文档库 最新最全的文档下载
当前位置:文档库 › 高一数学数列求和2

高一数学数列求和2

人教版高中数学必修五教案:数列求和

课题 数列求和 课型复习课课时: 1 授课时间: 教学目标知识与技能: 数列求和方法. 过程与方法: 求和方法及其获取思路. 情感态度与价值观: 通过学生对数列的观察能力的训练,培养学生认识客观事物的数学本质的能力. 教学 重点 数列求和方法及其获取思路. 教学 难点 数列求和方法及其获取思路. 教学 手段[来源:学科网] 多媒体辅助教学[来源:Z_xx_https://www.wendangku.net/doc/f614804616.html,] 教学 方法 先学后教,讲练结合 [来源:学。科。网Z。X。X。K] 教学过程1.倒序相加法:等差数列前n项和公式的推导方法: (1)) ( 2 1 1 1 2 1 n n n n n n n a a n S a a a S a a a S+ = ? ? ? ? + + + = + + + = - 例1.求和: 2 2 2 2 2 2 2 2 2 2 2 2 1 10 10 8 3 3 9 2 2 10 1 1 + + + + + + + + 分析:数列的第k项与倒数第k项和为1,故宜采用倒序相加 法. 小结: 对某些前后具有对称性的数列,可运用倒序相加法求其 前n项和. 2.错位相减法:等比数列前n项和公式的推导方法: (2) 1 1 1 3 2 3 2 1) 1( + + - = - ? ? ? ? + + + + = + + + + = n n n n n n n a a S q a a a a qS a a a a S 例2.求和:)0 ( )1 2( 5 33 2≠ - + + + +x x n x x x n 3.分组法求和 二次备课

例3求数列 16 1 4 ,8 13,412,211的前n 项和; 例4.设正项等比数列{}n a 的首项2 1 1=a ,前n 项和为n S ,且 0)12(21020103010=++-S S S (Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。 例5.求数列 ,1,,1 ,1 ,1 1 2 2 -+++++++n a a a a a a 的前n 项 和S n . )1(11 111,1 ;2 ) 1(21 ,111,1:1 n n n n n n a a a a a a a a n n n S n a a --=--=++=≠+=+++==+++==- 则若于是则若解] 1)1([11)]([11 11111122a a a n a a a a n a a a a a a a S n n n n ----=+++--=--++--+--= 于是4.裂项法求和 例6.求和:n ++++ ++++++ 211 32112111 解:设数列的通项为a n ,则)11 1(2)1(2+-=+= n n n n a n , 1 2)111(2)]111()3121()211[(221+= +-=+-++-+-=+++=∴n n n n n a a a S n n 例7.求数列 ???++???++,1 1, ,321, 2 11n n 的前n 项和. 解:设n n n n a n -+=++= 11 1 (裂项) 则 1 13 212 11+++ ???+++ += n n S n

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

高中数学必修5数列求和精选题目(附答案)

高中数学必修5数列求和精选题目(附答案) 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =??? na 1,q = 1, a 1(1-q n ) 1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解. (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 一、分组转化法求和 1.已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 注: 1.分组转化求和的通法 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,

转化为等差数列或等比数列或可求数列的前n 项和的数列求和. 2.分组转化法求和的常见类型 2..已知数列{a n }的通项公式是a n =2n -? ???? 12n ,则其前20项和为( ) A .379+1 220 B .399+1 220 C .419+1 220 D .439+1 220 3.(2019·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=?? ? a n +2,n 是奇数, 2a n ,n 是偶数,则数列{a n }的前20项和为( ) A .1 121 B .1 122 C .1 123 D .1 124 二、裂项相消法求和

数列求和222222 Microsoft Word 文档

数列求和的基本方法和技巧 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 21 1(21--n =1-n 21 练习设S n =1+2+3+…+n,n ∈N * ,求1 )32()(++= n n S n S n f 的最大值.

练习: 求 1 1111111111个n ???+???+++之和. 练习:1113.1___1212312s n =++++=++++++ 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例2] 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通 项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 练习.已知数列)0()12(,,5,3,11 2 ≠--a a n a a n ,求前n 项和。

人教B版高中数学高一必修5练习2.3.2数列求和

习题课 数列求和 一、基础过关 1.数列12·5,15·8,18·11,…,1 (3n -1)·(3n +2),…的前n 项和为 ( ) A.n 3n +2 B.n 6n +4 C.3n 6n +4 D.n +1n +2 2.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a n n 所确定的数列{b n }的前n 项 之和是 ( ) A .n (n +2) B.1 2n (n +4) C.12n (n +5) D.1 2 n (n +7) 3.如果一个数列{a n }满足a n +a n +1=H (H 为常数,n ∈N *),则称数列{a n }为等和数列,H 为公和,S n 是其前n 项的和,已知等和数列{a n }中,a 1=1,H =-3,则S 2 011等于( ) A .-3 016 B .-3 015 C .-3 014 D .-3 013 4.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n - 1(4n -3),则S 15+S 22 -S 31的值是 ( ) A .13 B .-76 C .46 D .76 5.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n 等于 ( ) A .2n -1 B .2n - 1-1 C .2n +1 D .4n -1 6.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,那么这个数列的第5项是________. 7.在数列{a n }中,a n +1=2a n 2+a n 对所有正整数n 都成立,且a 1=2,则a n =______. 8.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1 a 2n -1(n ∈N *),求数列{ b n }的前n 项和T n . 二、能力提升 9.在数列{a n }中,a 1=2,a n +1=a n +ln ??? ?1+1 n ,则a n 等于( )

(推荐)高中数学必修五数列求和方法总结附经典例题和答案详解

数列专项之求和-4 (一)等差等比数列前n 项求和 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n n 项求和 ② 数列{}n a 为等差数列,数列{}n b 为等比数列,则数列{}n n a b ?的求和就要采用此法. ②将数列{}n n a b ?的每一项分别乘以{}n b 的公比,然后在错位相减,进而可得到数列 {}n n a b ?的前n 项和. 此法是在推导等比数列的前n 项和公式时所用的方法. 例23. 求和:1 32)12(7531--+???++++=n n x n x x x S )0(≠x 例24.求数列 ??????,2 2,,26,24,2232n n 前 n 项的和. 一般地,当数列的通项12()() n c a an b an b = ++ 12(,,,a b b c 为常数)时,往往可将n a 变成两项的差,采用裂项相消法求和. 可用待定系数法进行裂项: 设1 2 n a an b an b λ λ = - ++,通分整理后与原式相比较,根据对应项系数相等得 21 c b b λ= -,从而可得 122112 11 =().()()()c c an b an b b b an b an b -++-++ 常见的拆项公式有: ① 111(1)1n n n n =-++; ② 1111 ();(21)(21)22121 n n n n =--+-+

③ 1a b =-- ④11; m m m n n n C C C -+=- ⑤!(1)!!.n n n n ?=+- ⑥]) 2)(1(1 )1(1[21)2)(1(1++-+=+-n n n n n n n …… 例25. 求数列 ???++???++,1 1, ,3 21, 2 11n n 的前n 项和. 例26. 在数列{a n }中,1 1211++ ???++++=n n n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和. 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组. 例27. 求数列{n(n+1)(2n+1)}的前n 项和. 例28. 求数列的前n 项和:231 ,,71,41,1112-+???+++-n a a a n 如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征: 121...n n a a a a -+=+= 例29.求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 例30. 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 ⑸记住常见数列的前n 项和: ①(1) 123...;2 n n n +++++= ②2 135...(21);n n ++++-= ③22221 123...(1)(21).6 n n n n ++++= ++ ④2 33 3 3 )]1(2 1[321+=+ +++n n n

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

第2讲 数列求和及简单应用(教案)

第2讲 数列求和及简单应用 高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想. 热点一 分组转化求和 有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. 例1 (2017届安徽省合肥市模拟)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式; (2)若2(1)n a n n n b a =+-?,求数列{b n }的前n 项和T n . 解 (1)∵{a n }为等差数列, ∴??? S 4 =4a 1 +4×3 2 d =24,S 7 =7a 1 +7×6 2 d =63?????? a 1=3,d =2 ?a n =2n +1. (2)∵2(1)n a n n n b a =+-? =22n +1+(-1)n ·(2n +1) =2·4n +(-1)n ·(2n +1), ∴T n =2(41 +42 + (4) )+[-3+5-7+9-…+(-1)n (2n +1)]=8(4n -1) 3 +G n , 当n =2k (k ∈N *)时,G n =2×n 2=n , ∴T n =8(4n -1)3+n , 当n =2k -1(k ∈N *)时, G n =2×n -1 2-(2n +1)=-n -2, ∴T n =8(4n -1)3 -n -2,

∴T n =??? ?? 8(4n -1) 3 +n ,n =2k ,k ∈N *,8(4n -1)3-n -2,n =2k -1,k ∈N * . 思维升华 在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式. 跟踪演练1 (2017届北京市朝阳区二模)已知数列{a n }是首项a 1=13,公比q =1 3 的等比数列.设 13 2log 1()n n b a n *=-∈N . (1)求证:数列{b n }为等差数列; (2)设c n =a n +b 2n ,求数列{c n }的前n 项和T n . (1)证明 由已知得a n =13·????13n -1=????13n , 所以13 12log ()121(N )3 n n b n n * =-=-∈, 则b n +1-b n =2(n +1)-1-2n +1=2. 所以数列{b n }是以1为首项,2为公差的等差数列. (2)解 由(1)知,b 2n =4n -1, 则数列{b 2n }是以3为首项,4为公差的等差数列. c n =a n +b 2n =????13n +4n -1, 则T n =13+1 9+…+????13n +3+7+…+(4n -1) =13×????1-????13n 1-13+(3+4n -1)·n 2. 即T n =2n 2+n +12-12·????13n (n ∈N * ). 热点二 错位相减法求和 错位相减法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高中数学备课精选 第二章《数列 数列求和》复习测试 新人教B版必修5

高二数学数列测试题 一.选择题(本大题共12小题,每小题5分,共60分) 1.某数列既是等差数列,又是等比数列,则这个数列为() A常数列 B公差为零的等差数列 C公比为1的等比数列 D这样的数列不存在 2.在数列1,1,2,3,5,8,13,x,34,55,…中,x的值是 ( ) A.19 B.20 C.21 D.22 3.等差数列-6,-1,4,9,……中的第20项为() A、89 B、 -101 C、101 D、-89 4.已知数列2、6、10、14、32……那么72是这个数列的第()项 A.23 B.24 C.19 D.25 5.在等差数列{a n}中,d=1,S98=137,则a2+a4+a6+…+a98等于( ) A.91 B.92 C.93 D.94 6.设a n=-n2+10n+11,则数列{a n}从首项到第几项的和最大() A.第10项B.第11项C.第10项或11项 D.第12项 7.已知等差数列{a n}的公差为正数,且a3·a7=-12,a4+a6=-4,则S20为() A.180 B.-180 C.90 D.-90 8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为() A.9 B.10 C.19 D.29 9.数列{a n}前n项和是S n,如果S n=3+2a n(n∈N*),则这个数列是() A.等比数列 B.等差数列 C.除去第一项是等比 D.除去最后一项为等差 10.a、b、c成等比数列,则f(x)=ax2+bx+c的图象与x轴的交点个数是() A.0 B.1 C.2 D.不确定 11.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成() A.511个B.512个C.1023个D.1024个 12.已知数列{a n}的前n项和S n=2n2-3n,而a1,a3,a5,a7,……组成一新数列{C n},其通项公式为() A、 C n=4n-3 B、 C n=8n-1 C、C n=4n-5 D、C n=8n-9 二.填空题(本大题共5小题,每小题6分,共30分) 13.写出下列各数列的通项公式: (1)3,5,3,5,3,… a n=_______.

高中数学数列求和

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题?

提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13????1 3n -2-13n +1, ∴ 11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ??????13n -2-13n +1=13????1-13n +1=n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2n , ∴S n =????1-12+????1-122+…+????1-1 2n =n -????12+12 2+ (12)

2数列—数列求和方法总结

数列求和方法总结 一、常用公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 1、【2014·北京卷(文15)】已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列. (1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和. 2、(2013年高考四川卷(文))在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 二、错位相减法 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。

3、【2014·全国卷Ⅰ(文17)】已知{}n a 是递增的等差数列,2a ,4a 是方程2 560x x -+=的根。 (I )求{}n a 的通项公式; (II )求数列2n n a ??? ??? 的前n 项和. 4、【2012高考浙江文19】(本题满分14分)已知数列{a n }的前n 项和为S n ,且S n =22n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡. (1)求a n ,b n ; (2)求数列{a n ·b n }的前n 项和T n .

高中数学 数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

高中数学必修5常考题型:数列求和(复习课)

数列求和(复习课) 【知识梳理】 1.公式法(分组求和法) 如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解. 2.裂项求和法 对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有: ① 1 n(n+k) = 1 k·( 1 n- 1 n+k ); ②若{a n}为等差数列,公差为d, 则 1 a n·a n+1 = 1 d( 1 a n- 1 a n+1 ); ③ 1 n+1+n =n+1-n等. 3.错位相减法 若数列{a n}为等差数列,数列{b n}是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以公比q,然后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法. 4.倒序相加法 如果一个数列{a n},与首末两项等距离的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加求和法. 【常考题型】 题型一、分组转化法求和 【例1】已知数列{c n}:11 2,2 1 4,3 1 8,…,试求{c n}的前n项和.

[解] 令{c n }的前n 项和为S n , 则S n =112+214+318 +…+????n +????12n =(1+2+3+…+n )+??? ?12+14+18+…+????12n =n (n +1)2+12????1-????12n 1-12 =n (n +1)2 +1-????12n . 即数列{c n }的前n 项和为S n =n 2+n 2 +1-????12n . 【类题通法】 当一个数列本身不是等差数列也不是等比数列,但如果它的通项公式可以拆分为几项的和,而这些项又构成等差数列或等比数列,那么就可以用分组求和法,即原数列的前n 项和等于拆分成的每个数列前n 项和的和. 【对点训练】 1.求和:S n =3+33+333+…+333 3n 个 . 解:数列3,33,333,…,333 3n 个的通项公式 a n =13(10n -1). ∴S n =13(10-1)+13(102-1)+…+13 (10n -1) =13(10+102+…+10n )-n 3 =13×10(1-10n )1-10 -n 3 =1027(10n -1)-n 3 . 题型二、错位相减法求和

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n [ [∴当8 -n ,即n =8时,50)(max =n f 题1.等比数列的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a =,b =,c = . 解:原式=答案:

二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. [例3]求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) n n 1432-∴[例4]2 练习题1已知,求数列{答案: 练习题2的前n 项和为____ 答案: 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5]求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

必修五数列复习专题

灌南高级中学高二数学试题 必修5第二章数列复习专题 2018.2 一、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前n 项和公式及其推导方法. 二、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想. 2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. 三、知识内容: 1.数列 数列的通项公式:?? ?≥-===-) 2()1(111n S S n S a a n n n 数列的前n 项和:n n a a a a S ++++= 321 2.等差数列 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 等差数列的判定方法: (1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。 (2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。

等差数列的通项公式: 如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 说明:该公式整理后是关于n 的一次函数。 等差数列的前n 项和:① 2 )(1n n a a n S += ②d n n na S n 2 )1(1-+= 说明:对于公式②整理后是关于n 的没有常数项的二次函数。 等差中项: 如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A +=或b a A +=2 说明:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 等差数列的性质: (1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= (2)对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+。 也就是: =+=+=+--2 3121n n n a a a a a a ,如图所示: n n a a n a a n n a a a a a a ++---11 2,,,,,,12321 (3)若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 3.等比数列 等比数列的概念: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0≠q )。 等比中项: 如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项。 也就是,如果是的等比中项,那么G b a G =,即ab G =2。 等比数列的判定方法: (1)定义法:对于数列{}n a ,若)0(1 ≠=+q q a a n n ,则数列 {}n a 是等比数列。 (2)等比中项:对于数列{}n a ,若2 12++=n n n a a a ,则数列{}n a 是等比数列。 等比数列的通项公式: 如果等比数列{}n a 的首项是1a ,公比是q ,则等比数列的通项为11-=n n q a a 。 等比数列的前n 项和: ○ 1)1(1)1(1≠--=q q q a S n n ○2)1(11≠--=q q q a a S n n ○3当1=q 时,1na S n =

相关文档