度等级:450 (8) 抗压极限强度a 31.5MPa R = (9) 抗拉极限强度l 2.8MPa R = (10) 受压弹性模量4 h 3.410MPa E =? (11) 钢绞线与混凝土的弹性模量比g h 5.89E n E = = 结构尺寸的选定 截面形式采用工字形,梁体结构及截面尺寸按《桥规》采用标准梁, 跨度m 24p =L ,梁全长m 6.24=L 高度:轨底到梁底260cm 轨底到墩台顶300cm 梁高210cm 每孔梁分成两片,架设后利用两片梁之间的横隔板连接成孔。 每片梁自重G = 1567.6783.8kN 2= 783.6 632.66kN/m 24 G q l ==== 各截面内力计算结果

相关文档
相关文档 最新文档